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Abstract Gathering the preferences of a user in order to make correct
recommendations becomes a difficult task in case of uncertain answers.
Using possibility theory as a means of modelling and detecting this
uncertainty, we propose methods based on information fusion to make
inferences despite observed inconsistencies due to user errors. While the
principles of our approach are general, we illustrate its potential benefits
on synthetic experiments using weighted averages as preference models.

Keywords: Preferences · Inconsistency · Information Fusion · Possibility.

1 Introduction

This paper focuses on handling uncertainty and inconsistency in the observed
preferences of a single user. While multi-criteria decision analysis often focuses
on specific users, other fields such as statistics, machine learning, and economics
tend to look at populations. Traditionally, uncertainty and inconsistency in single-
user preferences are addressed through set-based approaches, relying on tech-
niques like min-max regret bounds [2,3,6]; or through average error calculations
[5,13,14,23,24]. However, set-based approaches rely on the strong assumptions
that both the user and the model choice are always correct, while probabilistic
and averaging methods lack strong guarantees, justifying new approaches.

This paper explores a third approach, using possibility theory [10] to process
uncertain preferential information. This approach remains consistent with a set-
based approach while providing a non-binary quantification of inconsistency. It
also provides various tools for dealing with inconsistency, extending set and logic
operations such as conjunction and disjunction [9], unlike expectation-based oper-
ators from probabilities. While using possibilities for preferences is not new [21],
our contribution enriches such proposals by incorporating information fusion
methods to address inconsistency, and by validating the proposed methodologies
through synthetic experiments. Sec. 2 describes our general possibilistic setting.
Sec. 3 provides strategies to deal with user inconsistency. Sec. 4 provides some
experiments demonstrating the potential interest of our approach.

All along the paper, we will illustrate our approach through weighted averages,
as they are widely used and simple to understand. However, other numerical
models could be applied, such as the ordered weighted averages (OWA) [25].
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2 Possibilistic Modelling of Preference Models

2.1 Preferences and Preference Models

In this paper, we consider multi-criteria alternatives. The space of alternatives is
a Cartesian product X =

∏M
i=1 Xi where Xi is the domain of values that the ith

criterion can take. Such a domain can be discrete or continuous. We also assume
that user preferences can be described by some model ω ∈ Ω, the set of models
Ω being chosen by the analyst. Each model ω then induces a partial pre-order1
over the set of alternatives. We refer to [20] for a list of possible models.

In this work, we focus on numerical models, where ω : X → R is a real-valued
function2 that maps any alternative x ∈ X to a corresponding value ω(x), denoted
as the score of the alternative x given the preference model ω. We note by ωi

the ith parameter of the said function. For easiness, we also denote by x ⪰ω y
the relation ω(x) ≥ ω(y). However, many of the ideas in this paper also apply to
the case where ω is not a numerical model.

Example 1. A user wants to buy cheese, and we suppose that she evaluates a
cheese through two criteria: flavour and price. If her preferences are described by
a weighted sum with parameters summing to one (0.6, 0.4), we obtain the scores
presented in Table 1 for a set of cheese. Mozzarella is her preferred alternative.

Table 1. Set of alternatives X and their scores, with ω having parameters (0.6, 0.4)

Name Flavour 1/Price Score

American cheddar 0 10 4
Emmental 4 6 4.8

Edam 5 5 5
Mozzarella 7 3 5.4
Truffle Brie 8 1 5.2

2.2 Possibility Theory Reminder

A possibility distribution π over a space Ω is a mapping π : Ω → [0, 1] where π(ω)
measures how much ω is plausible. A distribution π is consistent if maxω∈Ω π(ω) =
1, i.e., if at least one element is fully plausible. From π, one can define two measures
for any subset A ⊆ Ω, called possibility and necessity measures:

Π(A) = sup
x∈A

π(x), N(A) = 1− sup
x ̸∈A

π(x). (1)

Π and N are dual, as N(A) = 1−Π(Ac). Therefore, working with one of them
for every event A is sufficient. Possibility theory formally extends sets, as the
information given by a subset E is modelled by the distribution π(x) = 1 if
1 A transitive, antisymmetric relation on X× X.
2 For simplicity, we will use the same notation for the function and its parameters ω.
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x ∈ E, zero otherwise. When π is consistent, the bounds [N(A), Π(A)] induce
the probabilistic set P = {P |N(A) ≤ P (A) ≤ Π(A), ∀A ⊆ Ω}.

Another important notion in possibility theory is the alpha-cut. Given a
possibility distribution π, its alpha-cut πα is the subset:

πα = {ω ∈ Ω : π(ω) ≥ α}, (2)

which includes all the elements of Ω having a possibility degree higher than α.
The last two significant notions, given a real-valued function f : Ω → R, are

the lower and the upper expectations Eπ(f),Eπ(f) of f induced by a possibility
distribution π. They are respectively the lower and the upper expected values of
f over the set P . When π takes a finite number of distinct values 1 = α1 > . . . >
αn > αn+1 = 0 (being our case here), they can be computed as:

Eπ(f) =

∫ 1

0

min
ω∈πα

f(ω)dα =
n∑

i=1

(αi − αi+1) min
ω∈παi

f(ω), (3)

Eπ(f) =

∫ 1

0

max
ω∈πα

f(ω)dα =

n∑
i=1

(αi − αi+1) max
ω∈παi

f(ω). (4)

In this paper, we also consider unnormalized possibility distributions π such
that maxω∈Ω π(ω) < 1 to quantify the inconsistency:

Inc(π) = 1−max
ω∈Ω

π(ω). (5)

2.3 Possibilistic Preferential Information

We consider elementary pieces of information of the form (E,α), where E ⊆ Ω
is a subset of possible models and α is understood as the certainty degree that
the assertion E is true. It is interpreted as N(E) ≥ α, to which we can associate
the least informative possibility distribution π(E,α) satisfying N(E) ≥ α:

π(E,α)(ω) =

{
1 if ω ∈ E,

1− α otherwise.
(6)

In particular, α = 1 corresponds to a set-valued information ω ∈ E, while α = 0
amounts to a void statement corresponding to ignorance. Equation (6) can be
interpreted as an item of information within possibilistic logic [11], and most
reasoning tools used in this paper could be interpreted through the lens of such
a logic3. E is typically a subset of possible models resulting from a user answer.

Example 2 (Piece of information). Given Example 1 and Table 1, assuming that
the user declares Truffle Brie ⪰ω Emmental with a certainty degree α1 = 0.8, we
obtain the following decision frontier:

ω(Truffle Brie) ≥ ω(Emmental) ⇒ 8ω1 + ω2 ≥ 4ω1 + 6ω2 ⇒ 4ω1 ≥ 5ω2, (7)
3 This should not be confused with possibilistic logic used to represent preferences [4],

where α represents intensities of preferences.
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corresponding to the possibilistic information π(E1,α1) pictured in Figure 1, with
E1 = {ω|ω(Truffle Brie) ≥ ω(Emmental)} and α1 = 0.8.

π(E1,α1)

1

0.2

ω10 1

4ω1 = 5ω2

E1

Figure 1. Preferential information π(E1,α1)(ω) of Example 2

In this paper, we will consider that a set Ei is the result of some pairwise
comparison between a pair of alternatives (x, y) ∈ X2, where the user can either
state x ⪰ y or y ⪰ x. We denote by Ex⪰y and Ey⪰x the subsets of Ω resulting
from each possible answer.

In practice, we collect multiple pieces of information (Ei, αi), i = 1, . . . , n
during the elicitation process, each of them corresponding to a distribution
π(Ei,αi). Note that those Ei will define a finite partition {Ω1, . . . ΩP } of Ω
where Ωi is of the kind ∩ϕi∈{Ei,Ec

i }ϕi. The distributions π(Ei,αi) can then be
combined or fused together into a single distribution by extending classical set
operators such as conjunction (logical AND) and disjunction (logical OR). The
use of such operators also allows for an easier interpretation of the performed
operations [8,9,19]. In particular, if we have no reasons to think that the pieces
of information π(Ei,αi) are unreliable4, the most sensible way to combine them is
through conjunction, which in possibility theory is typically done through the
use of a T-norm operator [17]. As our goal here is not to discuss the pros and
cons of the different T-norms, we will focus on the product T-norm, resulting in
the distribution π∩ such that π∩(ω) =

∏n
i=1 π(Ei,αi)(ω).

Example 3 (Fusion of information and expectation bounds). Now we consider two
pieces of information: π(E1,α1) from Example 2, and a new one denoted π(E2,α2)

obtained from the affirmation of the user that Mozzarella ⪰ω Truffle Brie with a
certainty degree α2 = 0.6. We obtain a new decision frontier: ω1 ≤ 2ω2. π(E2,α2)

is shown on Figure 2, and the resulting fused distribution is shown on Figure 3.
As an illustration of Equation (3), we can consider the function f(ω) =

ω(Mozzarella) = 7ω1 + 3ω2. The lower expectation is:

E(f(ω)) = (1−0.4)×(5/9×7+4/9×3)+(0.4−0.2)×(5/9×7+4/9×3)+0.2×3 ≈ 4.77.

2.4 Errors in Set-wise and Possibilistic Approaches

As recalled in the introduction, set-wise approaches are especially useful when
needing strong guarantees, as long as the information provided by the user is
4 We will deal with this situation in Section 3.
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π(E2,α2)

1

0.4

ω10 1

ω1 = 2ω2

E2

Figure 2. Preferential information
π(E2,α2)(ω) of Example 3

π∩

1

0.2
0.4

ω10 1

Figure 3. Fusion π∩ of two preferential
information of Example 3

correct. Yet, such hypotheses are often unrealistic, in which case using sets can
lead to unwarranted situations, hence the need to account for possible mistakes
through refined uncertainty modelling. As we have shown [1], using possibility
theory is an interesting solution to this issue, as shows the next example.

Example 4 (A single error to ruin everything). We take Example 2 with two
small but important modifications: we do not consider a possibilistic information,
and thus only E1 is considered (equivalent to α1 = 1); and the user is unfocused
or unsure and makes the erroneous claim that Truffle Brie ⪯ Emmental. We
determine that E1 = ETruffle Brie⪯Emmental is now {ω ∈ Ω : 4ω1 ≤ 5ω2}.

ω10 1

4ω1 = 5ω2

E1

ω∗

Figure 4. Wrong answer leading to a wrong
model

π(E1,α1)

1

0.3

ω10 1E1

ω∗

Figure 5. Possibilistic preferential inform-
ation

As shown on Figure 4, the true preference model of the user, denoted by
ω∗, is definitely left out of E1. Whatever the next answers are, we cannot get
to ω∗. Now, if the user provides a certainty degree α1 = 0.7, we obtain the
distribution shown on Figure 5, and ω∗ is still reachable with further questions.
With additional correct answers, the possibility of E1 will decrease to a point
that E1 has a lower possibility than Ec

1, suggesting that ω∗ is more likely to
belong to Ec

1. In such a case, we detect some inconsistency, as maxω∈Ω π(ω) < 1.

Using a possibilistic approach allows us to enrich set-based approaches while
remaining consistent with it, as it is retrieved when giving α = 1 as certainty
degrees. This is in contrast with probabilistic approaches, where increasing the
plausibility of some models necessarily means decreasing the plausibility of others.

3 Handling Inconsistencies

Another interest of the possibilistic approach is that when some answers are
inconsistent between them, possibility distributions quantify inconsistency gradu-
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ally, rather than having an all-or-nothing information as set-based approaches
do. We assume in this section (and in the rest of the paper) that errors originate
only from the user, and consider possible strategies to deal with such errors when
considering possibility theory and associated information fusion tools. Concretely,
we look at the case where π∩ is subnormalized, i.e., Inc(π∩) > 0.

3.1 Inferring despite Inconsistencies

Having a positive inconsistency Inc(π∩) > 0 implies that E1
π∩

= ∅. This means
that if one wants to make inferences over f(ω) in Equations (3)-(4) without
correcting inconsistencies, we need to define minima and maxima over the empty
set. While an infinity of strategies could be considered, the two following ones
are classical solutions:

– First way: consider that minω∈∅ f(ω) = maxω∈∅ f(ω) = 0. This simply
amounts to ignoring the inconsistent information. This is somewhat similar
to inference procedures in possibilistic logic in presence of inconsistency [11].

– Second way: consider that minω∈∅ f(ω) = minω∈Ω f(ω) and maxω∈∅ f(ω) =
maxω∈Ω f(ω). This amounts to transforming conflict into ignorance, and to
have either a very conservative or optimistic view about it. It can also be
viewed as normalizing the possibility distributions by taking π′ = π+ Inc(π∩).

This way of resolving inconsistencies does not change previously given answers and
information (they are not modified), nor the way we combine them (conjunctively).
This approach somehow avoids searching for the sources of inconsistency, and
either ignores it or turn it into ignorance (a different concept). Therefore, such
strategies appear legitimate only when inconsistency is likely to be limited, and
when there is no need to analyse the details of the conflicting situation.

Another way to infer despite inconsistencies would consist in normalizing the
distribution π∩, to come back to a consistent situation. There are a lot of ways
to perform such a normalization [18], yet they may be harder to interpret than
the two solutions we consider here. For this reason, we will not explore them
here, although the second way of handling inconsistency can be seen as a specific
normalization, as already mentioned.

3.2 Resolving Inconsistencies through Information Fusion

A second strategy to resolve inconsistencies is to combine differently the pieces
of information, so that the inconsistency disappears. Such an approach does not
modify the preferential information we receive, but is a convenient tool to test
different hypotheses about them. For instance, a conjunctive rule resulting in
π∩ makes the assumption that all pieces of information are reliable. Clearly, if
Inc(π∩) > 0, this assumption is not true, and others should be considered.

Compared to the previous approaches of Subsection 3.1, modifying the way
we combine information pieces is usually computationally more intensive, but
has the advantage of potentially providing interesting insights to the user or
the analyst, for instance by giving us a lower bound of the number of errors
committed, or giving a subset of answers to examine with the user.
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ℓ-out-of-n In preference modelling, it is reasonable to assume that most of
the user answers are correct, but not all (otherwise they would be consistent).
Naturally, we want a fusion operator whose result can resolve inconsistencies while
remaining consistent with most (but not necessarily all) of the initial information.
Since it is also difficult to know which answer coming from the user is wrong, it is
natural to consider operators that treat sources anonymously (i.e., whose result
is invariant under indices permutation). If S = {π1, . . . , πk} are the considered
items of information, then the distribution resulting from a ℓ/k assumption is:

πℓ/k(ω) =
⋃

L⊆S,|L|=ℓ

( ⋂
πi∈L

πi(Ω)

)
, (8)

where ∪ and ∩ are replaced by a corresponding T-norm and dual T-conorm. This
fusion operator is an example of a k-quota operator [9], applied to possibility
theory. Ideally, a minimal repair should consist in finding a value ℓ as close
as possible to k. We propose here an efficient method to determine such a ℓ,
assuming that for each element Ωi of the partition Ω1, . . . , ΩP mentioned in
Section 2.3, we do have an associated vector πi = (π1(Ωi), . . . , πk(Ωi)).

Algorithm 1 provides an easy way to find ℓ∗, and is based on the simple
idea that πℓ/k will be normalized if there is an element Ωi for which at least
ℓ possibility degrees have value one. Algorithm 1 then consists in finding the
highest value satisfying this constraint. It is of linear complexity in the number
P of elements, hence is quite fast once P is fixed.

Algorithm 1: Algorithm to find ℓ∗

Data: Sources S = {π1, . . . , πk}
Result: Maximal ℓ∗ to reach consistency
ℓ∗ = k;
for j ∈ {1, . . . , P} do

if |{πi(Ωj) : πi(Ωj) = 1, i = 1, . . . , k}| < ℓ∗ then
ℓ∗ = |{πi(Ωj) : πi(Ωj) = 1, i = 1, . . . , k}|

end
end

Example 5 (ℓ-out-of-k).
We now suppose that the user gives 4 answers along with the certainty degrees

α = {0.9, 0.5, 0.7, 0.3}, as shown on Figure 6. Moreover, answer 4 is wrong because
the user was uncertain or unfocused, leading to some inconsistency being detected,
as shown on Figure 7, with Inc(π∩) = 0.3. Our objective is to handle inconsistency,
and more specifically to resolve current inconsistency through information fusion.

Here we will use ℓ-out-of-k algorithm. In this case, we can easily determine
the maximal ℓ to reach consistency, which is ℓ = 3: consistency is reached by
removing a single answer, either answer 2 or 4. We then compute π3/4 according to
Equation (8). Given S = {π1, ..., π4}, the first step is to determine all the subsets
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ω10 1ω∗

1

2

3

4

Figure 6. Answers given by the user in Example 5, answer 4 being wrong

π∩
1

ω10 1ω∗

Figure 7. Preferential information with inconsistency in Example 5

L ⊆ S such that |L| = 3, obtaining L1 = {π1, π2, π3},L2 = {π1, π2, π4},L3 =
{π1, π3, π4} and L4 = {π2, π3, π4}. We then compute the 4 associated possibility
distributions πLi through a product T-norm. For example, πL1(ω) =

∏3
i=1 πi(ω).

After that, we compute π3/4 through a probabilistic sum T-conorm. As such a
T-conorm is commutative and associative, this can be done by iteratively applying
it to pairs of distributions, recall that combining two distributions π1 and π2

through it results in:

π∪(ω) = π1(ω) + π2(ω)− π1(ω) · π2(ω).

The final result is shown on Figure 8. As expected, consistency is restored and
the resulting possibility distribution reaches 1 on two distinct subsets of Ω, in
which at least 3 answers are consistent, which is the case for answers 1, 2 and
3 when ω1 ∈ [0.5, 0.65] and 1, 3 and 4 when ω1 ∈ [0.7, 0.75]. As indicates this
remark, this approach does not guarantee that the set of most plausible models
will be convex, even when each individual answer points out to a convex set of
most plausible models. However, non-convex sets of most plausible answers will
only happen in case of disagreement, and could be shown to the users for further
investigations.

Maximal coherent subsets Another strategy for dealing with conflict is to
use the notion of maximal coherent subsets (MCS) [8]. In our context, and given
a set S = {π1, . . . , πk} of considered items of information, we define a subset
L ⊆ S as a MCS if the result πL =

⋂
πi∈L πi of their combination is such that

Inc(πL) = 0 and Inc(πK) > 0 for any K ⊃ L.
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π3/4

1

ω10 1ω∗

Figure 8. Preferential information corrected with ℓ-out-of-k repair algorithm in Example
5

A classical way to restore consistency through information fusion, inherited
from ideas in logic [22], is simply to consider all MCSs and take the disjunctions
of all the MCSs’ conjunctions. An operator fusion based on MCSs will typically
deliver quite imprecise results in the presence of outliers or errors, as the resulting
distribution will have a non-empty intersection with any of the initial (preferential)
information. In our setting, it seems more natural to consider only one MCS,
hopefully containing all the correct answers from the user.

Listing all the MCSs can be very costly: unlike Algorithm 1, we have to
consider all possible subsets of information: at worst 2K subsets. Supposing the
number of information stay reasonable, listing all the MCSs is doable. A strategy
would be to consider only the MCSs of size ℓ∗ given by Algorithm 1, supposing
most pieces of information are correct. However, as we will see in Subsection 4.4,
while this heuristic can be interesting when paired with the associated average
confidence degree, it usually does not give the most interesting MCS.

Example 6 (MCS repair).
Keeping the same setting as Example 5, this time we want to resolve current

inconsistency through a MCS, specifically a MCS of maximal size.

πL̂
1

ω10 1ω∗

Figure 9. Preferential information corrected through a MCS in Example 6

As on the previous example, we have 4 answers, one of them being incorrect,
and we know that ℓ = 3. Therefore, we first need to determine all the MCSs
L such that |L| = 3. Since it is not possible to have a MCS L with |L| > 3
(otherwise ℓ would not be 3), it is sufficient to check only for coherent subsets,
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i.e. subsets L such that Inc(πL) = 0. L1 = {π1, π2, π3} and L3 = {π1, π3, π4}
are the only coherent subsets of the specified size. In this case, we can pick the
MCS that maximizes the average of the associated certainty degrees. We have
αL1 = α1+α2+α3

3 = 0.7, and αL3 = α1+α3+α4

3 ≈ 0.63, indicating L̂ = L1.
πL̂ is shown on Figure 9. As we can see, consistency is restored and unlike

ℓ-out-of-k repair algorithm, we are guaranteed that the set of most plausible
models form a convex set if it is the case for each individual answers, thanks to
the sole use of conjunctive operators.

4 Experiments

In this section, we perform some synthetic experiments5 to see how our various
approaches perform when inconsistency appears.

4.1 Decision rules

Many decision rules exist when using possibility theory [15], and we will only
recall the ones we use here. Given a subset A ⊆ X of available alternatives, the
goal of the decision rules we consider is to make a recommendation x∗ ∈ A. Given
an alternative x and a model ω, the function ω(x) provides an evaluation of the
quality of x. We consider three decision rules:

– Maximin, adopting a pessimistic view and providing safe recommendations:
x∗
Mm = argmaxx∈A Eπ(ω(x)),

– Maximax, adopting an optimistic view: x∗
MM = argmaxx∈A Eπ(ω(x)),

– Minimax regret, less conservative than Maximin, still providing rather safe
recommendations and widely used in recommendation problems (e.g. [3]):
x∗
mMR = argminx∈A

∑n
i=1(αi − αi+1)maxy∈A[maxω∈παi

(ω(y)− ω(x))].

4.2 Experimental Protocol

We simulate 50 multi-criteria alternatives. Each alternative has 4 criteria with
Xi = [0, 1]. For each alternative x, xi ∼ U(0, 1) and

∑4
i=1 xi ≈ 2 (so they are not

Pareto-dominated). The true preference model ω∗ of the user (a set of weights
summing up to one) is randomly generated according to a Dirichlet distribution
with hyperparameter (1, 1, 1, 1), ensuring a uniform sampling of models.

To simulate a user elicitation process, we pick 15 pairs of alternatives. In
the experiments below, the certainty degrees αi provided with each answer are
generated randomly according to a beta distribution B(7, 2), corresponding to
an optimist scenario where the user is confident of her choices. To model the
uncertainty of the user, given a certainty degree αi, we consider that the user
answers correctly with a probability αi, and randomly (so sometimes correctly)
with probability 1− αi. Overall, the user has a final probability αi +

(1−αi)
2 to

answer correctly. Simulations are repeated 300 times, to have a reasonable sample
size, and we consider only experiments with errors.
5 https://github.com/LoicAdam/Possibilist_Elicitation_Fusion_Random

https://github.com/LoicAdam/Possibilist_Elicitation_Fusion_Random
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4.3 Number of Errors Detected

We first want to see if Algorithm 1 is able to detect the number of incorrect
answers. It should be reminded that we have no information on whether an
answer given by the user is wrong or not.

Table 2. Number of errors detected given the real number of errors

Number errors

Nb detected 1 2 3 4 5 6

4 2
3 8 8 3
2 23 24 9 1 1
1 84 38 24 5 1
0 54 12 2 1

Table 2 shows the difference between the real number of incorrect answers
and the number ℓ returned by Algorithm 1. The difference is explained easily: a
wrong answer does not necessarily contradict all the correct answers, and does
not automatically create inconsistencies (think for example of the case where the
first answer is wrong). We can see that the higher the number of errors is, the
more difficult it gets to assess correctly the number of errors. This is natural, as
more errors are likely to be consistent between themselves.

4.4 Uncertainty Management Methods and Decision Rules

Using a numerical model allows us to easily measure the performance of the
different approaches. To do so, we compute over the repeated experiments6 the
average of the real regret Rωi

(x∗, xopt
i ) = ω(xopt

i )−ω(x∗) between the alternative
recommended by a method x∗ and xopt

i the best alternative given the true model
ωi of an experiment. We denote this average by x = 1

n

∑n
i=1 Rωi(x

∗, xopt
i ). We

also determined a confidence interval IC= [x± tn−1,1−α
2

S∗
√
n
] on x, S∗ being the

corrected standard deviation of the real regrets, with α = 0.05 and n = 231.
Our question is to know whether there is a difference, in terms of recommend-

ation quality, between merely handling inconsistency through the redefinition
of minω∈∅ f(ω) and maxω∈∅ f(ω), and using more elaborated fusion strategies.
Figure 10 summarizes the results when comparing the redefinitions of Section
3.1 to the fusion approaches of Section 3.2. We also added a naive consistency
restoration method, consisting in relaxing the linear constraints obtained from
each answer until consistency is reached. Let us note we used different heuristics
to pick a MCS (one without the confidence degrees, two based on them) and we
also selected the MCS that truly minimizes the real regret.

We can see on this graph that not accounting for uncertainty degrees (the first
rows) tend to provide worse results, as well as transforming inconsistency into
6 We only kept the repetitions for which inconsistency was detected, here 231.
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0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

extremumω∈∅f(ω) = 0

extremumω∈∅f(ω) = extremumω∈Ωf(ω)

ℓ∗-out-of-k

MCS minimizing the real regret

MCS maximizing average confidence

MCS of biggest size with max confidence

MCS of biggest size without confidence

Naive consistency restoration

Real regret

mMR
Maximax
Maximin

Figure 10. Confidence intervals on real regret

ignorance (before the last row), despite the fact that this is a common strategy.
Simply ignoring the inconsistency (minω∈∅ f(ω) = maxω∈∅ f(ω) = 0) gives much
better results, but that are not robust to all decision rules. In contrast, using
fusion rules to handle inconsistency provides good and stable results across all
decision rules. In addition to this stability, such fusion rules also provide some
additional insights to the user, such as an estimation of the number of errors, or
some interesting sets of answers (i.e., the MCS) to examine in more details.

These encouraging results should be further validated through additional
synthetic or real-world experiments. The current results are based on random
pairs of alternatives presented to the user.

5 Conclusion

In this paper, we have discussed integrating uncertainties in preferential informa-
tion through possibility theory. Our experiments confirm the potential benefits
of our approaches and some of their limitations.

Many aspects of the proposed framework can be easily extended to other
situations beyond the scope of this paper. This includes multi-objective combin-
atorial problems [2] or more complex numerical models such as Choquet integrals
[3,16]. The framework can also be applied to tasks like ranking alternatives or
sorting them into ordered categories (see for instance [7, Ch. 7]).

Finally, our framework shares similarities with possibilistic logic. It would
therefore be quite interesting to see how the handling of inconsistency in such
logics [12] can help in our current framework.
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