Introduction

Broekaert [START_REF] Broekaert | A spatially-vsl gravity model with 1-pn limit of grt[END_REF] found an equivalence between gravitational field-dependent vacuum refractive index and weak field general relativity. The refractive index, or more generally the couple permittivity/permeability can fluctuate also with electric field like in the Schwinger effect [START_REF] Schwinger | On gauge invariance and vacuum polarization[END_REF] and with magnetic field with the X-ray polarization near to a neutron star [START_REF] Mignani | Evidence for vacuum birefringence from the first optical polarimetry measurement of the isolated neutron star rx j1856[END_REF]. This supposes that the vacuum can be polarized [START_REF] Puthoff | Polarizable-vacuum representation of general relativity[END_REF][START_REF] Mainland | Electromagnetic properties of the quantum vacuum calculated from its structure[END_REF][START_REF] Mainland | Polarization of vacuum fluctuations: Source of the vacuum permittivity and speed of light[END_REF][START_REF] Urban | The quantum vacuum as the origin of the speed of light[END_REF][START_REF] Butto | Revealing the essence of electric permittivity constant[END_REF][START_REF] Leuchs | Physical mechanisms underpinning the vacuum permittivity[END_REF] and contains sort of dipoles. Directly inspired from Fleming's insights [START_REF] Fleming | General relativity as quantum van der waals torque effect[END_REF], I would like to consider here that the vacuum is made by dipoles (like the Dirac's sea). Each dipoles of particles have opposite charges and opposite spin. The purpose of this article is to approximately derive the value of the vacuum permittivity constant from first principles using a field equation, inspired from the Dirac equation, and the dipole electric polarizability expression. 2 Equation for vacuum dipoles

Dipole objects

In this paper we suggest that the vacuum is made by dipoles considered as standing waves: they should represent the "fixed" medium able to transmit the electromagnetic waves. For a photon or a free particle, we have the wave equation which drives their wave function Ψ f :

∆ - 1 c 2 ∂ 2 t Ψ f = 0 (1) 
and the isotropic solutions in 3D space are f (r ± ct)/r with f arbitrary function, for instance:

Ψ f ∝ 1 r e ik0(r±ct) (2) 
for a spherical wave of wave vector k 0 . This is fine for free particles as they can propagate in free space without interaction that perturbs their path. Now, for vacuum dipole model that we try to define, this is not acceptable: they should not propagate but act as a transmission medium (like atoms that transmits acoustic waves in a solid). By changing t → it in the wave equation (Wick transform) we arrive to:

∆ + 1 c 2 ∂ 2 t Ψ d = 0 (3) 
with Ψ d the dipole wave function. The isotropic 3D solution of this equation is given by f (r ± ict)/r, so for instance we have:

Ψ d ∝ 1 r e -k0(r±ict) (4) 
which is a kind of "standing wave" as it oscillates but does not propagate. Then, guided by the idea of the electron/positron pair that can be made in vacuum, we would like to find this kind of structure made by two fermions of opposite charge and opposite spin (the computations have led us to this assumption).

Particles pair definition

Let us first define the 4x1 spinor Ψ as:

Ψ = Φ χ (5) 
with Φ and χ are 2x1 spinor. Physically Φ and χ are two particles with spin 1/2 which formed the dipole. The normalization condition applies:

Φ|Φ = χ|χ = 1 (6) 
Then we identify each spinor as:

• Φ: localized particle of charge q and spin magnetic quantum number 1/2 (supposed to be a positron)

• χ: localized particle of charge -q and spin magnetic quantum number -1/2 (supposed to be an electron)

Moreover, since vacuum is able to transport any wavelength or photon frequency, we suppose that the energy level of dipole should be continue and equally distributed.

Vacuum dipole equation

Instead of using Dirac equation, suited for "free fermions" (in case of no interaction potential), we will use another equation with different symmetries for "bounded fermions" pair (vacuum dipole). We choose to define the operator D v as:

D v = c α.∇ + mc 2 + i ∂ t Ω (7) 
with:

α = 0 σ σ 0 (8) 
α i = 0 σ i σ i 0 (9) 
Ω = 0 I 2 -I 2 0 ( 10 
)
with α i the usual Dirac matrices, I 2 the 2 × 2 identity matrix and σ the Pauli vector. The σ i are the three Pauli matrices (i = {1, 2, 3}) such as:

{ σ i , σ j } = σ i σ j + σ j σ i = 2δ i,j I 2 (11) 
with δ i,j the Kronecker symbol. The omega and alpha matrices have the following properties (i and j can take the values {1, 2, 3}):

α i , Ω = 0 (12) 
{ α i , α j } = 2δ i,j I 4 (13)

Ω 2 = -I 4 (14) 
Now we define the vacuum dipole equation as:

D v Ψ = 0 (15) 
If we square the operator we have:

2 c 2 ∆ -(mc 2 + i ∂ t ) 2 Ψ = 0 (16)
and neglecting the mass term (we will see that this term can take any value greater than 0 to compute the vacuum permittivity) we obtain (m → 0):

∆ + ∂ 2 t c 2 Ψ 0 (17)
This is the "standing wave" equation (3) that we introduced before, that could make sens: we remind the idea of the photon being the traveling wave in vacuum and the dipole are the medium, that should be "motionless" (we are talking about the vacuum). Then if we pose:

Ψ(r, t) = Ψ(r)e -iEt/ (18)
We obtain the stationary vacuum dipole equation:

c α.∇ + mc 2 + E Ω Ψ(r) = 0 (19) 
and in explicit matrix form:

c 0 σ.∇ σ.∇ 0 + mc 2 + E 0 I 2 -I 2 0 Φ χ = 0 (20)
or in 2 lines:

c σ.∇ + mc 2 + E χ = 0 (21) c σ.∇ -mc 2 -E Φ = 0 (22) 
These 2 last equations represent opposite spin particles. We can see here a similarity in the form with the Gersten equation for the photon [START_REF] Gersten | Maxwell equations as the one-photon quantum equation[END_REF]. This configuration of particles is interesting and allows us to define bounded states of continuous energy.

Addition of an electrostatic potential between the 2 particles

We postulate that Φ and χ are two interacting opposite charged particles (of charge ±q) and each of these two are subjected to the electrostatic potential V produced by the other one:

V = - q 2 4π 0 r (23) 
with q the elementary charge, 0 the vacuum permittivity and r being the distance between Φ and χ: we interpret this here as the center to center distribution distance. We rewrite equation ( 19) with this co-potential by doing the substitution E → E + V (r):

c α.∇ + mc 2 + E + V (r) Ω Ψ(r) = 0 (24)
and in explicit form:

c σ.∇ + mc 2 + E + V (r) χ = 0 (25) c σ.∇ -mc 2 -E -V (r) Φ = 0 (26)

Resolution of the equation with zero angular momentum

First let us divide by c and rewrite equations (25) as:

( σ.∇ + k 0 + k + v(r)) χ = 0 (27) ( σ.∇ -k 0 -k -v(r)) Φ = 0 (28) 
with k = E/( c), k 0 = mc/ and v(r) = -α/r with:

α = q 2 4π 0 c (29) f k (r) [2(k 0 + k)] 3/2 Γ(3) r α e -(k0+k)r (56) 
Because α << 1, which comes from the reduced Coulomb term between the two particles α/r, we see that it is not the electrostatic potential that participates to the bounding of the dipole, it is the radial spin-momentum operator σ r ∂ r . So this should be a spin interaction between the two particles that keep them closer instead of the electrostatic potential, which can be neglected since its contribution is really weak.

Volumic polarizability of vacuum dipoles

Electrodynamics

In classical electrodynamics, we define the displacement field D in vacuum by (linear approximation):

D 0 E + P (57) 
with E an applied electric field and P the vacuum dipole density. We assume that D is zero (no net charge displacement), then we have:

0 E + P = 0 (58) 
By definition we have the density dipole moment related to the dipole moment p of volume V by:

p = V P dV (59) 
and the dipole moment is related to the electric field at first order by:

p α 0 E (60) 
with α 0 the scalar polarizability (we assume the vacuum is isotropic). Using equation (58), the definitions of dipole moment and polarizability we obtain:

0 - α 0 V = -α v (61) 
Let us define then determine the value of α v , the vacuum polarizability density [START_REF] Puthoff | Polarizable-vacuum representation of general relativity[END_REF], and check if it corresponds indeed to the vacuum permittivity constant.

Hydrogen polarizability as a definition starting point

For the hydrogen atom, the atomic polarizability α H is defined as [START_REF] Cohen-Tannoudji | Mécanique quantique tome ii[END_REF] (it is isotropic, so we choose z axis for commodity):

α H = -2q 2 ∞ n=2 n, 1, 0|z|1, 0, 0 2 E n -E 1 (62)
with E n -Ry/n 2 (Ry is the Rydberg constant) and the notation |n, l, m l stands for principal, angular momentum and magnetic quantum numbers for the energy states of the hydrogen atom. So basically we have |1, 0, 0 as the ground state (1s level) and |n, 1, 0 the other excited states (solutions of Schrodinger equation). We can check that for the hydrogen atom we have (using the spherical harmonics integrals):

n, 1, 0|z|n , 0, 0 = 1 √ 3 n|r|n (63) 
So we have:

α H = - 2 3 q 2 ∞ n=2 n|r|1 2 E n -E 1 ( 64 
)
and we will take this definition as a starting point for vacuum polarizability density (because we have only radial states in our model, it is mandatory for us to consider directly the radial integral).

Dipole vacuum polarizability density

Density of dipole states

As we have continuous energy states for the dipole, we need to define a density of states (number of states per energy per volume). The norm of the momentum, that we note K, define the general 3D density of states:

DOS(E) = 4πK 2 dK dE (65) 
We need then to derive an expression between K and E, the energy. We define the dipole momentum norm as (we must remove the rest mass term as it is not included in the momentum):

K = | k|i∇|k | -k 0 = +∞ 0 r 2 f k (r)∇f k (r)dr -k 0 k = E c (66) 
and we have used for computations α << 1. So we have K k. Using our previous definition of k, i.e E = ck, we have dE = cdk and we obtain the density of photon states:

DOS(E) = 4πk 2 c (67) 

Definition of the dipole polarizability density

Thanks to the density of states, we can express the volumic polarizability of the dipole system using the Hydrogen polarizability (64) and taking into account that all energy transitions (continuous spectrum) are possible. That means all photons can be transmitted in the vacuum (and it is the case, as far as we know). We have to do some assumptions before to establish the vacuum polarizability density:

• We replace the discrete sum of energy transitions (between ground states E = 0 and E > 0 states) in equation ( 64) by an integral and a product by the density of states

• The polarizability is defined assuming that the definition for the hydrogen atom (64), when we integrate the angular part, remains valid for our system Now we define the vacuum polarizability density α v as:

α v = - 2 3 q 2 +∞ 0 DOS(E) k|r|0 2 E + mc 2 dE (68)
So using equation (67) we have (k = E/( c) and k 0 = mc/ ):

α v = - 2 3 πq 2 3 c +∞ 0 k 2 k|r|0 2 k + k 0 dk (69) 
with:

k|r|0 = +∞ 0 r 3 f k (r)f 0 (r)dr (70) 

Computation of the dipole polarizability density

Using approximate expression (56) the integral gives (we just use that α 1/137 << 1):

k|r|0 [4(k 0 + k)k 0 ] 3/2 Γ(3) +∞ 0 r 3 e -(2k0+k)r dr (71) 
and we obtain:

k|r|0 = [4k 0 (k 0 + k)] 3/2 (2k 0 + k) 4 Γ(4) Γ(3) (72) 
We square the expression to have:

k|r|0 2 = 9 [4k 0 (k 0 + k)] 3 (2k 0 + k) 8 (73) 
Inserting into equation (69) we get:

α v -3 × 2 9 πq 2 c +∞ 0 k 2 k 3 0 (k + k 0 ) 2 (2k 0 + k) 8 dk (74) 
Then we pose u = k/k 0 and we have:

α v = -3 × 2 9 πq 2 c I (75) 
with:

I = +∞ 0 u 2 (u + 1) 2 (2 + u) 8 du = 1 420 (76) 
Then we multiply α v by 4πα on the numerator and denominator to get ( 0 = q 2 /(4π cα)):

α v = -3 × 2 11 π 2 αI 0 -1.05 0 (77) 
which is an appreciable approximation within an error of less than 6%. We can maybe approach a better estimation by not neglecting the angular momentum and find a more suitable expression or taking into account dipole-dipole interactions but it is another work to dive in.

Conclusion

With this model, including a sort of Dirac's sea fermionic dipoles with opposite charge and spin, we are able to approach the vacuum permittivity constant by simple computations. These dipoles are normalized (finite size in space) and have continuous energy values, which is in agreement with the fact that vacuum transmits equally all frequency. Vacuum dipoles are standing wave while photons are traveling wave: there is an analogy between atomic oscillation and sound propagation in a material, vacuum dipoles being the medium of propagation. The mass is not well defined here, as in the case of a virtual particle, it is another subject to deep dive. Its value is however not necessary to characterize the vacuum properties ( 0 and µ 0 ). We neglect also dipole-dipole interaction, that can have a role in the permittivity value. Despite the fact that we cannot properly justify for the moment the form of the vacuum dipole equation, the advantage is that gives an approach to the permittivity value and bounded states (no re-normalization process).
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 8 854 × 10 -12 F/m reduced Planck constant 1.055 × 10 -34 J/s q electron charge 1.602 × 10 -19 C α fine structure constant 1/137.036 c speed of light 2.998 × 10 8 m/s
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then we can write the scalar product of operators:

We can write the gradient as:

and using the definition of angular momentum L = -i r ∧ ∇:

Now we assume:

then we obtain the couple of differential equations:

We define the 2x1 spinor Y λ as an eigenvector of σ r (they are the "radial spin states"):

By the definition of Pauli matrices ( σ i 2 = I 2 and σ i † = σ i ) we have det( σ r ) = -1 and Tr( σ r ) = 0 so we deduce the eigenvalues of σ r :

Now we want a form for Φ and χ as:

in order to obtain two first order differential equations (with the normalization condition and tends to zero for large r). The equations (36) become:

Then the equations are identical if:

That confirms that if Φ and χ have opposite (radial) spin then we have the single equation:

We can solve it immediately:

Because v = -α/r we can integrate easily to obtain:

The normalization condition:

provides an equation for N :

Using the identity:

r n e -ar dr = Γ(n + 1)

with a > 0 and Γ(x) the Euler gamma function. So we have:

We obtain for f k (r):

So we obtain for Φ and χ:

Remark:

The expression of the scalar wave function (53) can be greatly simplified in (α << 1):