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ASYMPTOTICALLY HOMOGENEOUS SOLUTIONS OF THE SUPERCRITICAL LANE-EMDEN SYSTEM

We consider the Lane-Emden system

When p ≥ q ≥ 1, it is known that there exists a positive radial stable solution (u, v) ∈ C 2 (R d ) if and only if d ≥ 11 and (p, q) lies on or above the so-called Joseph-Lundgren curve introduced in [5]. In this paper, we prove that for d ≤ 10, there is no positive stable solution (or merely stable outside a compact set and (p, q) does not lie on the critical Sobolev hyperbola), while for d ≥ 11, the Joseph-Lundgren curve is indeed the dividing line for the existence of such solutions, if one assumes in addition that they are asymptotically homogeneous (see Definition 1 below). Most of our results are optimal improvements of previous works in the litterature.

Introduction

The Lane-Emden system

-∆u = |v| p-1 v, -∆v = |u| q-1 u in R d , (1.1) 
where d ≥ 2, p ≥ q > 0, pq > 1 and u, v ∈ C 2 (R d ), has been studied for the past three decades. Yet, not so much is known about its solutions. Thanks to the works of Mitidieri [START_REF] Mitidieri | Nonexistence of positive solutions of semilinear elliptic systems in R N[END_REF] and Serrin and Zou [START_REF] Serrin | Non-existence of positive solutions of Lane-Emden systems[END_REF], there exists a radial positive solution to the system if and only if the exponents are supercritical i.e.

1 p + 1 + 1 q + 1 ≤ 1 - 2 d .
(1.

2)

The Lane-Emden conjecture states that, whether radial or not, no positive solution exists in the subcritical case i.e. when (1.2) does not hold. The current best known result is due to Souplet [START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF], who proved the conjecture for d ≤ 4, while only partial results are available for d ≥ 5.

We address here the supercritical case and focus on solutions which are stable outside a compact set, i.e. such that there exists a compact set K ⊂ R d and two positive functions φ, ψ ∈ C 2 (R d \ K) such that -∆φ ≥ p|v| p-1 ψ, -∆ψ ≥ q|u| p-1 φ in R d \ K.

We will explain in a short moment why such an assumption is natural. Thanks to the scaling invariance of the equation, there exists a singular solution of the form

(u s , v s )(x) = (a|x| -α , b|x| -β ), x ∈ R d \ {0} (1.3)
where the scaling exponents are given by α = 2(p + 1) pq -1 , β = 2(q + 1) pq -1 and a, b are suitable (explicit) positive constants. In the supercritical regime, thanks to a suitable version of Hardy's inequality, such a solution is stable if and only if (p, q) lies on or above the Joseph-Lundgren curve i.e. when d ≥ 11 and H 2 ≥ pqλµ, where

γ = α -β, H = (d -2) 2 -γ 2 4 , λ = α(d -2 -α) and µ = β(d -2 -β).
(1.4)

1
When p ≥ q ≥ 1, Chen and the first two named authors proved in [START_REF] Chen | A new critical curve for the Lane-Emden system[END_REF] that there exists a positive radial stable solution (u, v) ∈ C 2 (R d ) of (1.1) if and only if d ≥ 11 and (p, q) lies on or above the Joseph-Lundgren curve. In the case d ≤ 10, we obtain the following optimal improvement.

Theorem 1. Let d ≤ 10 and p ≥ q ≥ 1 be such that pq > 1. If (u, v) ∈ C 2 (R d ) is a nonnegative solution which is stable, or merely stable outside a compact set but with

1 p + 1 + 1 q + 1 = 1 - 2 d , (1.5 
)

then u = v = 0.
In dimension d ≥ 11, our results are sharp for a restricted class of solutions as we describe next.

Definition 1. If it exists, a blow-down limit of a solution (u, v)

∈ C 2 (R d ) is a cluster point (u ∞ , v ∞ )
for the topology of uniform convergence on compact sets of R d \ {0} of the family (u R , v R ) R≥1 of rescalings defined by

(u R , v R )(x) = (R α u(Rx), R β v(Rx)) for x ∈ R d . (1.6) 
A solution (u, v) is said to be asymptotically homogeneous if all its blow-down limits are homogeneous i.e. if there exists (f, g) ∈ C 2 (S d-1 ) such that (u ∞ , v ∞ )(rθ) = (r -α f (θ), r -β g(θ)) for r > 0 and θ ∈ S d-1 .

With this definition in mind, we obtain the following theorem.

Theorem 2. Let p ≥ q ≥ 1 be such that pq > 1 and

H 2 < pqλµ, (1.7) 
where H, λ, µ are given by (1.4).

If (u, v) ∈ C 2 (R d
) is a nonnegative solution which is stable (resp. stable outside a compact set and (1.5) holds) and asymptotically homogeneous, then u = v = 0.

Blow-down limits of nonnegative solutions of the Lane-Emden system which are stable outside a compact set are always well-defined: Theorem 3. Let (u, v) ∈ C 2 (R d ) be a nonnegative solution of (1.1) which is stable outside a compact set. Then, the family (u R , v R ) R≥1 given by (1.6) is compact in L q+1 loc (R d \ {0}) × L p+1 loc (R d \ {0}). In addition, in the cases p = q and p > q = 1, all blow-down limits are homogeneous, thanks to the availability of a monotonicity formula (see [START_REF] Dávila | A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem[END_REF]). Unfortunately, we do not know if this fact is also true for the Lane-Emden system for other choices of exponents. Still, we can prove that our results continue to hold for a possibly wider class of solutions.

Theorem 4. Let p ≥ q ≥ 1 be such that pq > 1 and (1.7) holds. Let K ⊂ R d be a compact set. If (u, v) ∈ C 2 (R d ) is a nonnegative solution of (1.1) such that for all ϕ ∈ C 1 c (R d ) (resp. for all ϕ ∈ C 1 c (R d \ K) and (1.5) holds), ˆRd |u| q-1 2 |v| p-1 2 ϕ 2 dx ≤ 1 √ pq ˆRd |∇ϕ| 2 dx - γ 2 4 ˆRd ϕ 2 |x| 2 dx (1.8) then u = v = 0.
Assumption (1.8) is motivated by the following observation.

Theorem 5. Let (u, v) ∈ C 2 (R d ) be a nonnegative solution of (1.1) which is stable outside a compact set and asymptotically homogeneous. Let (u ∞ , v ∞ ) denote a blow-down limit. Then, (u ∞ , v ∞ ) satisfies (1.8) for any ϕ ∈ C 1 c (R d ). Finally, we obtain the following partial result for solutions which need not be asymptotically homogeneous. Theorem 6. Let p ≥ q ≥ 1 be such that pq > 1 and

d < 2 + 2x 0 , (1.9)
where x 0 is the largest root of the polynomial

H(x) = x 4 -pqαβ(4x 2 -2(α + β)x + αβ).
(1.10)

If (u, v) ∈ C 2 (R d
) is a nonnegative solution of (1.1) which is stable (resp. stable outside a compact set and (1.5) holds), then u = v = 0.

Remark 1. The sharp condition (1.7) can be reformulated as (1.9) where this time x 0 must be interpreted as the largest root of the polynomial

H JL (x) = (x 2 -γ 2 /4) 2 -pqαβ(4x 2 -2(α + β)x + αβ).
The above theorems build upon a wealth of previously known results, as we describe next. Thanks to the comparison inequality

v p+1 p + 1 ≤ u q+1 q + 1 (1.11)
established for p ≥ q and for bounded positive solutions by Souplet in [START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF], such solutions of (1.1) must satisfy u = v in the case p = q, so that the system becomes a single equation and the condition (1.7) reduces to p < p c (d), where p c (d) is the Joseph-Lundgren stability exponent discovered in [START_REF] Joseph | Quasilinear Dirichlet problems driven by positive sources[END_REF].

Crandall and Rabinowitz proved in [START_REF] Michael | Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems[END_REF] that, given a smoothly bounded domain Ω ⊂ R d and the nonlinearity f (u) = (1 + u) p , the equation

-∆u = λf (u) in Ω, u = 0 on ∂Ω, admits a curve of solutions λ ∈ [0, λ * ) → u λ ∈ C 2 (Ω)
, which are stable. They applied Moser's method [START_REF] Moser | A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations[END_REF] with a twist: substituting Sobolev's inequality by the variational formulation of the stability property in the iteration process, they proved uniform boundedness of the family (u λ ) λ∈[0,λ * ) in L ∞ (Ω) for p < p c (d). This implies the existence of a smooth stable solution u * also for the extremal parameter λ = λ * . Conversely, for p ≥ p c (d) and Ω = B 1 , the extremal solution u * still exists but is singular (and u * -1 is given by (1.3) for p = q). For p < p S (d) where p S (d) is the Sobolev critical exponent and f (u) = |u| p-1 u, Bahri and Lions [START_REF] Bahri | Solutions of superlinear elliptic equations and their Morse indices[END_REF] proved that the L ∞ bound extends and is in fact equivalent to a bound on the Morse index of (possibly sign-changing) solutions. They argued by a blow-up argument and proved Theorem 4 for finite Morse index solutions of the subcritical equation. Farina extended their result to all p < p c (d), p = p S (d) and to solutions stable outside a compact set, observing that finite Morse index solutions belong to this class. In fact the two notions coincide, as proved by Devyver [START_REF] Devyver | On the finiteness of the Morse index for Schrödinger operators[END_REF]. In other words, Theorem 2 generalizes Farina's result to the case of positive asymptotically homogeneous solutions of the system (1.1). We note that the restriction p = p S (d) is necessary in Farina's result, and so is the restriction (1.5) for the Lane-Emden system (1.1). Indeed, in the critical case, Lions proved in [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. I[END_REF] that (1.1) has a ground state solution, which is unique up to scaling and translation. He observed that if (u, v) is a positive solution of (1.1), then -∆((-∆v)

1 q ) = v p in R d
and so a ground state solution can be sought by minimizing

E(v) = ∆v L m (R d ) , m = q+1 q , over the set of functions v ∈ D 2,m (R d ) such that v L p+1 (R d ) = 1.
Such a solution is positive, radial and stable outside a compact set by construction (or as follows from the asymptotics computed by Hulshof and Van der Vorst in [START_REF] Hulshof | Asymptotic behaviour of ground states[END_REF]). As observed by Mtiri and Ye in [START_REF] Mtiri | Liouville theorems for stable at infinity solutions of Lane-Emden system[END_REF], the second variation of the energy E can be computed at positive stable solutions in the case p > 1 ≥ q, leading to the following reformulation of stability:

ˆRd |v| p-1 ϕ 2 dx ≤ 1 pq ˆRd u 1-q |∆ϕ| 2 dx for all ϕ ∈ C 2 c (R d ).
(1.12)

Let us turn now to the well understood biharmonic case q = 1. In that case and for positive radial stable solutions, Theorem 4 follows from the works of Gazzola, Grunau [START_REF] Gazzola | Radial entire solutions for supercritical biharmonic equations[END_REF], Guo, Wei [START_REF] Guo | Qualitative properties of entire radial solutions for a biharmonic equation with supercritical nonlinearity[END_REF] and Karageorgis [START_REF] Karageorgis | Stability and intersection properties of solutions to the nonlinear biharmonic equation[END_REF]. Since the Moser iteration method is based on the chain rule, its adaptation to fourth order equations is nontrivial. Still, Wei and Ye [START_REF] Wei | Liouville theorems for stable solutions of biharmonic problem[END_REF] classified positive stable solutions when d ≤ 8 thanks to the inequality (1.11) (a strategy inspired by earlier work of Cowan, Esposito and Ghoussoub [START_REF] Cowan | Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains[END_REF]). Following the same Moser iteration strategy, Harrabi, Ye and the third named author classified positive stable solutions for d ≤ 12 in [START_REF] Hajlaoui | On stable solutions of the biharmonic problem with polynomial growth[END_REF]. They exploited the following interpolated version of the stability inequality:

ˆRd |u| q-1 2 |v| p-1 2 ϕ 2 dx ≤ 1 √ pq ˆRd |∇ϕ| 2 dx (1.13)
of which several proofs are available (based on Picone's identity in Cowan [START_REF] Cowan | Liouville theorems for stable Lane-Emden systems and biharmonic problems[END_REF], Cowan and Ghoussoub [START_REF] Cowan | Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains[END_REF] and Farina, Sirakov and the first author [START_REF] Dupaigne | Regularity of the extremal solutions for the Liouville system[END_REF], interpolation theory in Goubet, Warnault and the first two named authors [START_REF] Dupaigne | The Gel'fand problem for the biharmonic operator[END_REF]). Finally, Theorem 4 was proved for the full range of exponents in the biharmonic case by Dávila, Wang, Wei and the first named author [START_REF] Dávila | A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem[END_REF]. Their result crucially relies on a monotonicity formula which is unavailable for the system.

The complete system was studied by Cowan [START_REF] Cowan | Liouville theorems for stable Lane-Emden systems and biharmonic problems[END_REF], who classified positive stable solutions for d ≤ 10 and p ≥ q ≥ 2 thanks to (1.13). His result was improved by Harrabi, Mtiri and the third named author [START_REF] Hajlaoui | Liouville theorems for stable solutions of the weighted Lane-Emden system[END_REF], who classified positive stable solutions for d ≤ 10 and p ≥ q > 4/3 and bounded positive stable solutions for d ≤ 6 and p ≥ q > 1. Also, Mtiri and Ye [START_REF] Mtiri | Liouville theorems for stable at infinity solutions of Lane-Emden system[END_REF] completely classified positive solutions stable outside a compact set for (p, q) subcritical.

In order to prove Theorem 4, we propose a new strategy, where (near optimizers of) Hardy's inequality turn out to have a central role. Due to the lack of a monotonicity formula, any blow-down (resp. blow-up) limit of a given solution need not be homogeneous a priori. To bypass this difficulty, we assume that (1.8) holds. Now, rather than Moser iteration, we feed (1.8) in an iteration scheme which is closer to De Giorgi's original idea [START_REF] De | Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF]. More precisely, we prove a reduction of the oscillation lemma for solutions satisfying (1.8). We capture the oscillations through the rescaled and renormalized Dirichlet energy

r 2 Br ∇ u u s a 2 dx + r 2 Br ∇ v v s b 2 dx (1.14)
where (a, b) = q+1 2 , p+1 2 and (u s , v s ) is given by (1.3). Thanks to Campanato's characterization of Hölder spaces [START_REF] Campanato | Proprietà di hölderianità di alcune classi di funzioni[END_REF], this is enough to obtain the following universal Hölder estimate on local stable solutions of the system:

u/u s C σ (B1) + v/v s C σ (B1) ≤ C (1.15)
which holds for some σ = σ(d, p, q) ∈ (0, 1) and C = C(d, p, q) > 0 under the assumption (1.8). Note that thanks to the translation invariance of the Lane-Emden system, the above estimate can be applied to any translation of a given solution and so Hölder regularity for the solution itself follows. Also, by a natural scaling argument, the classification follows for all solutions such that (1.8) holds in R d .

In particular, blow-down limits are trivial under the assumptions of Theorem 4. This gives enough asymptotic information to conclude that solutions such that (1.8) holds only outside a compact set are also trivial. Estimate (1.15) bears resemblance with the work of Cabré, Figalli, Ros-Oton and Serra [START_REF] Cabré | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF].

In their case, a version of Pohozaev's identity is central to the analysis. In our framework, we derive (1.15) through a much different road, where Hardy's inequality is used instead. It is also interesting to note that the scale invariance of the equation (resp. the nonlinear nature of the problem) appears explicitly in the definition of the Dirichlet energy (1.14) through the normalization by (u s , v s ) (resp. through the exponents a, b reminiscent of Moser's iteration).

Stability revisited

In this section, we derive all the functional inequalities presented in the introduction. They are reformulations (or sometimes merely consequences of) stability and they are at the heart of the iteration methods used in this paper. Recall that a solution (u, v)

∈ C 2 (Ω) is said to be stable in an open set Ω ⊂ R d if there exist two positive functions φ, ψ ∈ C 2 (Ω) such that -∆φ ≥ pv p-1 ψ, -∆ψ ≥ qu q-1 φ in Ω. (2.1)
In the next two lemmas, we give a variational reformulation of (2.1).

Lemma 1. Let ϕ ∈ C 2 (Ω) be a positive superharmonic function and η ∈ C 2 (Ω). Then,

∆ η 2 ϕ ∆ϕ ≤ (∆η) 2 . Proof. Expand ∆ η 2 ϕ : ∆ η 2 ϕ = 1 ϕ ∆(η 2 ) + 2∇η 2 • ∇ 1 ϕ + η 2 ∆ 1 ϕ = 2 ϕ (η∆η + |∇η| 2 ) -4 η ϕ 2 ∇η • ∇ϕ + η 2 - 1 ϕ 2 ∆ϕ + 2 ϕ 3 |∇ϕ| 2 = 2 η ϕ ∆η - η 2 ϕ 2 ∆ϕ + 2 ϕ |∇η| 2 -4 η ϕ 2 ∇η • ∇ϕ + 2 η 2 ϕ 3 |∇ϕ| 2 = - η 2 ϕ 2 ∆ϕ -2 η ϕ ∆η + 2 ϕ |∇η| 2 -2 η ϕ ∇η • ∇ϕ + η 2 ϕ 2 |∇ϕ| 2 .
Observe that the second bracket above is a perfect square. Multiply by ∆ϕ and complete the square in the first bracket to get

∆ η 2 ϕ ∆ϕ = - η ϕ ∆ϕ -∆η 2 + (∆η) 2 + 2 ∆ϕ ϕ ∇η - η ϕ ∇ϕ 2 ≤ (∆η) 2 , (2.2) 
since ∆ϕ ≤ 0.

Lemma 2. Assume that (u, v) ∈ C 2 (Ω) is positive and stable in Ω. Let Ω ′ ⋐ Ω. Then, for every η ∈ H 1 0 (Ω ′ ) ∩ H 2 (Ω ′ ), pq ˆvp-1 η 2 ≤ ˆu1-q (∆η) 2 and pq ˆuq-1 η 2 ≤ ˆv1-p (∆η) 2 . (2.3)
Proof. By symmetry, it suffices to prove the first inequality. We may also assume that η ∈ C 2 (Ω ′ ).

Multiply the first inequality in (2.1) by qη 2 /ψ and integrate over Ω ′ to get

pq ˆvp-1 η 2 ≤ q ˆ(-∆φ) η 2 ψ = q ˆ-∆ η 2 ψ φ ≤ q ˆ[-∆ η 2 ψ ≥0] -∆ η 2 ψ φ.
By the second inequality in (2.1), it follows that

pq ˆvp-1 η 2 ≤ ˆ[-∆ η 2 ψ ≥0] u 1-q ∆ η 2 ψ ∆ψ,
and the conclusion follows by Lemma 1.

In the next lemma, we characterize stability for homogeneous blow-down limits.

Lemma 3. Let (u, v) ∈ C 2 (R d ) be a solution of (1.1). Assume that (u, v) ∈ C 2 (R d ) is positive, stable outside a compact set and asymptotically homogeneous. Let (u ∞ , v ∞ )(rθ) = (r -α f (θ), r -β g(θ)
) denote a blow-down limit of u. Then, for every ϕ ∈ C 2 (S d-1 ),

pq ˆSd-1 |g| p-1 ϕ 2 ≤ ˆSd-1 f 1-q |∆ θ ϕ -Hϕ| 2 ,
where H is given by (1.4).

Proof. Fix an open set Ω

⋐ R d \ {0}. Since (u, v) is stable outside a compact set K, its rescaling (u R , v R )(x) = (R α u(Rx), R β v(Rx)) is stable outside K/R and so it is stable in an open neighborhood of Ω for R large enough. By (2.3), pq ˆvp-1 R η 2 ≤ ˆu1-q R (∆η) 2 , η ∈ C 2 c (Ω)
Passing to the limit as R → +∞,

pq ˆvp-1 ∞ η 2 ≤ ˆu1-q ∞ (∆η) 2 . Since (u ∞ , v ∞ ) is homogeneous, we deduce that for η = h(r)ϕ(θ), h ∈ C 2 c (0, +∞), ϕ ∈ C 2 (S d-1 ), pq ˆR+ h 2 r -β(p-1)+(d-1) dr ˆSd-1 |g| p-1 ϕ 2 ≤ ˆR+×S d-1 r α(q-1) f 1-q (∆η) 2 .
(2.4)

We have ∆η = (∆h)ϕ + h r 2 ∆ θ ϕ and so

(∆η) 2 = (∆h) 2 ϕ 2 + 2 h∆h r 2 ϕ∆ θ ϕ + h 2 r 4 (∆ θ ϕ) 2 .
Thus, (2.4) becomes pq

ˆR+ h 2 r -β(p-1)+d-1 dr ˆSd-1 |g| p-1 ϕ 2 ≤ ˆR+ h 2 r d-5+α(q-1) dr ˆSd-1 f 1-q (∆ θ ϕ) 2 + ˆR+ 2h∆h r d-3+α(q-1) dr ˆSd-1 f 1-q ϕ∆ θ ϕ + ˆR+ (∆h) 2 r d-1+α(q-1) dr ˆSd-1 f 1-q ϕ 2 .
Recalling the definitions of the scaling exponents (α, β), the first integral on the left-hand side is equal to the first integral on the right-hand side in the above inequality. So,

pq ˆSd-1 |g| p-1 ϕ 2 ≤ ˆSd-1 f 1-q (∆ θ ϕ) 2 + C ˆSd-1 f 1-q ϕ∆ θ ϕ + D ˆSd-1 f 1-q ϕ 2 ,
where

C = ´R+ 2h∆h r d-3+α(q-1) dr ´R+ h 2 r d-5+α(q-1) dr and D = ´R+ (∆h) 2 r d-1+α(q-1) dr ´R+ h 2 r d-5+α(q-1) dr . Choosing h(r) = r -d-2-γ 2 k n (r) ∈ C 2 c (R + ),
where k n is a standard cut-off function (vanishing near the origin and near infinity) such that k n (r) → 1 for every r ∈ R * + , we find that C → -2H and D → H 2 as n → +∞, where H is given by (1.4). Hence,

pq ˆSd-1 |g| p-1 ϕ 2 ≤ ˆSd-1 f 1-q (∆ θ ϕ) 2 -2Hϕ∆ θ ϕ + H 2 ϕ 2 = ˆSd-1 f 1-q (∆ θ ϕ -Hϕ) 2 .
In the last two lemmas of this section, we prove that stability implies the weaker but more handy inequality (1.8).

Lemma 4. Assume that (u, v) ∈ C 2 (R d ) is positive and stable outside a compact set. Assume also that (u, v) is asymptotically homogeneous and let (u ∞ , v ∞ )(rθ) = (r -α f (θ), r -β g(θ)) denote a blow-down limit. Then, for every η ∈ C 1 (S d-1 ),

√ pq ˆSd-1 f q-1 2 g p-1 2 η 2 ≤ ˆSd-1 |∇ θ η| 2 + Hη 2 ,
where H is given by (1.4).

Proof.

Let

λ 1 = inf ˆSd-1 f 1-q |∆ θ ψ -Hψ| 2 -pq ˆSd-1 |g| p-1 ψ 2 : ψ ∈ H 2 (S d-1 ) s.t. ψ L 2 (S d-1 ) = 1 .
Then, λ 1 ≥ 0 by Lemma 3. Since f is bounded away from zero and g is bounded, λ 1 is attained by some function ψ ∈ H 2 (S d-1 ) such that ψ L 2 (S d-1 ) = 1. Replacing ψ by ψ the weak solution to

-∆ θ ψ + H ψ = |∆ θ ψ -Hψ| in S d-1 ,
we may assume that ψ ≥ 0 and ϕ := q -1 f 1-q (-∆ θ ψ + Hψ) ≥ 0. By the strong maximum principle, (ϕ, ψ) > 0 a.e. Also, (ϕ, ψ) is a weak solution to

-∆ θ ϕ + Hϕ = (p|g| p-1 + λ 1 )ψ, -∆ θ ψ + Hψ = q|f | q-1 ϕ in S d-1
and by elliptic regularity, (φ,

ψ) ∈ C 2 (S d-1 ). Take η ∈ C 1 (S d-1
), multiply the first equation above by η 2 /ϕ and integrate by parts. Since λ 1 ≥ 0,

p ˆ|g| p-1 ψ ϕ η 2 ≤ ˆ∇θ ϕ • ∇ θ η 2 ϕ + H ˆη2 ≤ ˆ |∇ θ η| 2 + Hη 2 .
Similarly,

q ˆ|f | q-1 ϕ ψ η 2 ≤ ˆ |∇ θ η| 2 + Hη 2 .
Multiplying the above two inequalities and applying the Cauchy-Schwarz inequality, the result follows.

Now, we are ready to provide the proof of Theorem 5.

Proof of Theorem 5. Fix ϕ ∈ C 1 c (R d ) and r > 0. By the previous lemma, 1

√ pq ˆSd-1 |∇ θ ϕ(rθ)| 2 + Hϕ(rθ) 2 dσ(θ) ≥ ˆSd-1 f q-1 2 g p-1 2 ϕ(rθ) 2 dσ(θ),
Multiply by r d-3 and integrate the above inequality in the r-variable. We get

1 √ pq ˆSd-1 ×R+ |∇ θ ϕ(rθ)| 2 + Hϕ(rθ) 2 r d-3 drdσ(θ) ≥ ˆRd u q-1 2 ∞ v p-1 2 ∞ ϕ 2 dx.
In addition, by Hardy's inequality, for every

h ∈ C 1 c (R + ), ˆR+ ∂h ∂r 2 r d-1 dr ≥ d -2 2 2 ˆR+ h 2 r 2 r d-1 dr.
Applying Hardy's inequality to h(r) = ϕ(rθ) for fixed θ ∈ S d-1 , recalling that |∇ϕ| 2 = ∂ϕ ∂r 2

+ 1 r 2 |∇ θ ϕ| 2 and summing the above two inequalities, (1.8) follows.

3. The case α + β ≥ d -4

In this section, we derive integral estimates on solutions thanks to their stability properties. These estimates are the central tool to prove Theorems 1 and 6. They also imply Theorem 3. To begin with, recall the following classical lemma, which holds for all positive solutions of (1.1), see [START_REF] Mitidieri | A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities[END_REF][START_REF] Serrin | Non-existence of positive solutions of Lane-Emden systems[END_REF] and e.g. Lemma 2 in [START_REF] Hajlaoui | Liouville theorems for stable solutions of the weighted Lane-Emden system[END_REF] for a proof. Lemma 5. Let p ≥ q ≥ 1 and let (u, v) ∈ C 2 (R d ) be a positive solution of (1.1). Then, there exists a constant C > 0 depending on p, q, d only such that for any R ≥ 1, there holds

ˆBR v p dx ≤ CR d-βp , ˆBR u q dx ≤ CR d-αq .
We will also use the following comparison inequality, due to Souplet [START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF] for bounded solutions. See e.g. Lemma 2.7 in Q. H. Phan [START_REF] Phan | Liouville-type theorems and bounds of solutions for Hardy-H enon elliptic systems[END_REF] for a proof when the solution is not assumed to be bounded. Lemma 6. Let p ≥ q ≥ 1 be such that pq > 1. Then, any positive solution

(u, v) ∈ C 2 (R d ) of (1.1) verifies v p+1 ≤ p + 1 q + 1 u q+1 in R d . (3.1)
The next lemma pertains to stable solutions and uses ideas from [START_REF] Hajlaoui | Liouville theorems for stable solutions of the weighted Lane-Emden system[END_REF][START_REF] Hajlaoui | On stable solutions of the biharmonic problem with polynomial growth[END_REF].

Lemma 7. Assume that (u, v) ∈ C 2 (Ω) is a positive stable solution of (1.1) in an open set Ω ⊂ R d . Let a ≥ q+1 2 and b = p+1 q+1 a. Assume that AB > 1, where A = √ pq (2a-1)
a 2
and B = √ pq (2b-1) b 2 . Then, there exists C > 0 depending on p, q, d, a only such that

ˆΩ v p u 2a-1 η 2 dx ≤ C ˆΩ u 2a |∇η| 2 + |∆(η 2 )| dx, ∀ η ∈ C 2 c (Ω).
Proof. Take η ∈ C 2 c (Ω). Let (u, v) be a stable solution of (1.1) in Ω and a > 1 2 . Integrating by parts,

ˆΩ |∇u a | 2 η 2 dx = a 2 ˆΩ u 2a-2 |∇u| 2 η 2 dx = a 2 2a -1 ˆΩ η 2 ∇(u 2a-1 )∇u dx = a 2 2a -1 ˆΩ u 2a-1 v p η 2 dx + a 2(2a -1) ˆΩ u 2a ∆(η 2 )dx, (3.2) 
and

2a ˆΩ u 2a-1 η∇u∇ηdx = 1 2 ˆΩ ∇(u 2a )∇(η 2 )dx = - 1 2 ˆΩ u 2a ∆(η 2 )dx. (3.3) Take ϕ = u a η in inequality (1.13). Using (3.2)-(3.
3), we obtain

√ pq ˆΩ u q-1 2 v p-1 2 u 2a η 2 dx ≤ ˆΩ |∇ϕ| 2 dx ≤ a 2 2a -1 ˆΩ u 2a-1 v p η 2 dx + C ˆΩ u 2a |∇η| 2 + |∆(η 2 )| dx. So, ˆΩ u q-1 2 v p-1 2 u 2a η 2 dx ≤ A -1 ˆΩ u 2a-1 v p η 2 dx + C ˆΩ u 2a |∇η| 2 + |∆(η 2 )| dx. (3.4)
Similarly, applying inequality (1.13) with ϕ = v b η, b ≥ 1, we obtain

ˆΩ u q-1 2 v p-1 2 v 2b η 2 dx ≤ B -1 ˆΩ u q v 2b-1 η 2 dx + C ˆΩ v 2b |∇η| 2 + |∆(η 2 )| dx. (3.5) 
Let I 1 denote the left-hand side of (3.4) (resp. I 2 that of (3.5)). Then,

A 4a q+1 I 1 + I 2 = A 4a q+1 ˆΩ u q-1 2 v p-1 2 u 2a η 2 dx + ˆΩ u q-1 2 v p-1 2 v 2b η 2 dx ≤ A 4a q+1 -1 ˆΩ u 2a-1 v p η 2 dx + B -1 ˆΩ u q v 2b-1 η 2 dx +C ˆΩ(u 2a + v 2b ) |∇η| 2 + |∆(η 2 )| dx. (3.6) Fix now b = p + 1 q + 1 a. (3.7) 
Assume that a ≥ q+1 2 so that m = q+1 4a = p+1 4b ∈ (0, 1). By Young's inequality, there holds

B -1 ˆΩ u q v 2b-1 η 2 dx = B -1 ˆΩ u q-1 2 v p-1 2 u 2am v 2b(1-m) η 2 dx ≤ mB -1 m I 1 + (1 -m)I 2 and

similarly we have

A 4a q+1 -1 ˆΩ u 2a-1 v p η 2 dx ≤ (1 -m)A 1 m I 1 + mI 2 .
Combining the above two estimates with (3.6), we derive that

A 1 m I 1 ≤ mB -1 m + (1 -m)A 1 m I 1 + C ˆΩ(u 2a + v 2b ) |∇η| 2 + |∆(η 2 )| dx, hence m (AB) 1 m -1 I 1 ≤ C ˆΩ(u 2a + v 2b ) |∇η| 2 + |∆(η 2 )| dx.
Thus, if AB > 1, there holds

ˆΩ u q-1 2 v p-1 2 u 2a η 2 dx ≤ C ˆΩ(u 2a + v 2b ) |∇η| 2 + |∆(η 2 )| dx.
Using (3.7) and (3.1), there holds u 2a ≥ Cv 2b and u q-1

2 v p-1 2 u 2a ≥ Cu 2a-1 v p . So if AB > 1 and a > q+1 4 , ˆΩ v p u 2a-1 η 2 dx ≤ C ˆΩ u 2a |∇η| 2 + |∆(η 2 )| dx,
the proof is completed.

Using the above lemma, we obtain the following estimate.

Lemma 8. Assume that (u, v) ∈ C 2 (B 2 ) is a positive solution of (1.1) which is stable in B 2 . Let θ ∈ 1, d d-2 .
Then for any a ≥ q+1 2 satisfying AB > 1, there exists C > 0 depending on p, q, d, θ, a only such that

ˆB1 u 2aθ dx ≤ C. (3.8)
Proof of Lemma 8. Let (u, v) be a solution of (1.1) which is stable in B 2 and take θ

∈ 1, d d-2 . Take η ∈ C ∞ c (B 2 )
. By L 1 elliptic regularity theory, there exists C > 0 such that

ˆB2 u 2aθ η 2θ 1 θ ≤ C ˆB2 |∆(u 2a η 2 )|.
Expanding ∆(u 2a η 2 ) in the right-hand side of the above inequality, we find

|∆(u 2a η 2 )| ≤ (2a)u 2a-1 v p η 2 + 2a(2a -1)u 2a-2 |∇u| 2 η 2 + u 2a |∆(η 2 )| + 4au 2a-1 |∇u||∇η 2 |.
Then using Young's inequality, there holds

ˆB2 u 2aθ η 2θ 1 θ ≤ C ˆB2 u 2a-1 v p η 2 + ˆB2 u 2a-2 |∇u| 2 η 2 + ˆB2 u 2a |∆(η 2 )| + |∇η| 2 .
(3.9)

Multiplying -∆u = v p by u 2a-1 η 2 , integrating by parts and applying Young's inequality, we get

ˆB2 u 2a-2 |∇u| 2 η 2 dx ≤ 1 2a -1 ˆB2 u 2a-1 v p η 2 dx + C ˆB2 u 2a |∆(η 2 )|dx. (3.10)
Combining the last two estimates, we obtain

ˆB2 u 2aθ η 2θ 1 θ ≤ C ˆB2 u 2a-1 v p η 2 + ˆB2 u 2a |∆(η 2 )| + |∇η| 2 .
By Lemma 7 with Ω = B 2 , we conclude that

ˆB2 u 2aθ η 2θ 1 θ ≤ C ˆB2 u 2a |∆(η 2 )| + |∇η| 2 . Take ϕ a cut-off function in C ∞ c (B 2 ) verifying 0 ≤ ϕ ≤ 1, ϕ = 1 in B 1 . Letting η = ϕ m , m ≥ 1, we arrive at ˆB2 u 2aθ ϕ 2θm dx 1 θ ≤ C ˆB2 u 2a ϕ 2m-2 dx. (3.11) Let J 1 := ˆB2 u 2aθ ϕ 2θm dx, J 2 := ˆB2 u 2a ϕ 2m-2 dx.
Since a ≥ q+1 2 , we have q < 2a < 2aθ. A direct calculation yields 2a = qλ + 2aθ(1 -λ) with λ = 2a(θ -1) 2aθ -q ∈ (0, 1).

Take m large such that m(1 -θ(1 -λ)) = m q(θ-1) 2aθ-q . By Hölder's inequality and (3.11), we get

J 2 ≤ J 1-λ 1 ˆB2 u q ϕ 2m(1-θ(1-λ))-2 λ dx λ ≤ (CJ 2 ) θ(1-λ) ˆB2 u q dx λ ≤ C ′ J θ(1-λ) 2
, where in the last inequality we have applied Lemma 5. This implies, using again (3.11),

J 1 ≤ C θ (J 2 ) θ ≤ C. Since ϕ = 1 in B 1 , (3.8) follows.
Thanks to the energy estimate (3.8), Theorem 3 easily follows.

Proof of Theorem 3. Indeed, applying (3.8) with a = q+1 2 and some θ ∈ 1, d d-2 , we deduce that the family of rescaled functions (u R ) R≥1 is bounded in L q+1 loc (R d ) for some q > q. By the comparison inequality (3.1), we deduce that so must be (v R ) R≥1 in L p+1 loc (R d ) for some p > p. Thanks to the equation (1.1), it also follows that (u R , v R ) R≥1 is bounded in W 1,1 loc (R d ). This fact and the

L q+1 loc (R d ) × L p+1 loc (R d ) bound imply compactness of (u R , v R ) R≥1 in L q+1 loc (R d ) × L p+1 loc (R d
) as claimed. The energy estimate (3.8) also implies the following Liouville type result for positive stable solutions of (1.1). Theorem 7. Suppose p ≥ q > 1. Then, (1.1) has no stable classical solution if d < 2 + 2x 0 , where x 0 is the largest root of the polynomial H given by (6).

Proof. First, for a > q+1 2 , noting x = aα, we can easily check that AB > 1 ⇔ H(x) < 0. Furthermore, by [START_REF] Hajlaoui | On the regularity and partial regularity of extremal solutions of a Lane-Emden system[END_REF]Lemma 3.1] (applied with p in place of θ, q in place of p and where H(x) = ( α 2 ) 4 L( 2 α x) according to the notations in that paper), we have H( q+1 2 α) < 0 and x 0 is the unique root of H in ( q+1 2 α, +∞). Suppose that d < 2 + 2x 0 . Then, there exists q+1 2 < a < x0 α such that d < 2 + 2aα. Let R > 1. The function defined for y ∈ R d by

(u R (y), v R (y)) = (R α u(Ry), R β v(Ry))
is a positive stable solution of (1.1). Replacing u in (3.8) by u R , we deduce that

ˆBR u 2aθ dx ≤ CR d-2aαθ , (3.12) 
for any 1 < θ < d d-2 . Now, as d < 2 + 2aα, we can take θ close to d d-2 such that d < 2aαθ and then, letting R → ∞ in (3.12), we deduce that u = 0.

Turning to solutions merely stable outside a compact set, we first make the following observation.

Remark 2. Let (u, v) be a positive classical solution of (1.1) which is stable outside a compact set K of R d . Let R 0 > 0 so that K ⊂ B R0 . Suppose that d < 2 + 2x 0 , where x 0 is the largest root of the polynomial H given by [START_REF] Cowan | Liouville theorems for stable Lane-Emden systems and biharmonic problems[END_REF].

Let γ < 2x0 α d d-2 .
(1) Using (3.12), we have

ˆBR u γ dx ≤ CR d-γα , for any R > 0 and B 2R ⊂ R d \ K. (3.13) 
(2) In addition, all the computations in the proof of Lemma 8 hold true by considering a cut-off function with support in Ω = B 2R \ B R0 , for R < R 0 + 3 (see for example [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF]), to find

ˆR0+2<|x|<R u γ dx ≤ C 1 + C 2 R d-γα , for any R > R 0 + 3. (3.14)
Following a strategy used in [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF], we deduce the following decay estimate.

Lemma 9. Let p ≥ q ≥ 1 be such that pq > 1 and d < 2 + 2x 0 , where x 0 is the largest root of the polynomial H given by [START_REF] Cowan | Liouville theorems for stable Lane-Emden systems and biharmonic problems[END_REF]. Suppose that (u, v) ∈ C 2 (R d ) is a nonnegative solution of (1.1) which is stable outside a compact set and (1.5) holds. Then,

u(x) = o |x| -α , v(x) = o |x| -β as |x| → ∞.
Proof. Fix ε > 0. As d < 2 + 2x 0 and (1.5) holds, we have 2

< d α < 2x0 α d d-2 . So, Applying 2) of Remark 2 with γ = d α , there exists R 1 > R 0 such that ˆ|x|≥R1 u d α α d < ε. (3.15) Consider y ∈ R d such that |y| > 2R 1 and set ρ = |y| 4 . With this choice, we have B 2ρ (y) ⊂ x ∈ R d ; |x| > R 1 ⊂ x ∈ R d ; |x| > R 0 .
Remark that u is a solution of the linear equation 

u L ∞ (Bρ(y)) ≤ C S ρ -d 2 u L 2 (B2ρ(y)) , (3.16) 
where C S is a constant depending only on p, d, R 0 ρ δ ℓ

L d 2-δ (B2ρ(y))
. Now, we have

ρ δ ℓ L d 2-δ (B2ρ(y)) ≤ Cρ δ ˆB2ρ(y) u 2d (2-δ)α dx 2-δ d .
Applying Remark 2 with γ = 2d (2-δ)α , it follows that

ρ δ ℓ L d 2-δ (B2ρ(y)) ≤ Cρ δ ρ (d-γα) 2-δ d = C. (3.17)
Hence, the constant C S depends only on p, d and R 0 . Using (3.16) and applying Hölder's inequality, we obtain

u L ∞ (Bρ(y)) ≤ C S ρ -d 2 u L 2 (B2ρ(y)) ≤ C S Cρ -d 2 ρ d( 1 2 -α d ) u L d α (B2ρ(y)) = C 1 ρ -α u L d α (B2ρ(y))
. Now, using (3.15), we get

|u(y)| ≤ u L ∞ (Bρ(y)) ≤ C 1 ρ -α ε = C 2 |y| -α ε.
In summary, we have proven that for any ε > 0 there exists M = 2R 1 such that

y ∈ R d , |y| > M ⇒ |y| α |u(y)| ≤ C 2 ε.
Therefore, u(x) = o (|x| -α ) as |x| → ∞ and by the comparison inequality (3.1), we deduce that v(x) = o |x| -β , which completes the proof.

Fast decay solutions

In order to go further, we proceed by proving that the solution has in fact faster decay rate. As we shall see, this will be enough to conclude (in the range of parameters studied in the previous section), thanks to Pohozaev's identity.

Theorem 8. Let d ≥ 3, p ≥ q > 1 supercritical i.e. 1 p+1 + 1 q+1 < 1 -2 d .
Then, the system (1.1) has no classical positive solution (u, v) satisfying

u(x) = o |x| -α , v(x) = o |x| -β , as |x| → ∞. (4.1)
Theorem 8 is known, see e.g. Theorem 1.1 in Cheng and Huang [START_REF] Cheng | A Liouville theorem for the subcritical Lane-Emden system[END_REF]. We provide a short proof for the convenience of the reader, by first establishing the following decay estimates. Lemma 10. Let d ≥ 3, p ≥ q > 1 and (u, v) a classical positive solution to the system (1.1) such that

u(x) = o |x| -α , as |x| → ∞. (4.2)
Then, for any small ǫ > 0, there exists two positive constants c and C such that 

-∆u = v p ≤ p + 1 q + 1 p p+1 u 2 α u. Let 0 < ǫ < 1 2
. By the decay estimate (4.2), there exists

R ǫ > 1 such that p+1 q+1 p p+1 u 2 α ≤ ǫ 2 |x| 2 , for any |x| > R ǫ . Therefore, -∆u - ǫ 2
|x| 2 u ≤ 0, for any |x| > R ǫ . Now, we can easily check that the functions

f a := |x| -a , f b := |x| -b are solutions of -∆f - ǫ 2 |x| 2 f = 0 in R d \{0}, (4.5) 
where

a = d-2 2 + ( d-2 2 ) 2 -ǫ 2 and b = d-2 2 -( d-2 2 ) 2 -ǫ 2 . Let R > R ǫ and consider w(x) = R a ǫ u ∞ f a (x) + ǫ 2 R b-α f b (x). Then, we have -∆ -ǫ 2 |x| 2 (u -w) ≤ 0, in A R Rǫ := B R \B Rǫ , u -w ≤ 0, on ∂A R Rǫ . (4.6) 
By the maximum principle, we deduce that u ≤ w in A R Rǫ for any R > A R Rǫ . Choosing ǫ > 0 so small that b -α < 0 and letting R → ∞, we conclude that for |x| ≥ R ǫ ,

u(x) ≤ C|x| -a ≤ C|x| 2-d+ǫ .
To obtain the gradient estimates, we scale and apply standard elliptic regularity. Precisely, given z ∈ R d \ {0} and ρ = |z|/2, let (ũ(x), ṽ(x)) = (ρ α u(z + ρx), ρ β v(z + ρx)) for x ∈ R d . Then, (ũ, ṽ) still solves the Lane-Emden system and by standard elliptic regularity

|∇ũ(0)| ≤ C ṽp L ∞ (B1) + ũ L ∞ (B1) ≤ C ′ ũ L ∞ (B1)
, where the last inequality follows from the comparison inequality Lemma 6 and the fact that pq ≥ 1. Hence, for |z| ≥ 1, |∇u(z)| ≤ C|z| 1-d+ǫ , as claimed. The gradient estimate on v follows similarly.

The last crucial ingredient in the proof of Theorem 8 is the following identity of Pohozaev-type (see [START_REF] Mitidieri | A Rellich type identity and applications[END_REF][START_REF] Pucci | A general variational identity[END_REF][START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF]).

Lemma 11. Let p, q > 0 and (u, v) a positive classical solution of (1.1). Then, for any R > 0, there holds

d p + 1 -a 1 ˆBR v p+1 + d q + 1 -a 2 ˆBR u q+1 =R d ˆSd-1 u q+1 q + 1 + v p+1 p + 1 (Rθ)dσ(θ) + R d-1 ˆSd-1 (a 1 u∂ r v + a 2 v∂ r u) (Rθ)dσ(θ) + R d ˆSd-1 ∂ r u∂ r v - ∇ θ u • ∇ θ v R 2 (Rθ)dσ(θ), (4.7) 
where

a 2 , a 2 ∈ R satisfy a 1 + a 2 = d -2.
Proof of Theorem 8. We argue by contradiction and suppose that there exists a classical positive solution (u, v) to the system (1.1) which decays faster than the homogeneous solution. Thanks to (4.3), since q

+ 1 > d d-2 , u ∈ L q+1 (R d ). By the comparison inequality (3.1), v ∈ L p+1 (R d ).
We deduce that the left-hand side of (4.7) converges as R → +∞. Thanks to (4.3) and (4.4), we also deduce that all integrals on the right-hand side of (4.7) converge to 0 as R → +∞. Hence,

d p + 1 -a 1 ˆRd v p+1 dx + d q + 1 -a 2 ˆRd u q+1 dx = 0, for any a 1 , a 2 satisfying a 1 + a 2 = d -2. Take a 1 = d p+1 , it follows that d q + 1 -a 2 ˆRd u q+1 dx = 0. Since 1 p+1 + 1 q+1 < d-2 2 , we have d q + 1 -a 2 = d q + 1 + d q + 1 -(d -2) < 0.
Therefore, u ≡ 0 in R d , a contradiction.

From the above two sections, we conclude the proof of Theorem 6. Moreover, as shown in page 277 of [START_REF] Hajlaoui | Liouville theorems for stable solutions of the weighted Lane-Emden system[END_REF], we have x 0 > 4, ∀ p ≥ q > 1. Hence, Theorem 1 is a consequence of Theorem 6 and Theorem 7.

Stable homogeneous solutions

This section is not needed for the proofs of the theorems stated in the introduction. It is written in order to classify homogeneous solutions and to prepare the reader for the more delicate iteration method of the next section. Let us restrict to the class of stable homogeneous solutions to the Lane-Emden system (1.1), in the supercritical case (1.2). Let u(rθ) = r -α f (θ), v(rθ) = r -β g(θ), ; r > 0, θ ∈ S d-1 be a stable homogeneous solution of (1.1). Then (f, g) satisfies

-∆ θ f = -λf + |g| p-1 g, -∆ θ g = -µg + |f | q-1 f in S d-1 .
(

Moreover, from Lemma 4, the stability of the homogeneous solution (u, v), it follows that

ˆSd-1 |∇ θ φ| 2 dσ + H ˆSd-1 φ 2 dσ ≥ √ pq ˆSd-1 |f | q-1 2 |g| p-1 2 φ 2 dσ, ∀ φ ∈ C ∞ (S d-1
).

(5.2)

We prove the following theorem.

Theorem 9. Let p ≥ q ≥ 1 such that pq > 1. There exists a stable homogeneous solution to (1.1) if and only if (1.7) does not hold.

Proof of Theorem 9. By the discussion in the introduction, it suffices to prove the "only if" part of Theorem 9. For this, we proceed by contradiction. Suppose that H 2 < pqλµ and (u, v) = (r -α f (θ), r -β g(θ)) is a stable homogeneous solution of (1.1). As in Section 3, we denote A = √ pq 2a-1 

A ˆSd-1 ∇ θ (|f | a-1 f ) 2 dσ + √ pqλ ˆSd-1 |f | 2a dσ = √ pq ˆSd-1 |g| p-1 g|f | 2a-2 f dσ, (5.3) 
and

B ˆSd-1 ∇ θ (|g| b-1 g) 2 dσ + √ pqµ ˆSd-1 |g| 2b dσ = √ pq ˆSd-1 |f | q-1 f |g| 2b-2 g dσ. (5.4) 
Take a > q+1 4 , b = p+1 q+1 a > p+1 4 and let m := q+1 4a = p+1 4b ∈ (0, 1). By Hölder's inequality, we get √ pq

ˆSd-1 |g| p-1 g|f | 2a-2 f dσ ≤ √ pq ˆSd-1 |f | q-1 2 |g| p-1 2 |f | 2a(1-m) |g| p+1 2 ≤ √ pqI 1-m 1 I m 2 (5.5) and √ pq ˆSd-1 |f | q-1 f |g| 2b-2 g dσ ≤ √ pq ˆSd-1 |f | q-1 2 |g| p-1 2 g 2b(1-m) |f | q+1 2 ≤ √ pqI m 1 I 1-m 2 , (5.6) 
where

I 1 := ˆSd-1 |f | q-1 2 +2a |g| p-1 2 
dσ and

I 2 := ˆSd-1 |f | q-1 2 |g| p-1 2 +2b dσ. Combining (5.3)-(5.6), we obtain A ˆSd-1 ∇ θ (|f | a-1 f ) 2 dσ + √ pqλ ˆSd-1 |f | 2a dσ B ˆSd-1 ∇ θ (|g| b-1 g) 2 dσ + √ pqµ ˆSd-1 |g| 2b dσ ≤ pqI 1 I 2 .
On the other hand, testing |f | a-1 f and |g| b-1 g in the stability inequality (5.2), there holds

√ pqI 1 ≤ ˆSd-1 ∇ θ (|f | a-1 f ) 2 dσ+H ˆSd-1 |f | 2a dσ, √ pqI 2 ≤ ˆSd-1 ∇ θ (|g| b-1 g) 2 dσ+H ˆSd-1 |g| 2b dσ.
From the last two inequalities, it follows that

A ˆSd-1 ∇ θ (|f | a-1 f ) 2 dσ + √ pqλ ˆSd-1 |f | 2a dσ B ˆSd-1 ∇ θ (|g| b-1 g) 2 dσ + √ pqµ ˆSd-1 |g| 2b dσ ≤ ˆSd-1 ∇ θ (|f | a-1 f ) 2 dσ + H ˆSd-1 |f | 2a dσ ˆSd-1 ∇ θ (|g| b-1 g) 2 dσ + H ˆSd-1 |g| 2b dσ ,
or equivalently, (AB -1)

ˆSd-1 ∇ θ (|f | a-1 f ) 2 dσ ˆSd-1 ∇ θ (|g| b-1 g) 2 dσ +( √ pqAµ -H) ˆSd-1 ∇ θ (|f | a-1 f ) 2 dσ ˆSd-1 |g| 2b dσ +( √ pqBλ -H) ˆSd-1 ∇ θ (|g| b-1 g) 2 dσ ˆSd-1 |f | 2a dσ +(pqλµ -H 2 ) ˆSd-1 |f | 2a dσ ˆSd-1 |g| 2b dσ ≤ 0.
(5.7)

Choose a = q+1 2 and so b = p+1 2 . Since p ≥ q > 1, we have

AB -1 = 1 (q + 1) 2 (p + 1) 2 16p 2 q 2 -(q + 1) 2 (p + 1) 2 > 0.
Hence, applying Theorem 7, it follows that f = g = 0 if d -4 ≤ α + β. So, we can assume that d -4 > α + β. In addition, since p ≥ q > 1, we have

β α A 2 = 16pq 3 (p+1)(q+1) 3 = 2p p+1 2q q+1 3 ≥ 1. Recall that α ≥ β, so that λ µ = α β d-2-α d-2-β ≤ α β ≤ A 2 . Since H 2 < pqλµ, we find H < √ pq √ λ √ µ ≤ √ pqAµ. Using d -4 > α + β, we can easily check that Aµ ≤ Bλ and so H < √ pqAµ ≤ √ pqBλ.
We have just proved that all the constants appearing in (5.7) are positive, hence f = g = 0. So, we are done.

6. The case d -4 > α + β: an iteration method in the spirit of De Giorgi Lemma 12. Let (u, v) be a positive solution of (1.1) satisfying (1.8) in B 2 . Assume that d-4 > α + β and (1.7) holds. Then, there exist constants C > 0 and σ ∈ (0, 1) depending on d, p, q only such that letting U = u/u s , V = v/v s , a = (q + 1)/2 and b = (p + 1)/2, there holds

|U | a-1 U C σ (B1) + |V | b-1 V C σ (B1) ≤ C. (6.1) 
Proof. We divide our proof into three steps.

Step 1: Basic identities. Let a ≥ 1, ϕ ∈ C 1 c (B 2 ), multiply the first equation of the system by |u| 2a-2 uϕ 2 and integrate. The left-hand side is equal to

ˆ∇u • ∇(|u| 2a-2 uϕ 2 ) = (2a -1) ˆ|u| 2a-2 |∇u| 2 ϕ 2 + ˆ|u| 2a-2 u∇u∇ϕ 2 = 2a -1 a 2 ˆ|∇(|u| a-1 u)| 2 ϕ 2 + 1 2a ˆ∇|u| 2a ∇ϕ 2 = 2a -1 a 2 ˆ|∇(|u| a-1 uϕ)| 2 - 2a -1 a 2 ˆ∇ϕ∇(|u| 2a ϕ) + 1 2a ˆ∇|u| 2a ∇ϕ 2 = 2a -1 a 2 ˆ|∇(|u| a-1 uϕ)| 2 + ˆ|u| 2a 2a -1 a 2 ϕ∆ϕ - 1 2a ∆ϕ 2 .
Next, choose ϕ = ϕ 0 ψ, where ϕ 0

(x) = |x| αa-d-2 2 and ψ ∈ C 1 c (R d \ {0}). Then, ∆ϕ = (∆ϕ 0 )ψ + 2∇ϕ 0 • ∇ψ + ϕ 0 ∆ψ, and ∆ϕ 2 = (∆ϕ 2 0 )ψ 2 + 2∇ϕ 2 0 • ∇ψ 2 + ϕ 2 0 ∆ψ 2 .
Let R (for rest) be defined by 2a -1 a 2 ϕ∆ϕ -

1 2a ∆ϕ 2 = 2a -1 a 2 ϕ 0 ∆ϕ 0 - 1 2a ∆ϕ 2 0 ψ 2 -R, where R = 1 2a 2 ∇ϕ 2 0 • ∇ψ 2 + 1 a |∇ψ| 2 - a -1 a 2 ψ∆ψ ϕ 2 0 . (6.2) 
By direct computation, we have 2a -1 a 2 ϕ 0 ∆ϕ 0 -

1 2a ∆ϕ 2 0 = 2a -1 a 2 (αa) 2 - d -2 2 2 - 1 2a (2αa(2αa -(d -2))) ϕ 2 0 |x| 2 = (2a -1)α 2 - 2a -1 a 2 d -2 2 2 -2α 2 a + α(d -2) ϕ 2 0 |x| 2 = λ - 2a -1 a 2 d -2 2 2 ϕ 2 0 |x| 2 .
So, we just proved that for ϕ = ϕ 0 ψ,

ˆ∇u • ∇(|u| 2a-2 uϕ 2 ) = 2a -1 a 2 ˆ|∇(|u| a-1 uϕ)| 2 + λ - 2a -1 a 2 d -2 2 2 ˆ(|u| a ϕ) 2 |x| 2 -ˆR|u| 2a .
The left hand-side of the above identity is equal to

ˆ|v| p-1 v|u| 2a-2 uϕ 2 .
Introducing the quadratic forms

Q 1 (f ) = ˆ |∇f | 2 - d -2 2 2 f 2 |x| 2 , Q 2 (f ) = ˆf 2 |x| 2
and the numbers

Q 1 = Q 1 (|u| a-1 uϕ), Q 2 = Q 2 (|u| a-1 uϕ), S = ´|v| p-1 v|u| 2a-2 uϕ 2 , T = ´R|u| 2a , we conclude that 2a -1 a 2 Q 1 + λQ 2 = S + T. (6.3) 
The choice a = q+1 2 makes the expression of ϕ 0

(x) = |x| (p+1)(q+1) pq-1 -d-2
2 symmetric in the variables (p, q). Hence, choosing b = p+1 2 , we may assert that for the same functions ϕ = ϕ 0 ψ and R, there holds 2b -1

b 2 Q ′ 1 + µQ ′ 2 = S ′ + T ′ , (6.4) 
where

Q ′ 1 = Q(|v| b-1 vϕ), Q ′ 2 = Q 2 (|v| b-1 vϕ), S ′ = ´|u| q-1 u|v| 2b-2 vϕ 2 and T ′ = ´R|v| 2b .
For this choice of a and b we have S = S ′ .

Step 2:

Q 1 + Q ′ 1 ≤ |T | + |T ′ | and Q 2 + Q ′ 2 ≤ |T | + |T ′ |. Multiplying (6.
3) and (6.4) we find

4q (q + 1) 2 Q 1 + λQ 2 4p (p + 1) 2 Q ′ 1 + µQ ′ 2 ≤ (S + T )(S + T ′ ) = S 2 + S(T + T ′ ) + T T ′ .
If ε > 0 is small enough, the above inequality yields

4q (q + 1) 2 Q 1 + λQ 2 4p (p + 1) 2 Q ′ 1 + µQ ′ 2 ≤ (1 + ε)S 2 + C(ε)(T 2 + T ′2 ). (6.5)
Now, recalling the choice a = q+1 2 , b = p+1 2 , the Cauchy-Schwarz inequality yields

ˆ|u| q-1 u|v| 2b-2 vϕ 2 ≤ ˆ|u| q |v| p ϕ 2 ≤ ˆ|u| q-1 2 |v| 3p+1 2 ϕ 2 1 2 ˆ|u| 3q+1 2 |v| p-1 2 ϕ 2 1 2 
.

Applying (1.8) with test functions |v| b-1 vϕ and |u| a-1 vϕ, we deduce that

ˆ|u| q-1 u|v| 2b-2 vϕ 2 ≤ 1 √ pq ˆ|∇(|v| b-1 vϕ)| 2 - γ 2 4 ˆ(|v| b ϕ) 2 |x| 2 1/2 ˆ|∇(|u| a-1 uϕ)| 2 - γ 2 4 ˆ(|u| a ϕ) 2 |x| 2 1/2 .
Similarly,

ˆ|v| p-1 v|u| 2a-2 uϕ 2 ≤ 1 √ pq ˆ|∇(|v| b-1 vϕ)| 2 - γ 2 4 ˆ(|v| b ϕ) 2 |x| 2 1/2 ˆ|∇(|u| a-1 uϕ)| 2 - γ 2 4 ˆ(|u| a ϕ) 2 |x| 2 1/2 .
Multiplying both inequalities, we find

S 2 ≤ 1 pq (Q 1 + HQ 2 )(Q ′ 1 + HQ ′ 2 ). ( 6.6) 
We plug this last estimate into (6.5) to find

(AB -(1 + ε)) Q 1 Q ′ 1 + pqλµ -(1 + ε)H 2 Q 2 Q ′ 2 + ( √ pqAµ -(1 + ε)H) Q 1 Q ′ 2 + ( √ pqBλ -(1 + ε)H) Q ′ 1 Q 2 ≤ C(T 2 + T ′2
), where, as above, we denote A := √ pq 2a-1

a 2 = √ pq 4q (q+1) 2 and B := √ pq 2b-1 b 2 = √ pq 4p (p+1) 2 .
By the computations made at the end of the previous section, we have AB > 1, √ pqAµ > H and √ pqBλ > H. Then, using (1.7) and choosing ε > 0 small enough we find that all coefficients of the above inequality are positive. This yields

max{Q 1 Q ′ 1 , Q 2 Q ′ 2 , Q 1 Q ′ 2 , Q ′ 1 Q 2 } ≤ C(T 2 + T ′2
). Combing back to (6.6) we find S 2 ≤ C(T 2 + T ′2 ), so |S| ≤ C(|T | + |T ′ |). Take first ψ(x) = ψ 1 (x) a standard cut-off function which is identical to 1 in B 1 and vanishes outside of B 2 . Then, the expression of R in (6.2) and the above estimate yield

ˆB1 |x| -d |U | q+1 + |V | p+1 ≤ C ˆB2\B1 |x| -d |U | q+1 + |V | p+1 , that is, ˆB1 |x| -d |U | q+1 + |V | p+1 ≤ c ˆB2 |x| -d |U | q+1 + |V | p+1 ,
for some c ∈ (0, 1) which depends only on p, q and d. By rescaling and iterating, we deduce that there exist C, C ′ > 0 and σ ∈ (0, 1) depend only on p, q and d such that where we used the energy estimate (3.8) with (a, θ) = q+1 2 , 1 and the comparison between components (3.1) in the last inequality.

We now turn to the inequality

Q 1 + Q ′ 1 ≤ C(|T | + |T ′ |
) in which we take ψ(x) = ψ 1 (x/r). Using (6. U a → 0 as ρ → ∞.

By (6.7) (applied to a translation of U ), one has

B 1/ρ (X)
U a → 0 as ρ → ∞.

Thus, U a (X) → 0 as X → ∞. A similar conclusion holds for V b and we conclude.

We can now apply Section 4 to conclude that Theorems 4 and 2 hold.

2 ,

 2 ∆u + ℓ(x)u = 0 in B 2ρ (y), where ℓ(x) = v p u . By the comparison inequality (3.1), we have ℓ ≤ Cu there exists δ sufficiently small such that 2d (2-δ)α < 2x0 α d d-2 . So, by Remark 2, we derive that ℓ ∈ L d 2-δ (B 2ρ (y)). Therefore, according to [34, Theorem 1], we obtain

c|x| 2 -. 3 )

 23 d ≤ u(x) ≤ C|x| 2-d+ǫ and |∇u(x)| ≤ C|x| 1-d+ǫ for |x| ≥ 1. (4In addition, |∇v(x)| = o(|x| -β-1 ) as |x| → ∞. (4.4) Proof. Since u is a non-trivial, positive and superharmonic function, the first inequality in (4.3) is a standard comparison result. For the proof see e.g. [34, Lemma 2.1]. Now, by Lemma 6, we have

b 2 ,

 2 with b = p+1 q+1 a. Multiplying the equations of the system (5.1) by √ pq|f | 2a-2 f and √ pq|g| 2b-2 g respectively and integrating over S d-1 , there holds

Step 3 :

 3 Conclusion.Let us start with the inequalityQ 2 + Q ′ 2 ≤ C(|T | + |T ′ |) which we established in Step 2 above. Setting ˆ|x| -d |U | q+1 + |V | p+1 ψ 2 ≤ C ˆR |U | q+1 + |V | p+1 .

  ˆBr |x| -d |U | q+1 + |V | p+1 ≤ Cr 2σ ˆB2\B1 |x| -d |U | q+1 + |V | p+1 ≤ C ′ r 2σfor all r ∈ (0, 1), (6.7)

2 + 2 ≤ 2 2 2 = d -2 2 2 ˆh2 |x| 2 + ˆ|x| -d+2 ∇h 2 applied to ( 6 . 8 ) leads us to r 2 Br∇|U | a- 1 U 2 + 2 1/ 2 ≤ C 1 r 2 Br (x) |∇ζ| 2 1/ 2 ≤ 7 .

 22222268212222227 7) we deduce ˆBr ∇ |U | a-1 U |x| -d-2 2 ∇ |V | b-1 V |x| -d-22 Cr 2σ , (6.8)where, as before C depends only on p, q and d. The identityˆ ∇ h|x| -d-∇|V | b-1 V 2 ≤ C 1 r 2σ . (6.9)By the invariance to translation, the above estimate holds for any ball B r (x) ⊂ B 1 , r ∈ (0, 1). If we set ζ = |U | a-1 U and ζ x,r the spherical average of ζ over B r (x), from Poincaré-Wirtinger and (6.9) we findBr (x) |ζ -ζ x,r | ≤ Br (x) |ζ -ζ x,r | C 2 r σ .The characterization of Hölder functions due to Campanato yields|ζ(x) -ζ(y)| ≤ C 3 |x -y| σ for all x, y ∈ B 1/2 . (6.10) A similar inequality holds for ξ = |V | b-1 V and this concludes our proof. The case d -4 > α + β: asymptotics of solutions stable outside a compact set Lemma 13. Let (u, v) be a positive solution of (1.1) satisfying (1.8). Assume that (1.7) holds. Then, |x| α u(x) → 0 and |x| β v(x) → 0 as |x| → ∞. (7.1) Proof. Without loosing any generality, we may assume that (u, v) satisfies (1.8) with K = B 1 . Let z ∈ R d \ B 2 and ρ = |z|/4. Then the pair (ũ, ṽ) defined as ũ(x) = ρ α u(z + ρx), ṽ(x) = ρ β v(z + ρx) (7.2) is a solution of (1.1) satisfying (1.8) in B 2 . Letting Ũ = ũ/u s Ṽ = ṽ/v s , a = (q+1)/2 and b = (p+1)/2, we have by Lemma 12 that Ũ a and Ṽ b are Hölder continuous in B 1/2 . In particular (6.10) yields | Ũ a (x) -Ũ a (y)| ≤ C|x -y| σ for all x, y ∈ B 1/2 .Letting X = z + ρx and Y = z + ρy, the above estimate impliesU a (X) -U a (Y ) ≤ Cρ -aα-σ |X -Y | σ for all X, Y ∈ B ρ/2 (z),where, as in Lemma 12, we denote U = u/u s and V = v/v s . Averaging the above inequality in the Y variable over a ball of small radius 1/ρ leads toU a (X) -B 1/ρ (X) U a (Y )dY ≤ Cρ -aα-σ B 1/ρ (X) |X -Y | σ dY = Cρ -aα-2σ for all X ∈ B ρ/4 (z).We next let ρ = |z|/4 → ∞. Since X ∈ B ρ/4 (z), this also implies |X| ≥ |z| -ρ/4 → ∞. Hence, for ρ = |z|/2 large enough the above estimate yields U a (X) -B 1/ρ (X)

Acknowledgement

The authors are greatful to D. Ye for his careful reading of a preliminary version of this paper and for pointing out Theorem 1.1 in [3]. H. Hajlaoui received funding from Claude Bernard University Lyon 1 (UCBL). Part of this work was done while he was visiting Lyon. He thanks the Department of Mathematics and the Faculty of Sciences for the kind hospitality and for the financial support.