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Abstract. Given the importance of gaze in Human-Robot Interactions
(HRI), many gaze control models have been developed. However, these
models are mostly built for dyadic face-to-face interaction. Gaze control
models for multiparty interaction are more scarce. We here propose and
evaluate data-driven gaze control models for a robot game animator in a
three-party interaction. More precisely, we used Long Short-Term Mem-
ory networks to predict gaze target and context-aware head movements
given robot’s communication intents and observed activities of its hu-
man partners. After comparing objective performance of our data-driven
model with a baseline and ground truth data, an online audiovisual per-
ception study was conducted to compare the acceptability of these con-
trol models in comparison with low-anchor incongruent speech and gaze
sequences driving the Furhat robot. The results show that our data-
driven prediction of gaze targets is viable, but that third-party raters
are not so sensitive to controls with congruent head movements.

Keywords: Human-Robot Interaction · Gaze · AI · Head · Multiparty

1 Introduction

The importance of non-verbal cues in human conversations is no longer to be
proven: authors of [4] consider that 60% of communication intents would pass
through this channel. For a robot to interact with humans in the most natural
way, it must be able to perceive, understand and generate such cues.

One of the most studied non-verbal cues for Human-Robot Interaction (HRI)
is gaze [1]. And rightly so, it is a major social cue in face-to-face Human-Human
interactions (HHI). Indeed, in addition to transmitting emotions, it is a power-
ful regulator of conversations [16, 27]. This function is particularly important in
multiparty conversations, for turn-taking management and role detection, such
as who will be the next speaker, or who is the current addressee [13, 32]. This
impact of the gaze has also been emphasized in HRI. For example, the gaze
control proposed by Multlu et al [22] allowed their robot to signal the roles of
participants in the conversation (bystander, overhearer, ...). In the same way,
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thanks to its gaze, a robot can influence turn-taking behaviors [30] and even
regulate speaking times [10]. In addition to having an impact on the conversa-
tional regime, appropriate gaze behaviour increases participants’ engagement in
the conversation and positively impacts their perception of the robot [29, 18, 6].

All these studies confirm the importance of providing our robot with the most
natural gaze control possible. This study introduces a unique method to control
the robot gaze in a multi-party interaction by combining two Long Short-Term
Memory (LSTM) models, one to predict the attention targets of the robot, and
one to generate the corresponding head movements. We believe that the use of
LSTM models will enable the generation of more subtle behaviours based on
elements of the interaction context that the robot can perceive (who speaks,
where the interlocutors look, . . . ) or related to its own intentions (who it is
addressing, what it is talking about, . . . ). These models will first be evaluated
objectively, then subjectively, through an online perception study, in order to
compare them with a baseline model and ground-truth behaviours.

2 Related Works

Given the importance of gaze in HRI, a large number of gaze models have already
been proposed and tested [1]. However, most of these models are developed for
dyadic interactions and not for multiparty interactions as in this study. Two
categories of models can be distinguished, models based on human interaction
data, called data-driven, and those using rules extracted from human behavior,
called heuristics. On the side of multiparty heuristic models, we can find the
model proposed by Zaraki et al [34], where each participant gets a coefficient
of attention computed from multimodal cues, or the model proposed by Mishra
et al [20] for a robot playing a game with two humans. For data-driven models,
Mutlu et al [21] proposed a control to monitor roles of participants, Nakano
et al [23] built a model taking into account dominance in a conversation, and
Shintani et al [28] focused on gaze behavior during turn-taking. Some models
use machine learning algorithms, as proposed by Stefanov et al [31] who tested
artificial neural networks using or not LSTM to model attention, or Huang et
al [12] who used Support Vector Machine (SVM) for their gaze prediction model.

Furthermore, beyond the prediction of gaze targets, this study also focuses
on the generation of head movements that allow subtle control of head-eye co-
ordination. Head-eye coordination has been extensively studied in humans [33,
8, 7]. For HRI head is mostly considered as a passive contributor of eye move-
ments but not a component per se of the robot’s communicative intentions [14,
34, 3]. However, Gillet et al [10] were able to influence participants’ speaking
times by manipulating the head movements. Among the few studies that have
implemented a context-aware control of head-eye coordination, are the model
of Mishra et al [20] where the contribution of the robot’s head depends on the
duration of fixation of the attention target, and the models proposed by [31, 24]
that predict both eye-gaze direction and head orientation.
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Fig. 1. Setup for the RoboTrio data collection.

The two studies most similar to our method are those by Stefanov et al [31]
and Huang et al [12] through the use of machine learning algorithms. However,
Stefanov et al [31] did not propose a subjective evaluation of their models and
our study differs from that of Huang et al [12] due to the roles beeing asymetric
in our interaction (robot plays game as animator), and their robot could not
move its head and its eyes. Another major difference is that we use the robot’s
addressee as an input of our model. As shown in [11], the contribution of the
head in the gaze depends on whether one or two people are addressed at a time.

3 Creating the Models

3.1 Gaze/head data collection: immersive robot teleoperation

To train and evaluate our models, we use multimodal data from three-party
interactions in a collaborative game context [26], Figure 1. The game is scored
by finding the most quoted words for a given theme (previously played online by
human players). E.g. for the “sea” theme, the words that would score the most
are “ocean”, “water”, “beach”, “mediterranean”, “boat” and “fish”.

The behavior we want to model is that of the game’s animator.
This animator is in fact an iCub robot [19] controlled by a human
pilot through immersive teleoperation [5]. This setup allows to interact
with two human players through the robot sensors and actuators. A tablet is
placed in front of the robot so that the pilot can scan the information about the
game in progress. The animator must report the themes, invites the players to
propose words, and then reports the scores for the proposed words. All head
and eye movements of the pilot, including vergence, are reproduced
in real time by the operated robot (3+3 Degrees of Freedom, aka DoF).
These gaze and head movements, as well as audio and video of the three-party
interaction, are recorded as “the corpus”. We use 11 recorded and annotated
game sequences, with different pairs of players, but keeping the robot’s pilot the
same. This amounts to almost 4 hours of recording, where each sequence lasts
about 20 minutes. A sequence consists of 9 rounds (new theme word), and 5
collected answers per theme. While playing, the players collaborate to find the
best answers and look/ask the robot at will. So there’s a lot of interaction and
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social cues; thinking about the theme, sharing and gauging ideas on a potential
answer, etc. The robot monitors them like its human pilot would do, and is
included regularly in the conversation. The corpus is therefore complex
and rich in verbal and non-verbal content for the players and the robot
(mutual gaze, gaze aversion, speech overlap . . . ).

3.2 Models Implementation

In order to make the attention control of our robot as natural as possible, we pro-
pose to generate both attention targets and head movements. For this purpose,
we decided to cascade two models.

Tasks definition Our first model predicts gaze targets. To train this model,
the gaze of the robot pilot was classified with Gaussian Mixture Models (GMM).
After detection of the ocular saccades, the gaze was divided into 4 classes of
attention; one for the leftmost player in the game UserL, one for the rightmost
player UserR, one for the Tablet screened by the animator, and finally a class
Elsewhere. To simplify the training of our model, the frames where the gaze is
classified as Saccade or Elsewhere are grouped into an Other class. In addition,
to filter out errors due to classification, fixations with a duration of less than 150
ms were merged with the preceding fixations. The distribution of gaze classes
in the dataset is not completely balanced, with UserL and UserR representing
32.4% and 32.1% respectively, while Tablet represents 21.7% and Other 13.8%.

Then, the second model predicts the three DoF of the head: pitch (up/down),
roll (tilt), yaw (left/right).
The outputs of both models are generated continuously at 60Hz.

Input multimodal features Multimodal features about the activity of the
pilot and the players are given as input to both models. These features have
been selected against others as they can be observed in real-time (targeting a
future implementation with our Furhat robot [2]). Each feature, when composed
of N classes, is decomposed into N channels, with only 0 or 1 values:

– 11 channels for Robot pilot activity:

• Speech: whether pilot is speaking or not
• Speech Intent: intent of the sentence, 7 different classes (ask for a propo-
sition, give the score, the theme, an explanation or feedback,. . . )

• Addressee: pilot’s adressee(s) UserL, or UserR or Both, value is 0 for
the three channels if the addressee is unknown

– 6 channels for UserL and UserR activities:

• SpeechL, SpeechR: whether left (resp. right) user is speaking or not
• GazeL: 2 classes, whether given user is looking at the other user, or at
the robot. Value is 0 for both channels if the user is looking at elsewhere

• GazeR: same as previous, but for the right user.
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Fig. 2. Structure of the models, the one predicting gaze targets on the left, and the
one generating head movements on the right.

In addition to these 17 input channels, the model generating head angles also
receives pilot gaze features, adding 4 channels for a total of 21.
Verbal features were annotated manually, while users gaze features were auto-
matically annotated using GMM. The robot’s addressee was annotated using
the French pronouns “Vous” (Both) and “Tu” (UserR/L), see [11].

Models training To take into account possible temporal dependencies, the
models use LSTM cells. Their input are temporal sequences, which have been
cut to correspond to a whole game theme. The 11 interactions being composed of
9 themes, we obtain a total of 99 mini-batches. As the duration of the themes is
variable and the input of the networks must be of fixed dimension, padding was
applied to standardize the length of the sequences (TimeLength). The models
have a many-to-many architecture; their output is a temporal sequence whose
length matches the input. The structure and parameters of the two models are
presented in Figure 2. The masking layer is used for padding detection. The
main differences between these two models are the input and output dimensions,
and the use of a ”softmax” activation function for gaze target classification. The
networks are trained with 200 epochs, a batch size of 10, and an Adam optimizer
[17] with a learning rate of 10−4. For the gaze target classification model, the
loss function is the categorical crossentropy, and for the head angle regression
model the loss function is the Mean Squared Error (MSE).

Model performances To best evaluate the performance of our models, we
used the K-fold cross validation method. For each training, the test dataset is
composed of the n-th theme of each sequence (11 temporal sequences), and the
training dataset of the 8 others (88 temporal sequences). The two networks are
thus each trained and evaluated 9 times with different datasets (9 folds). The
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Table 1. F1-score of the gaze classification model according to the interaction context.

Gaze Class Pilot is Speaking Pilot is Listening No One is Speaking ALL

UserL 0.50 0.54 0.51 0.52
UserR 0.52 0.59 0.51 0.55
Tablet 0.77 0.41 0.45 0.67
Other 0.05 0.01 0.03 0.03

Weighted F1-score 0.54 0.48 0.44 0.49

average accuracy of the attention target classification model is 52.9±1.4%. The
average MSE of the head angle generation model is 7.93±0.51.

In Table 1, the performance of the gaze classification model is analysed in
detail, by calculating the F1-score for each class depending on the robot pilot’s
activity. First, we notice that the Other class is particularly badly predicted,
which is not surprising as it does not correspond to a specific target and acts as
a garbage collector. Moreover, contrary to the results presented in [31, 12], the
proposed model is better when the pilot speaks than when he listens. This can
be explained by the pilot’s role as the game animator who, when speaking, will
often look at his tablet to consult the game information. Moreover, the model
knows the verbal intention of the pilot, which is not the case when a user speaks.

Ablation Study To study the influence of each input feature on model per-
formance, we conducted an ablation study (Table 2). To do this, we trained
separately our models under the same conditions as before (same parameters
and 9-fold cross-validation) but removed selected input features (✗ in Table 2).
Removing the Intent feature has the biggest impact on gaze prediction, which
can be explained by the importance of intentions in determining whether the
robot should look at the tablet (theme announcement, scores) or specific/both
players (ask for proposal, validation) when speaking. When all Robot features
are removed, performance drops drastically, and the same applies to Users fea-
tures. It therefore seems interesting to take into account both endogenous and
exogenous information from the robot.
For head generation, Robot Gaze is clearly the feature that provides the most
information. Nevertheless, when all Robot features are removed, performance
drops even further, assuming that the other Robot features are also important.

4 Subjective Evaluation

4.1 Method

Goal The objective evaluation of model performance is not decisive. Indeed, it
is not because the predicted target is different from the original target that this
choice is less relevant or natural, and the same for the generation of head move-
ments. A subjective evaluation is therefore necessary to validate the viability of
our proposed attention control. To evaluate it, we predicted the gaze targets, for
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Table 2. Results of the ablation study on input features.

Robot Users Gaze prediction:
Speech Intent Addressee Speech Gaze Accuracy

- - - - - 52.9± 1.4%
- ✗ - - - 49.1± 0.8
- - - - ✗ 50.9± 1.3
- - - ✗ - 51± 1.2
- - ✗ - - 51.5± 1.8
✗ - - - - 52.5± 1.1

✗ ✗ ✗ - - 45.0± 1.7
- - - ✗ ✗ 47.9± 1.3

Robot Users Head prediction:
Speech Intent Addressee Gaze Speech Gaze MSE

- - - - - - 7.93± 0.51
- - - ✗ - - 13.48± 0.66
- - - - - ✗ 8.26± 1.04
- - ✗ - - - 7.97± 0.46
- ✗ - - - - 7.96± 0.47
- - - - ✗ - 7.92± 0.44
✗ - - - - - 7.91± 0.45

✗ ✗ ✗ ✗ - - 16.60± 0.57
- - - - ✗ ✗ 7.88± 0.38

each frame (60Hz), for all 11 sequences, and reused these predictions as input
to the head generation model trained on ground-truth data (see Figure 2). For
each theme, the models used for prediction were those that were not trained
with that theme. Finally, the predictions were filtered, removing gaze fixations
shorter than 150ms, and smoothing head movements with a Blackman filter.
These attention behaviors are evaluated in this section.

Compared attention controls We decided to compare our cascaded data-
driven model with 3 other controls, to test both the prediction of attention
targets, and the generation of head movements. To do so, we replay sequence
of game interactions on a virtual Furhat robot [2] with different gaze and head
behaviors. Between the different conditions, the verbal content is identical and is
synthesized by Furhat, only the control of its eyes and head differs. The possible
targets of attention are limited to UserL, UserR and Tablet. The different four
models are listed below :

– Lstm Model: The proposed data-driven control that combines the two
LSTM models described in this paper, that take into account the interaction
context. All three angles of the head are controlled.

– Heuristic Model: This model focuses on the head movement generation,
it is close to the observation model proposed by [14]. The robot looks at
the same targets as the LstmModel, and the head movements are generated
from these targets only, without taking into account the context (no pilot and
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players activities). The model calculates the distance between two fixations,
if it is lower than a threshold value, the head does not move, otherwise it
performs a defined percentage of the path. The percentages were set to be
as close as possible to what was done by the pilot, 30% for the yaw angle
and 45% for the pitch angle. For the calculation of the threshold value,
and the trajectories of the head, we used the equations proposed by Itti et
al in [14]. Moreover an attraction-middline effect is also implemented for
better realism [9]. This control uses only 2 DoF, pitch and yaw. The Table 3
shows the Root Mean Squared Error (RMSE) between the head angles of the
control and those of LstmModel. Logically, the error is maximum on the Roll
angle, this angle being equal to zero for this HeuristicModel control. The
differences being not negligible, we hypothesized that they will be perceived
during the perceptive study.

– Simulated Ground Truth (GT): High Anchor This control corresponds
to the original human behaviour of the pilot in the data collection, same
attention targets, and same head movements (pitch, roll, yaw). In Table 3,
RMSE between this control and the two previous ones are high, since targets
of attention are not necessarily the same.

– Shifted Ground Truth: Low Anchor This control is the same as the pre-
vious one, but uses data shifted in time. The robot will reproduce the same
behavior as the pilot but 1 minute ahead. The head movement corresponds
to the current target of attention, but this target is incongruous. As sus-
tained conversational states last several seconds, we chose a 1 minute shift
to get a close context without matching the original attention targets.

Online evaluation For the perception evaluation, 21 clips of interaction were
selected and extracted, 2 per game sequence plus 1 for the initial training exam-
ple. These selections correspond to extracts where the head movements between
the conditions HeuristicModel and LstmModel differ the most. Each of these
extracts of interaction result in 4 video clips of about 10 s, corresponding to the
4 controls to be compared. Only the virtual robot is visible on these videos, the
players are perceived and differentiated using stereo audio, with the left (right)
speaker using the left (right) audio channel. For the evaluation, we used the
HEMVIP [15] method. On each page, the subjects compare 4 renderings of the
same interaction segment. They must rate each video between 0 and 100. 20 web
pages corresponding to the 20 extracts are presented in a random order, as well
as the 4 videos of the different controls. The evaluation instruction given to the

Table 3. Root Mean Squarred Error between (RMSE in degree) the head angles of
the different controls.

Comparison Pitch Roll Yaw ALL

LstmModel vs HeuristicModel 1.73 2.56 3.61 2.63

LstmModel vs SimulatedGT 4.72 4.28 2.66 3.89

HeuristicModel vs SimulatedGT 4.85 5.00 4.49 4.78
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***
***

*

Fig. 3. Results of the online evaluation depending on the robot controls used. Each
boxplot contains 600 points (number of subjects x number of clips). Significant p-values
are indicated by * (<0.05), and *** (<0.001).

subjects was this: “Rate the videos based on the relevance of the robot’s behavior
and gaze relative to the context”. Before the experiment, the subjects are shown
an explanation of the game and a picture of the scene being observed, so that
they know what the targets of the robot’s gaze are. At the end, they have to
fill in a survey about their familiarity with the robots and their general feeling.
We recruited 30 participants via the crowdsourcing platform Prolific3, all native
French speakers, with an equal representation of men and women.

4.2 Results

Figure 3 presents distributions of rating score obtained by the 4 control policies.
The significance of the results was tested by building a beta regression model,
with clips Id and subject Id as random variables. A likelihood ratio test shows
that the type of control significantly impacts the rating score (chisq(3)=16.511,
p=0.0008). Multiple pair-wise comparisons between the different controls re-
sulted in the adjusted p-values presented in Figure 3. The only significant differ-
ences were found between ShiftedGT and the other three controls. This confirms
that the gaze target management proposed by our model is viable. Despite a
small supportive bias for LstmModel, no significant difference was found be-
tween the proposed control LstmModel and the control HeuristicModel. The
difference between the head movements generated by a context-aware model
and a non-context-aware model is not perceived. Despite the scores obtained by
SimulatedGT, there is no significant difference between this hypothesized high
anchor and the two controls, HeuristicModel, and LstmModel.

3 https://www.prolific.co/
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4.3 Discussion

The subjective evaluation revealed that despite a moderate objective perfor-
mance, the proposed control was rated as appropriate as the original behavior
in the data set. However, even though no significant differences were found, it is
surprising that the trend in the score of the SimulatedGT control is lower than
that of the two controls HeuristicsModel and LstmModel. Indeed, this control is
supposed to reproduce a human behavior, more subtle than the two others. A
first comment is that subjects do hear but not see the two players. Their estima-
tion of the addressee(s) of human partners is degraded. This lack of context may
create a misunderstanding of the robot’s behavior, which mimics the behavior
of a knowledgeable human who was participating in the interaction. Secondly,
although third-party evaluations have been shown to find similar results to those
of internal participants in the interaction [25], it is possible that this evaluation
method has limitations. This limitation would be especially valid when finely
comparing controls. Finally, the subjective evaluation only focused on the ques-
tion of appropriateness of the behavior, but other characteristics could have been
interesting to evaluate, such as naturalness or engagement.

5 Conclusion

In this study, we introduced a data-driven gaze control for HRI multi-party
interaction, where the robot is an animator of a collaborative game. The con-
trol is based on two cascaded LSTM networks trained on multimodal data, one
for gaze target prediction, one for head movement generation. Using an online
perception study, we showed that this control is viable, with attention target pre-
diction comparable to human behaviour, but no advantage of context awareness
was revealed for head movement generation. These promising modeling results
need to be further developed. Future work will aim to identify the reasons for
this non-perception of differences. Two approaches are envisaged: improving the
models by using embedding or CNN layers, for example, but also conducting a
new perception evaluation with raters facing the physical robot for checking the
engagement hypothesis.
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