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On the conjugacy classes
of monomial birational maps

Julie Déserti

ABSTRACT. This short note deals with the conjugacy classes of monomial birational maps in the n-dimensional
Cremona group, n > 2.

1. Introduction
Amap f: Pt --» P¢ given by
(0 :x1t et x) == (fo(x0, X150 e vy Xn) 2 f1(X0s X0, ooy Xn) eee s fu(X0, X050y X))

where the f;’s denote homogeneous polynomials of the same degree v without common factor is a rational
self map of P. of degree v. A birational self map f of P¢. is a rational self map of P- such that there exists
a rational self map g of P, with fog = go f =id. The group of birational self maps of IP{. is the Cremona
group; it is denoted by Bir(IP{.).

In [BIa06] the author describes the conjugacy classes of affine automorphisms in Bir(IP{.); from this he
deduces the classification of conjugacy classes of automorphisms of P, in the Cremona group.

For a birational map f € Bir(P%) there is a well-defined pull-back map f*: H**(P%,R) — HA(PL, R)
for any 1 < k < n. The k-th dynamical degree of f is then defined as A (f) = gl_igloo 19|14, The Ay’s are

birational invariants, i.e. A¢(f) =M (gfg ") for any f, g in Bir(P%) and for any 1 < k < n. In [BC16]] Blanc
and Cantat study the relationship between the value of A(f) and the structure of the conjugacy class of f. In
particular, they get that f, g € Bir(IPZ) of degree < d and such that 1, (f) > 1, A;(g) > 1 are conjugate if and
only if they are conjugate by an element of degree < (2d)°’. Furthermore, given an element f of Bir(P%)
they define the minimal degree in its conjugacy class as the positive integer mcdeg(f) = mindeg(gfg"')
where g describes Bir(IPZ). The function mcdeg is constant on conjugacy classes, and A(f) < medeg(f) <
deg f for any f € Bir(PPZ). They provide the following reverse inequality:

o if A(f) > 10, then medeg(f) < 47004, (f)3;
o if A (f) > 1, then medeg(f) < e'8A; (f)34.

1991 Mathematics Subject Classification. 14E05, 14E07.
Key words and phrases. Cremona group, birational map, conjugacy class.

1



ON THE CONJUGACY CLASSES OF MONOMIAL BIRATIONAL MAPS 2

In this paper we are interested in the conjugacy classes of monomial birational maps of Pf.. Let us
specify what monomial birational maps of P}, are. To any n x n integer matrix M = (m;;) € GL(n,Z) we
can associate the monomial map fj;: (C*)" — (C*)" defined by

n n n
fM(xla)CZa---:xn) — (I_le;_”l/,ux?“’,..,nx’;n/)
J= J=

j=1
Such a map can be viewed as a birational self map of P}.; these maps fj; are called monomial birational
maps of P¢.. Set T = (C*)", and denote by Birp(P{.) the group of monomial birational maps of P¢.. An
element of Birp(P{) is a birational map f: P{. --» P{. defined on T, and such that f(T) C T. There is a
natural isomorphism between Biry(P{.) and Aut(T). The monomial maps have been the subject of many
studies, in particular:

Theorem 1.1 ([FW 12| Lin12]). Let fy be a monomial birational map of P¢. induced by M € GL(n,Z). Let
lui| > |u2| > ... > |un| be the eigenvalues (counting multiplicities) of M. Then, the k-th dynamical degree

OffM is }\'k(fM) = ‘,Ll]‘uz. . .,uk].

Remark 1.2. Consider the two elements G, %) and (xy,y) of Birp(P%). Note that A (%, %) = A1 (xy,y);
1]

nevertheless, (;, ;) and (xy,y) are not birationally conjugate (the first one is an involution whereas the
second one is of infinite order). In other words A; is useless to determine whether f, g € Birqy(]P%) are

birationally conjugate.

Remark 1.3. If S is a projective smooth surface, every birational map f from S into itself admits a resolution

Z
VN
S——-——---- +S

f

where Ty, T, are sequences of blow-ups. Assume that the resolution is minimal, i.e. no (—1)-curve of Z are
contracted by both 7; and 7,; the base-points of f are the points blown-up by 7;, which can be points of S
or infinitely near points. We denote by b(f) the number of such points, which is also equal to the difference
of the ranks of the Picard group of Z and the Picard group of S. Let us define the dynamical number of
base-points of f by

u(f) = lim (7

k—too  k
introduced in [BD135]]. The integer u is a birational invariant ([BD15]]). Consider the two elements (xy, %)
and (y, %) of Birqr(]P%) Note that u (xy, %) =u (y, ;16) = 0; nevertheless (xy, %) and (y, %) are not birationally
conjugate (the first one is of order 6 whereas the second one is of order 4). In other words u is useless to
determine whether f, g € Birp(P%) are birationally conjugate.
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Let G be a group, and let H be a subgroup of G. The elements f and g of G are H-conjugate if there
exists 4 € H such that f = hgh~!.

Theorem A. Two monomial birational maps of P{. are Bir(P{.)-conjugate if and only if they are Birr(IP{,)-
conjugate.

To any fj € Birr(IP{,), one can associate a finite sequence of an even length with positive integer elements
called LLS period (see §3.2} Theorem-Definition which is a complete invariant of Bir(P%)-conjugacy
classes of monomial birational maps of IP%:

Theorem B. o Let M be a SL(2,Z)-matrix. If the characteristic polynomial of M has a pair of com-
plex conjugate roots, then the associated monomial map fy; of IP’%C is conjugate to one of the follo-

(1) )

o Let M be a SL(2,7Z)-matrix. If the characteristic polynomial of M has a double root, then the
associated monomial map fy; of IP’% is conjugate to the Jonquiéres twist (xy",y) for some n > 0.

wing periodic maps

o Every LLS period is a complete invariant of conjugacy class for monomial birational maps fy; such
that M is an element of SL(2,7,) with two distinct positive real eigenvalues.

What happens in higher dimensions ? Let us first mention that:

Theorem C. Let fy; and fy be two monomial birational maps of IP{..
There exists an algorithm for deciding if fy and fy are Bir(IP{.)-conjugate.

To any fj € Birp(IP{.) is associated a pair consisting of the Klein-Voronoi continued fraction KVCF(M)
and the action Py; of M on KVCF(M) (see which is a complete invariant of Bir(P{:)-conjugacy classes:

Theorem D. Let fy and fy be two monomial birational maps of P such that the characteristic polynomials
of M and N are irreducible over Q.

The maps fy and fy are Bir(P{.)-conjugate if, and only if, the pairs (KVCF(M),Py) et (KVCF(N), Py)
are in the same GL(n,Z)-orbit.

The paper is organized as follows: in §2we prove Theorem|A} in §3|we deal wtih Theorem B] and finally,
in §4) we focus on Theorems [Cland

Acknowledgement. I warmly thank Dominique Cerveau for our uncountable interesting discussions.
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2. Proof of Theorem

Proof of Theorem|[Al It is clear that if two birational maps are Birr(IPf.)-conjugate, then they are Bir(P{.)-
conjugate.

Let us prove the converse. Let f and & be two elements of Birp(P{) that are birationally conjugate, i.e.
h=gfg ' withge Bir(PP{.). Note that 1 = gfg ! preserves T,i.e. gfg 'Tgf 'g~' =T. Asaconsequence,
fg'Tgf~! =g 'Tg. But f is a monomial birational map of P, hence f preserves T, and only T; therefore
g 'Tg = T: the map g preserves T, and g belongs to Birp(PPg). O

Corollary 2.1. Let fy and fy be two monomial birational maps of P{.. The maps fy and fy are Bir(IP{.)-
conjugate if and only if M and N are GL(n,Z)-conjugate.

Corollary 2.2. Any similarity invariant of GL(n,Z)-matrices (trace, determinant, characteristic polynomial,
minimal polynomial...) is a birational invariant of monomial birational maps of IP{..

3. The 2-dimensional case

3.1. Reduced matrices. The matrices of SL(2,7Z) are distributed as follows:

o case of complex spectra: consider SL(2,Z) matrices whose characteristic polynomials have a pair of
complex conjugate roots, we call such a matrix a complex spectrum matrix. There are three integer

conjugacy classes of such matrices represented by < _11 (1) ), ( _01 (1) > and ( _01 _11 > .
¢ degenerate case: let us now study matrices whose characteristic polynomial has a double root (which

actually equal to 1). Such matrices are SL(2,7Z)-conjugate to exactly one matrix of the following

1 n
(o 1)’”20

¢ case of real spectra: a matrix with two real distinct eigenvalues is called a real spectrum matrix.

family

This yields to:

Lemma 3.1. Let fy; be a monomial birational map of P% with M € SL(2,7Z).

o If M is a complex spectrum matrix, then fy; is conjugate to one of the following monomial maps

(1) s)

o If the characteristic polynomial of M has a double root, then fy is conjugate to (xy",y) for some
n>0.

We will now focus on real spectrum matrices. There are two similar subfamilies of real spectrum SL(2,7)
matrices: those with positive eigenvalues and those with negative eigenvalues. The one-to-one correspon-
dence between them is given by associating to a matrix M the matrix —M. For simplicity we consider only
matrices with positive eigenvalues.
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p in SL(2,Z) is reduced if s > ¢ > p > 0. In [Kar22|] Karpenkov gives an

algorithm to construct reduced matrices:

Theorem 3.2 ([Kar22l]). For every real spectrum matrix A in SL(2,7) either A, or —A is SL(2,Z)-conjugate
to a reduced matrix.

Algorithm to construct reduced matrices ([Kar22]). Let M = 2 ; be a SL(2,7Z) matrix. Assume

that the characteristic polynomial of M is irreducible over Q (or equivalently, that it does not have £1 as

roots) and has two positive real roots.

o

o

Step 1.If g <0, then multiply ( Z ; ) by —Id. Goto Step 2.

Step 2. Wehave g > 0. After conjugation of the matrix ( Z Z > by the matrix
0 1

/ /

we get the matrix ( 5, :, ) where 0 < p’ <¢. Goto Step 3.1.

Step 3.1.Supposeq = 1. Then p’=0and ¥ = —1 (indeed, 0 < p' < ¢ =1sop'=0orp =1,

/ /
butif p/ =1,then ¥ =0 and s’ = 1, i.e. <§, ;’, > :( !

0 .. )
11 > : contradiction with the characte-

is irreducible over Q). In addition |s'| > 2 otherwise the matrix has

ristic polynomial of Is)

either complex roots, or rational roots. The algorithm stops, and the output of the algorithm is the

matrix 0 -l
1 s )
Step 3.2.1. Assume that ¢ > 1 and s > ¢’. Then the algorithm stops and the output of the

p/ r/
algorithm is the matrix < q s >

/
%
/

/
Step 3.2.2. Suppose that ¢ > 1 and s’ < —¢’. Conjugate the matrix < S, g > by the

. -1 1 . " .
matrix < 0 1 > and multiply by —Id, then you get < Z " ;,, ) with p" =¢ — p', " = ¢,
s" = —¢' — §'. In particular, ¢’ > 1 and s” > 0. Goto Step 3.2.1orto Step 3.2.3. depen-
ding on s” and ¢".
Step 3.2.3. Assume that ¢’ > 1, and |s'| < |¢|. Notice that the absolute values of ¢’ and s’
coincide since the matrix has unit determinant. Hence |s'| < |¢/| and we have
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Go to Step 1. with the matrix

s g\ 0 -1 pr 0 -1
7p ) -1 0 qg -1 0
with || < |4|.

¢ Output: the reduced integer matrix that is conjugate to =M. The sign is defined by the sign of the
trace of the original matrix.

3.2. A complete invariant. Let o, ay, ay, ..., a, be real numbers satisfying
1
oU=ag+—7—
aj o ——
ar+

' 1
-+ an

The expression in the right-hand side of the equality is called a continued fraction of a given number «, and
denoted by [ap;a; :ax: ... ay.

Theorem-Definition 3.3 ([Kar22l]). Consider a reduced matrix M = g ; > of SL(2,7).

0 -1
1 A+42

If p#£0, then suppose 4=lay:ay:...:amy—1] and A = { 7 J The LLS period of M is (aj,az, ... ,ax—1,\).

Ifp=0, then M = < > for A > 2, and the LLperiod of M is (1,A).

Remark 3.4. The LLS period is a cyclically ordered sequence of an even number of integer elements.
The LLS periods (1,2,1,2) and (2,1,2,1) are the same, whereas the LLS periods (1,2,1,2) and (1,2) are
distinct.

5 13
1 -1 7 18 1\ (2 7
0 1 5 13 0 1) \5 18 )°

But 18 > 5 > 2 > 0, so the matrix ( ! > is reduced. Since % = [2;1: 1] we get that the LLS of

18
7 18 .
< 5 13 ) is (2,1,1,3).

Corollary 3.6 ([Kar22]). The set of real spectrum reduced matrices is in one-to-one correspondence (defined

Example 3.5. Let us consider the matrix ( 718 > . According to the Step 2. of the algorithm we get

in Remark with the set of finite sequences consisting of an even number of positive integer elements.

Remark 3.7. If we consider a matrix constructed from a sequence with an odd number of elements, it is a
real spectrum GL(2,7Z)-matrix with a negative determinant.

ILLS for lattice length sine sequence, see [Kar22] for more details.
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The reduced matrices are "almost" normal forms, since each matrix could have more than one normal
form:

Corollary 3.8 ([Kar22]). The number of reduced matrices in a SL(2,7)-conjugacy class coincides with the
number of elements in the minimal period of the corresponding LLS sequence.

Proposition 3.9 ([Kar22])). Two real spectrum SL(2,7) matrices with positive eigenvalues are SL(2,7.)-
conjugate if and only if their LLS periods coincide.

Finally,

Theorem 3.10 ([Kar22]). (i) Every LLS period is a complete invariant of a SL(2,7)-conjugacy class
for SL(2,Z)-matrices with distinct positive real eigenvalues.
(i) An arbitrary finite sequence of an even length with positive integer elements is realisable as a period
of some LLS sequence.

1519 1164

Example 3.11. Consider M = < 1964 —1505

>. The LLS period of M is (1,2,1,2). Hence there

are exactly two reduced matrices ( Iq) : > represented by the sequences (1,2,1,2) and (2,1,2,1). The

coefficients p and ¢ for the corresponding reduced matrices are

4 8
g:[1;2:1]:7, g:[2;1:2}:7.
p 3 p 3
We find the elements r and s of the reduced matrices from conditions A = {%J and ps—gr=1;

finally we get that

3 8 d 3 4

4 11 an 8 11
are both reduced matrices SL(2,Z)-conjugate to M.
Example 3.12. Let us consider again the matrix < ; }2 > . Using the algorithm we get that the reduced
associated matrix is < g 17 3 > Its LLS period is (2,1,1,3). There are three reduced matrices in the

1

5 13
3.3. Proof of Theorem[B] Proposition[3.9and Theorem [A]yield to:

conjugacy classes of < 8 ) corresponding to (1,1,3,2), (1,3,2,1) and (3,2,1,1).

Proposition 3.13. Let M and N be two real spectrum SL(2,7) matrices with positive eigenvalues. The
monomial birational maps fy and fy of IP% are Bir(IP’%:)—conjugate if and only if the LLS periods of M
and N coincide.
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Proposition [3.13]directly implies

Theorem 3.14. Every LLS period is a complete invariant of conjugacy class for the monomial birational
map fy of P% where M is a real spectrum SL(2,7) matrix with positive eigenvalues.

From Lemma [3.1]and Theorem [3.14 we get Theorem [B]

4. The n-dimensional case

4.1. An algorithm. Let M and N be elements of GL(n,Q). The rational conjugacy problem asks if there
exists P € GL(n, Q) such that PMP~! = N. This can be decided effectively by computing and comparing the
canonical forms of M and N. More difficult is the integral conjugacy problem: decide whether or not there
exists P € GL(n,Z) such that PMP~! = N. Clearly, if M and N are not GL(n,Q)-conjugate, then M and N
are not GL(n, Z)-conjugate, but the converse does not hold. Grunewald proves that the integral conjugacy is
decidable ([Gru80]) but he does not provide practical algorithm.

In [EHO19] the authors provide practical algorithms. They begin by following the approach of Grunewald.
Let M = S+ U be the Jordan-Chevalley form for M (that is, S is semisimple, U is nilpotent and SU = US),
and let N = §' 4+ U’ be the Jordan-Chevalley form for N. The problem of determining GL(n,Z)-conjugacy
can be reduced to the case where M and N are GL(n,Q)-conjugate and S, ', U, U’ are in GL(n,Z). Let
P(x) be the characteristic polynomial of S (and S’) and let ¢ be the nilpotence class of U (and U’). Set
R= Z[x]/( P(x)) and Py(R) = Rly ]/(yg). Then Z" has the structure of a P;(R)-module in two different ways
depending on the M-action: either vx :=vS and vy :=vU for all v € Z", or we use the corresponding N-action.
Let us denote by Ky, and Ky the two Py(R)-modules; ks ~ Ky if and only if M and N are GL(n,Z)-conjugate.
This allows various known techniques of algebraic number theory to be applied. The authors then introduce
a new tool (the so-called standard submodule) and use it to develop a detailed description of such an algo-
rithm. They have implemented their algorithm in Magma and they report that their approach appears to be
much faster and more general than earlier attempts to determine GL(n,Z)-conjugacy. However, although
their program is often fast, there are examples of quite small degree (n = 10) where it runs very slowly
and indeed these examples may be intrinsically hard. Incidentally, they point out that solving the decision
problem over GL(n,Z) leads directly to the solution of the conjugacy problem for SL(n,Z) and PSL(n,Z).

Hence both Theorem [A]and [Gru80, EHO19] yield to Theorems[C|and

4.2. Complete geometric invariants. Let us now introduce a complete geometric invariant of SL(2,7)-

conjugacy classes proposed by Klein in [Kle935]], further extended by both Voronoi in [[Vor52] and Karpenkov
in [Karl3].

Assume that M € GL(n,R) has n distinct eigenvalues. Suppose that the real eigenvalues of M are ry, r,

.., 1 and the complex conjugate eigenvalues are ¢y, ¢1, ¢2, C2, --., C, C¢ Where k+2¢ = n. Denote by

Lr(M) the space spanned by real eigenvectors, and by Spec(N) the spectrum of N. Let us define the set Ty,
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as:
Tu = {N € GL(n,R)|MN = NM, Spec(N) C S', Nir,(m) = idj1 (1) } -
Actually, Tj, is an abelian subgroup of GL(n,R). The orbit

T(v) = {NO) N € Tis}:

of v € R” under the action of Tj; is homeomorphic to a torus of dimension < ¢; furthermore, in case v does
not lie in any invariant plane of M, the equality dim 7j;(v) = ¢ holds.

For 1 <i < k denote by g; a real eigenvector with eigenvalue r;. For 1 < j </ denote by giy2;—1 and
8k+2j vectors of the real and imaginary parts of some complex eigenvector with eigenvalue c;. Set

n= <g17 825 58k 8k+15 8k+35 -+ gk+2£—l>R7

and let ;. be the cone of ®T whose points have nonnegative last ¢ coordinates in the basis

(gla 82y -y 8ks 8k+1y 8k+35 -+ gk+2(471)-

Remark that for any v the orbit 7, (v) intersects the cone 7. in a unique point.
Let us consider the arrangement of all k real invariant hyperplanes of M which are of the form

(81,82, -+, &1, 8it1, 812 -+ > &n)RS

we denote by C; (M), C2(M), ..., Cox (M) the connected components of their complement in R”. Let us set
Q =conv({g € n;|Tu(q) NC;(M)NZ" #0,q#0}).

The set S;(M) = U Ty (p) is called the sail of a cone C;. The Klein-Voronoi continued fraction of M is

pEIQ
the union of all sails:

KVCE(M) = Dsl- (M).
i=1

For an arbitrary m-dimensional plane P C 7 the set
U Tu(p)
peS;(M)NP
is called an m-dimensional orbit-face if the set S;(M) N P is homeomorphic to the m-dimensional ball. The
group of all elements of GL(n,Z) commuting with M is called the Dirichlet group of M and is denoted
by E(M):
E(M)={N € GL(n,Z)|NM = MN}.
The group E(M) takes KVCF(M) to itself and permutes the sails. By the Dirichlet unit theorem, E(M) is iso-
morphic to Z¥+~1 & G where G is a finite abelian group. It follows from the definition that KVCF(M )/E (M)
is homeomorphic to one or several copies of the (n — 1)-dimensional torus. A fundamental domain of KVCF(M)

is a collection of its orbit-faces, one from each equivalence class of KVCF(M )/E (M)-
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0 01
Example 4.1. Let us consider the SL(3,Z)-matrix M = | 1 0 1 |. It has one real and two complex
01 3

conjugate eigenvalues. Hence, 7 is a 2-dimensional half-plane. The invariant plane corresponding to the
pair of complex eigenvectors separate T, onto two parts. The boundaries of convex hulls in each of the
two parts are switched by —id. The group E(M) is homeomorphic to Z @ Z/zz with generators M and
—id. A fundamental domain of KVCF(M) contains one orbit-vertex and one vertex edge. For instance, we
choose the orbit-vertex Tj/(1,0,0) and the orbit-edge corresponding to the “tube” connecting orbit-vectors
Ty (1,0,0) and Ty (M (1,0,0)).

Theorem 4.2 ([Kar13]). Assume that M, N € GL(n,Z) have characteristic polynomials which are irre-
ducible over Q. Then E(M) = E(N) if, and only if, KVCF(M) = KVCF(N).

Note that

o KVCF(M) uniquely identifies (M) (Theorem (4.2));
¢ the matrix M acts on KVCF(M).

Let us denote by Py the transformation induced by the action of M on KVCF(M). Distinct matrices
of E(M) define equivalent shifts. As a result, the matrix M € GL(n,Z) is uniquely identified with a pair
(KVCF(M), Py). The group GL(n,Z) acts on pairs (KVCF(M), Py) by left multiplication on the first factor
and by conjugation on the second factor. Hence Theorem 2] can be rephrased as follows:

Theorem 4.3 ([Kar13]). Two matrices M, N € GL(n,Z) whose characteristic polynomial are irreducible
over Q are GL(n,Z)-conjugate if, and only if, the pairs (KVCF(M), Py) et (KVCE(N), Py) are in the same
GL(n,Z)-orbit.
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