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We give some properties of the dynamical number of base-points of birational self-maps of the complex projective plane.

In particular we give a formula to determine the dynamical number of base-points of non basewandering Jonquières twists.

INTRODUCTION

The plane Cremona group Bir(P 2 C ) is the group of birational maps of the complex projective plane P 2 C . It is isomorphic to the group of C-algebra automorphisms of C(X,Y ), the function field of P 2 C . Using a system of homogeneous coordinates (x : y : z) a birational map f ∈ Bir(P 2 C ) can be written as (x : y : z) (P 0 (x, y, z) : P 1 (x, y, z) : P 2 (x, y, z))

where P 0 , P 1 and P 2 are homogeneous polynomials of the same degree without common factor. This degree does not depend on the system of homogeneous coordinates. We call it the degree of f and denote it by deg( f ). Geometrically it is the degree of the pull-back by f of a general projective line. Birational maps of degree 1 are homographies and form the group Aut(P 2 C ) = PGL(3, C) of automorphisms of the projective plane.

⋄ Four types of elements.

The elements f ∈ Bir(P 2 C ) can be classified into exactly one of the four following types according to the growth of the sequence (deg( f k )) k∈N (see [START_REF] Diller | Dynamics of bimeromorphic maps of surfaces[END_REF][START_REF] Blanc | Degree growth of birational maps of the plane[END_REF]):

(1) The sequence (deg( f k )) k∈N is bounded, f is either of finite order or conjugate to an automorphism of P 2 C ; we say that f is an elliptic element.

(2) The sequence (deg( f k )) k∈N grows linearly, f preserves a unique pencil of rational curves and f is not conjugate to an automorphism of any rational projective surface; we call f a Jonquières twist.

(3) The sequence (deg( f k )) k∈N grows quadratically, f is conjugate to an automorphism of a rational projective surface preserving a unique elliptic fibration; we call f a Halphen twist. (4) The sequence (deg( f k )) k∈N grows exponentially and we say that f is hyperbolic.

⋄ The Jonquières group.

Let us fix an affine chart of P 2 C with coordinates (x, y). The Jonquières group J is the subgroup of the Cremona group of all maps of the form . The group J is the group of all birational maps of P 1 C × P 1 C permuting the fibers of the projection onto the second factor; it is isomorphic to the semi-direct product PGL(2, C(y)) ⋊ PGL(2, C).

We can check with (1.1) that if f belongs to J, then (deg( f k )) k∈N grows at most linearly; elements of J are either elliptic or Jonquières twists. Let us denote by J the set of Jonquières twist:

J = f ∈ Bir(P 2
C ) | f Jonquières twist . A Jonquières twist is called a base-wandering Jonquières twist if its action on the basis of the rational fibration has infinite order. Let us denote by J 0 the normal subgroup of J that preserves fiberwise the rational fibration, that is the subgroup of those maps of the form

(x, y) A(y)x + B(y) C(y)x + D(y) , y .
The group J 0 is isomorphic to PGL(2, C(y)). The group J 0 has three maximal (for the inclusion) uncountable abelian subgroups

J a = (x + a(y), y) | a ∈ C(y) , J m = (b(y)x, y) | b ∈ C(y) * and J F = (x, y), c(y)x + F(y) x + c(y) , y | c ∈ C[y]
where F denotes an element of C[y] that is not a square ([D 06]).

Let us associate to

f = A(y)x+B(y) C(y)x+D(y) , y ∈ J 0 the matrix M f = A B C D . The Baum Bott index of f is BB( f ) = Tr(M f ) 2 det(M f )
(by analogy with the Baum Bott index of a foliation) which is well defined in PGL and is invariant by conjugation. This invariant BB indicates the degree growth:

Proposition 1.1 ([CD12]
). Let f be a Jonquières twist that preserves fiberwise the rational fibration. The rational function BB( f ) is constant if and only if f is an elliptic element.

A direct consequence is the following: Corollary 1.2. Let f be a non-base wandering Jonquières twist; the rational function BB( f ) is constant if and only if f is an elliptic element.

Every f ∈ Bir(P 2 C ) admits a resolution S π 1 π 2 1 1 P 2 C f G G P 2 C
where π 1 , π 2 are sequences of blow-ups. The resolution is minimal if and only if no (-1)curve of S are contracted by both π 1 and π 2 . Assume that the resolution is minimal; the base-points of f are the points blown-up by π 1 , which can be points of S or infinitely near points. If f belongs to J, then f has one base-point p 0 of multiplicity d -1 and 2d -2 basepoints p 1 , p 2 , . . ., p 2d-2 of multiplicity 1. Similarly the map f -1 has one base-point q 0 of multiplicity d -1 and 2d -2 base-points q 1 , q 2 , . . ., q 2d-2 of multiplicity 1. Let us denote by f ♯ the action of f on the Picard-Manin space of P 2 C , by e m ∈ NS(S) the Néron-Severi class of the total transform of m under π j (for 1 ≤ j ≤ 2), and by ℓ the class of a line in P 2 C . The action of f on ℓ and the classes (e p j ) 0≤ j≤2d-2 is given by:

             f ♯ (ℓ) = dℓ -(d -1)e q 0 - 2d-2 ∑ i=1 e q i f ♯ (e p 0 ) = (d -1)ℓ -(d -2)e q 0 - 2d-2 ∑ i=1 e q i f ♯ (e p i ) = ℓ -e q 0 -e q i ∀ 1 ≤ i ≤ 2d -2 ⋄ Dynamical degree.
Given a birational self-map f : S S of a complex projective surface, its dynamical degree λ( f ) is a positive real number that measures the complexity of the dynamics of f . Indeed log(λ( f )) provides an upper bound for the topological entropy of f and is equal to it under natural assumptions (see [START_REF] Bedford | Energy and invariant measures for birational surface maps[END_REF][START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF]). The dynamical degree is invariant under conjugacy; as shown in [START_REF] Blanc | Dynamical degrees of birational transformations of projective surfaces[END_REF] precise knowledge on λ( f ) provides useful information on the conjugacy class of f . By definition a Pisot number is an algebraic integer λ ∈]1, +∞[ whose other Galois conjugates lie in the open unit disk; Pisot numbers include integers d ≥ 2 as well as reciprocal quadratic integers λ > 1. A Salem number is an algebraic integer λ ∈]1, +∞[ whose other Galois conjugates are in the closed unit disk, with at least one on the boundary. Diller and Favre proved the following statement:

Theorem 1.3 ([DF01]
). Let f be a birational self-map of a complex projective surface.

If λ( f ) is different from 1, then λ( f ) is a Pisot number or a Salem number.

One of the goal of [START_REF] Blanc | Dynamical degrees of birational transformations of projective surfaces[END_REF] is the study of the structure of the set of all dynamical degrees λ( f ) where f runs over the group of birational maps Bir(S) and S over the collection of all projective surfaces. In particular they get: Theorem 1.4 ( [START_REF] Blanc | Dynamical degrees of birational transformations of projective surfaces[END_REF]). Let Λ be the set of all dynamical degrees of birational maps of complex projective surfaces. Then ⋄ Λ is a well ordered subset of R + ; ⋄ if λ is an element of Λ, there is a real number ε > 0 such that ]λ, λ + ε] does not intersect Λ; ⋄ there is a non-empty interval ]λ G , λ G + ε], with ε > 0, on the right of the golden mean that contains infinitely many Pisot and Salem numbers, but does not contain any dynamical degree.

⋄ Dynamical number of base-points

([BD15]).
If S is a projective smooth surface, every f ∈ Bir(S) admits a resolution

Z π 1 Ð Ð π 2 0 0 S f G G S
where π 1 , π 2 are sequences of blow-ups. The resolution is minimal if and only if no (-1)curve of Z are contracted by both π 1 and π 2 . Assume that the resolution is minimal; the base-points of f are the points blown-up by π 1 , which can be points of S or infinitely near points. We denote by b( f ) the number of such points, which is also equal to the difference of the ranks of Pic(Z) and Pic(S), and thus equal to b( f -1 ).

Let us define the dynamical number of base-points of f by

µ( f ) = lim k→+∞ b( f k ) k . Since b( f • ϕ) ≤ b( f ) + b(ϕ) for any f , ϕ ∈ Bir(S) we see that µ( f ) is a non-negative real number. Moreover, b( f -1 ) and b( f ) being equal we get µ( f k ) = |kµ( f )| for any k ∈ Z.
Furthermore, the dynamical number of base-points is an invariant of conjugation: if ψ : S Z is a birational map between smooth projective surfaces and if f belongs to Bir(S), then

µ( f ) = µ(ψ • f • ψ -1 ).
In particular if f is conjugate to an automorphism of a smooth projective surface, then µ( f ) = 0. The converse holds, i.e. f ∈ Bir(S) is conjugate to an automorphism of a smooth projective surface if and only if µ( f ) = 0 ([BD15, Proposition 3.5]). This follows from the geometric interpretation of µ we will recall now. If f ∈ Bir(S) is a birational map, a (possibly infinitely near) base-point p of f is a persistent base-point of f if there exists an integer N such that p is a base-point of f k for any k ≥ N but is not a base-point of f -k for any k ≥ N. We put an equivalence relation on the set of points that belongs to S or are infinitely near: take a minimal resolution of f

Z π 1 Ð Ð π 2 0 0 S f G G S
where π 1 , π 2 are sequences of blow-ups; the point p is equivalent to q if there exists an integer k such that (π 2 • π -1 1 ) k (p) = q. Denote by ν the number of equivalence classes of persistent base-points of f ; then the set

b( f k ) -νk | k ≥ 0 ⊂ Z is bounded. In particular, µ( f ) is an integer, equal to ν (see [BD15, Proposition 3.4]). This gives a bound for µ( f ); indeed, if f ∈ Bir(P 2 C ) is a map whose base-points have multiplicities m 1 ≥ m 2 ≥ . . . ≥ m r then (see for instance [ACn02, §2.5] and [ACn02, Corollary 2.6.7])              r ∑ i=1 m i = 3(deg( f ) -1) r ∑ i=1 m 2 i = deg( f ) 2 -1 m 1 + m 2 + m 3 ≥ deg( f ) + 1 in particular, r ≤ 2 deg( f ) -1 so ν ≤ 2 deg( f ) -1 and µ( f ) ≤ 2 deg( f ) -1. If f ∈ Bir(P 2 C
) is a Jonquières twist, then there exists an integer a ∈ N such that

lim k→+∞ deg( f k ) k = a 2 µ( f ) 2 ;
moreover, a is the degree of the curves of the unique pencil of rational curves invariant by f (see [BD15, Proposition 4.5]). In particular, a = 1 if and only if f preserves a pencil of lines. On the one hand µ( f ) | f ∈ Bir(P 2 C ) ⊆ N and on the other hand if f belongs to J , then

µ( f ) > 0; as a result µ( f ) | f ∈ J ⊆ N ∖ {0}.
Let us recall that if f α,β = αx+y x+1 , βy then µ( f α,β ) = 1. Indeed, by induction one can prove that f 2n α,β = P n (x,y) Q n (x,y) , β 2n y with

P n (x, y) = ∑ 0≤i+ j≤n+1 a i j x i y j Q n (x, y) = ∑ 0≤i+ j≤n b i j x i y j
and a i j ≥ 0, b i j ≥ 0 for any n ≥ 0, so that deg f 2n α,β = n + 1 for any n ≥ 0; we conclude using the fact that µ( f

) = 2 lim k→+∞ deg( f k ) k . Furthermore, µ( f k α,β ) = |kµ( f α,β )| = |k| for any k ∈ Z. Hence µ( f ) | f ∈ J = N ∖ {0} and µ( f ) | f ∈ Bir(P 2 C ) = N.
As we have seen if f belongs to J , then µ( f

) = 2 lim k→+∞ deg( f k ) k .
Can we express µ( f ) in a simpliest way ? We will see that if f is a non base-wandering Jonquières twist, the answer is yes.

⋄ Results.

The dynamical number of base-points of birational self maps of the complex projective plane satisfies the following properties:

Theorem A. 1. If f is a birational self-map from P 2 C into itself, then its dynamical number of base-points is bounded: if f ∈ Bir(P 2 C ), then µ( f ) ≤ 2 deg( f ) -1. 2.
We can precise the set of all dynamical numbers of base-points of birational maps of P 2 C (resp. of Jonquières maps of

P 2 C ) : µ( f ) | f ∈ Bir(P 2 C ) = N and µ( f ) | f ∈ J = N ∖ {0}. 3. There exist sequences ( f n ) n of birational self-maps of P 2 C such that ⋄ µ( f n ) > 0 for any n ∈ N; ⋄ µ lim n→+∞ f n = 0. 4. There exist sequences ( f n ) n of birational self-maps of P 2 C such that ⋄ µ( f n ) = 0 for any n ∈ N; ⋄ µ lim n→+∞ f n > 0.
Let us now give a formula to determine the dynamical number of base-points of Jonquières twists that preserves fiberwise the fibration.

Theorem B. Let f = A(y)x+B(y)
C(y)x+D(y) , y be a Jonquières twist that preserves fiberwise the fibration, and let M f be its associated matrix. Denote by Tr(M f ) the trace M f , by χ f the characteristic polynomial of M f , and by ∆ f the discriminant of χ f . Then exactly one of the following holds:

1. If χ f has two distinct roots in C[y], then f is conjugate to g = Tr(M f )+δ f Tr(M f )-δ f
x, y , where

δ 2 f = ∆ f , and µ( f ) = µ(g) = 2(deg(g) -1). 2. If χ f has no root in C[y],
set

Ω f = gcd Tr(M f ) 2 , Tr(M f ) 2 2 -det(M f )
and let us define P f and S f as

Tr(M f ) 2 = P f Ω f , Tr(M f ) 2 2 -det(M f ) = S f Ω f . 2.a. If gcd(Ω f , S f ) = 1, then ⋄ if deg(S f ) ≤ deg(Ω f ) + 2 deg(P f ), then µ( f ) = deg(Ω f ) + 2 deg(P f ); ⋄ otherwise µ( f ) = deg(S f ). 2.b. If S f = Ω p f T f with p ≥ 1 and gcd(T f , Ω f ) = 1, then ⋄ if deg(S f ) ≤ deg(Ω f ) + 2 deg(P f ), then µ( f ) = 2 deg(P f ); ⋄ otherwise µ( f ) = deg(S f ) -deg(Ω f ). 2.c. If Ω f = S p f T f with p ≥ 1 and gcd(T f , S f ) = 1, then µ( f ) = 2 deg(P f ) + deg(Ω f ) - deg(S f ).
As a consequence we are able to determine the dynamical number of base-points of non base-wandering Jonquières twists:

Corollary C. Let f = ( f 1 , f 2 ) be a non base-wandering Jonquières twist. If ℓ is the order of f 2 , then µ( f ) = µ( f ℓ )
ℓ where µ( f ℓ ) is given by Theorem B.

Combining the inequalities obtained in Theorem A and Theorem B we get the following statement (we use the notations introduced in Theorem B):

Corollary D. Let f be a Jonquières twist that preserves fiberwise the fibration. Assume that χ f has two distinct roots in C[y].

Then there exists a conjugate g of f such that g belongs to J m and deg(g

) ≤ deg( f ). For instance g = Tr(M f )+δ f Tr(M f )-δ f
x, y suits.
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In this section we will prove Theorem B. Let f be an element of J 0 ; write f as

A(y)x+B(y) C(y)x+D(y) , y with A, B, C, D ∈ C[y]. The characteristic polynomial of M f = A B C D is χ f (X) = X 2 -Tr(M f )X + det(M f ).
There are three possibilities:

(1) χ f has one root of multiplicity 2 in C[y];

(2) χ f has two distinct roots in C[y];

(3)

χ f has no root in C[y].
Let us consider these three possibilities.

(1) If χ f has one root of multiplicity 2 in C[y], then f is conjugate to the elliptic birational map (x + a(y), y) of J a . In particular f does not belong to J .

(2) Assume that χ f has two distinct roots. The discriminant of χ f is

∆ f = Tr(M f ) 2 -4 det(M f ) = δ 2 f
and the roots of χ f are

Tr(M f ) + δ f 2 and Tr(M f ) -δ f 2 .
Furthermore, M f is conjugate to

Tr(M f )+δ f 2 0 0 Tr(M f )-δ f 2 , i.e. f is conjugate to g = (a(y)x, y) ∈ J m with a(y) = Tr(M f )+δ f Tr(M f )-δ f
. Let us first express µ(g) thanks to deg(g). Remark that g k = (a(y) k x, y). Write a(y) j as P j (y)

Q j (y) where P j , Q j ∈ C[y], gcd(P j , Q j ) = 1, then deg(g j ) = max(deg(P j ), deg(Q j )) + 1. But deg(P j ) = j and deg(Q j ) = j deg(Q) so deg(g k ) = max(k deg(P f ), k deg(Q 1 )) + 1 = k max(deg(P f ), deg(Q 1 )) deg(g)-1
+1.

As a consequence deg(g

k ) = k deg(g) -k + 1. According to µ(g) = 2 lim k→+∞ deg(g k ) k we get µ(g) = 2 lim k→+∞ deg(g) -1 + 1 k = 2(deg(g) -1).
Let us now express µ( f ) thanks to f . Since f and g are conjugate µ( f

) = µ(g) hence µ( f ) = 2(deg(g) -1). But g = Tr(M f )+δ f Tr(M f )-δ f x, y ; in particular deg(g) ≤ 1 + max deg(Tr(M f ) + δ f ), deg(Tr(M f ) -δ f ) and µ( f ) ≤ 2 max deg(Tr(M f ) + δ f ), deg(Tr(M f ) -δ f ) . (3) Suppose that χ f has no root in C[y]. This means that Tr(M f ) 2 -4 det(M f ) is not a square in C[y] (hence BC ̸ = 0). Note that C D-A 2 0 1 A B C D C D-A 2 0 1 -1 =   Tr(M f ) 2 Tr(M f ) 2 2 -det(M f ) 1 Tr(M f ) 2   .
In other words f is conjugate to 

g =    Tr(M f ) 2 x + Tr(M f ) 2 2 -det(M f ) x + Tr(M f ) 2 , y    ∈ J Tr(M f ) 2 . Set P(y) = Tr(M f ) 2 ∈ C[y] and F(y) = Tr(M f ) 2 2 -det(M f ) ∈ C[y], i.e. f
Q = √ F - √ F 1 1 and D = P + √ F 0 0 P - √ F Then M k g = QD k Q -1 hence M k g =   √ F (P+ √ F) k +(P- √ F) k (P+ √ F) k -(P- √ F) k F 1 √ F (P+ √ F) k +(P- √ F) k (P+ √ F) k -(P- √ F) k   Let us set ϒ k = √ F (P + √ F) k + (P - √ F) k (P + √ F) k -(P - √ F) k
and let us denote by D k (resp. N k ) the denominator (resp. numerator) of ϒ k .

Lemma 2.1. Let Ω f = gcd(P, F) and write P (resp. F) as

Ω f P f (resp. Ω f S f ). Assume gcd(S f , Ω f ) = 1. Then ⋄ if d S f ≤ d Ω f + 2d P f , then µ(g) = d Ω f + 2d P f ; ⋄ otherwise µ(g) = d S f .
Proof. (a) Assume k even, write k as 2ℓ. A straightforward computation yields to

ϒ 2ℓ = ℓ ∑ j=0 2ℓ 2 j Ω ℓ-j f P 2(ℓ-j) f S j f P f ℓ-1 ∑ j=0 2ℓ 2 j + 1 Ω ℓ-1-j f P 2(ℓ-1-j) f S j f
Recall that gcd(Ω f , S f ) = 1 by assumption and gcd(Ω f , P f ) = 1 by construction. On the one hand

deg(N 2ℓ ) = ℓ(d Ω f + 2d P f ) if d S f ≤ d Ω f + 2d P f ℓd S f otherwise On the other hand deg(D 2ℓ ) = d P f + (ℓ -1) (d Ω f + 2d P f ) if d S f ≤ d Ω f + 2d P f d P f + (ℓ -1) d S f otherwise Finally deg(g 2ℓ ) =    max ℓ(d Ω f + 2d P f ) + 1, d S f + ℓd Ω f + (2ℓ -1)d P f , (ℓ -1) d Ω f + (2ℓ -1)d P f + 2 if d S f ≤ d Ω f + 2d P f max ℓd S f + 1, d Ω f + d P f + ℓd S f , d P f + (ℓ -1) d S f + 2 otherwise
(b) Suppose k odd, write k as 2ℓ + 1. A straightforward computation yields to

ϒ 2ℓ+1 = P f Ω f ℓ ∑ j=0 2ℓ + 1 2 j Ω ℓ-j f P 2(ℓ-j) f S j f ℓ ∑ j=0 2ℓ + 1 2 j + 1 Ω ℓ-j f P 2(ℓ-j) f S j f
Let us recall that gcd(Ω f , S f ) = 1 by assumption and gcd(Ω f , P f ) = 1 by construction.

On the one hand

deg(N 2ℓ+1 ) = ℓ(d Ω f + 2d P f ) + d Ω f + d P f if d S f ≤ d Ω f + 2d P f ℓd S f + d P f + d Ω f otherwise On the other hand deg(D 2ℓ+1 ) = ℓ(d Ω f + 2d P f ) if d S f ≤ d Ω f + 2d P f ℓd S f otherwise Finally deg(g 2ℓ+1 ) =    max (ℓ + 1)d Ω f + (2ℓ + 1)d P f + 1, (ℓ + 1)d Ω f + 2ℓd P f + d S f , ℓ(d Ω f + 2d P f ) + 2 if d S f ≤ d Ω f + 2d P f max ℓd S f + d P f + d Ω f + 1, (ℓ + 1)d S f + d Ω f , ℓd S f + 2 otherwise
We conclude with the equality µ(g) = 2 lim

k→+∞ deg(g k ) k . □ Lemma 2.2.
Let Ω f = gcd(P, F) and write P (resp. F) as

Ω f P f (resp. Ω f S f ). Suppose that S f = Ω p f T f with p ≥ 1 and gcd(T f , Ω f ) = 1. Then ⋄ if d S f ≤ d Ω f + 2d P f , then µ(g) = 2d P f ; ⋄ otherwise µ(g) = d S f -d Ω f .
Proof. (a) Assume k even, write k as 2ℓ. We get

ϒ 2ℓ = ℓ ∑ j=0 2ℓ 2 j Ω ℓ-j f P 2(ℓ-j) f S j f P f ℓ-1 ∑ j=0 2ℓ 2 j + 1 Ω ℓ-1-j f P 2(ℓ-1-j) f S j f = Ω f ℓ ∑ j=0 2ℓ 2 j Ω (p-1) j f P 2(ℓ-j) f T j f P f ℓ-1 ∑ j=0 2ℓ 2 j + 1 Ω (p-1) j f P 2(ℓ-1-j) f T j f Recall that gcd(Ω f , T f ) = 1 and that d S f = pd Ω f + d T f , i.e. d T f = d S f -pd Ω f . On the one hand deg(N 2ℓ ) = 2ℓd P f + d Ω f if d S f ≤ d Ω f + 2d P f ℓd S f + (1 -ℓ)d Ω f otherwise On the other hand deg(D 2ℓ ) = (2ℓ -1)d P f if d S f ≤ d Ω f + 2d P f (ℓ -1)(d S f -d Ω f ) + d P f otherwise Finally deg(g 2ℓ ) =    max 2ℓd P f + d Ω f + 1, (2ℓ -1)d P f + d Ω f + d S f , (2ℓ -1)d P f + 1 if d S f ≤ d Ω f + 2d P f max ℓd S f -(ℓ -1)d Ω f + 1, ℓd S f + (2 -ℓ)d Ω f + d P f , (ℓ -1)(d S f -d Ω f ) + d P f + 1 otherwise
(b) Suppose k odd, write k as 2ℓ + 1. We get

ϒ 2ℓ+1 = P f Ω f ℓ ∑ j=0 2ℓ + 1 2 j Ω ℓ-j f P 2(ℓ-j) f S j f ℓ ∑ j=0 2ℓ + 1 2 j + 1 Ω ℓ-j f P 2(ℓ-j) f S j f = P f Ω f ℓ ∑ j=0 2ℓ + 1 2 j Ω (p-1) j f P 2(ℓ-j) f T j f ℓ ∑ j=0 2ℓ + 1 2 j + 1 Ω (p-1) j f P 2(ℓ-j) f T j f
On the one hand

deg(N 2ℓ+1 ) = (2ℓ + 1)d P f + d Ω f if d S f ≤ d Ω f + 2d P f ℓd S f -(ℓ -1)d Ω f + d P f otherwise On the other hand deg(D 2ℓ+1 ) = 2ℓd P f if d S f ≤ d Ω f + 2d P f ℓd S f -ℓd Ω f otherwise Finally deg(g 2ℓ+1 ) =    max (2ℓ + 1)d P f + d Ω f + 1, 2ℓd P f + d Ω f + d S f , 2ℓd P f + 1 if d S f ≤ d Ω f + 2d P f max ℓd S f -(ℓ -1)d Ω f + d P f + 1, (ℓ + 1)d S f -(ℓ -1)d Ω f , ℓd S f -ℓd Ω f + 1 otherwise
We conclude with the equality µ(g) = 2 lim

k→+∞ deg(g k ) k . □ Lemma 2.3.
Let Ω f = gcd(P, F) and write P (resp. F) as

Ω f P f (resp. Ω f S f ). Suppose that Ω f = S p f T f with p ≥ 1 and gcd(T f , S f ) = 1. Then µ(g) = 2d P f + d Ω f -d S f .
Proof. (a) Assume k even, write k as 2ℓ. We obtain

ϒ 2ℓ = ℓ ∑ j=0 2ℓ 2 j Ω ℓ-j f P 2(ℓ-j) f S j f P f ℓ-1 ∑ j=0 2ℓ 2 j + 1 Ω ℓ-1-j f P 2(ℓ-1-j) f S j f = S f ℓ ∑ j=0 2ℓ 2 j S j(p-1) f P 2 j f T j f P f ℓ-1 ∑ j=0 2ℓ 2 j + 1 S j(p-1) f P 2 j f T j f Recall that gcd(S f , T f ) = 1; one has deg(N 2ℓ ) = (pℓ -ℓ + 1)d S f + 2ℓd P f + ℓd T f and deg(D 2ℓ ) = (ℓ -1)(p -1)d S f + (2ℓ -1)d P f + (ℓ -1)d T f Finally deg(g 2ℓ ) = max (pℓ -ℓ + 1)d S f + 2ℓd P f + ℓd T f + 1, (ℓ(p -1) + 2)d S f + (2ℓ -1)d P f + ℓd T f , (ℓ -1)(p -1)d S f + (2ℓ -1)d P f + (ℓ -1)d T f + 2 (b) Suppose k odd, write k as 2ℓ + 1. We get ϒ 2ℓ+1 = ℓ ∑ j=0 2ℓ + 1 2 j P 2ℓ+1-2 j F j ℓ ∑ j=0 2ℓ + 1 2 j + 1 P 2ℓ-2 j F j = S p f T f P f ℓ ∑ j=0 2ℓ + 1 2(ℓ -j) S j(p-1) f T j f P 2 j f ℓ ∑ j=0 2ℓ + 1 2 j S j(p-1) f T j f P 2 j f .
On the one hand

deg(N 2ℓ+1 ) = (p + ℓ(p -1))d S f + (ℓ + 1)d T f + (2ℓ + 1)d P f ,
and on the other hand

deg(D 2ℓ+1 ) = 2ℓd P f + ℓd T f + ℓ(p -1)d S f . Finally deg(g 2ℓ+1 ) = max (p + ℓ(p -1))d S f + (ℓ + 1)d T f + (2ℓ + 1)d P f + 1, (p + 1 + ℓ(p -1))d S f + 2ℓd P f + (ℓ + 1)d T f , 2ℓd P f + ℓd T f + ℓ(p -1)d S f + 2
We conclude with the equality µ(g) = 2 lim ; in particular f belongs to J (Proposition 1.1).

The characteristic polynomial of M f is

χ f (X) = X -(1 -y)y (X -1).
According to Theorem B.1. one has µ( f

) = 4 ≤ 2 max deg(2), deg(2(1 -y)y = 4.
We can see it another way: [START_REF] Cerveau | Centralisateurs dans le groupe de Jonquières[END_REF] asserts that deg(

f k ) = k deg( f ) -k + 1 = 3k -k + 1 = 2k + 1. Consequently µ( f ) = 2 lim k→+∞ deg( f k ) k = 2 lim k→+∞ 2k + 1 k = 4.
A third way to see this is to look at the configuration of the exceptional divisors. For any k ≥ 1 one has f k = x 2k+1 : x 2k y : (xy) k y k z . The configuration of the exceptional divisors of

f k is r E 2k r E 2k-1 r E 3 r E 2 r E 1 r F 2 r F 3 r F k-1 r F k r F k+1 £ ¢ ¡ F 1 r F 2k+1 r F 2k r F 2k-1 r F k+2
where ⋄ two curves are related by an edge if their intersection is positive; ⋄ the self-intersections correspond to the shape of the vertices; ⋄ the point means self-intersection -1, the rectangle means self-intersection -2k.

In particular the number of base-points of f k is 2k + 2k + 1 = 4k + 1 and

µ( f ) = lim k→+∞ #b( f k ) k = 4.
3.1.2. Second example. Consider the birational map of J given in the affine chart z = 1 by f = x, xy+ x(x -1) . The matrix associated to f is

M f = x x(x -1) 0 1 ; according to Proposition 1.1 the map f is a Jonquières twist (indeed BB( f ) = (1+x) 2 x ∈ C(x) ∖ C). The characteristic polynomial of M f is χ f (X) = X -x (X -1)
. and f is conjugate to g = (x, xy). According to Theorem B.1. one has

µ( f ) = µ(g) = 2(deg(g) -1) = 2 ≤ 2 max deg(2), deg(2(1 -y)y = 2.
We can see it another way: for any k ≥ 1 one has f k = x, x k y + x k+1x) and thus deg(

f k ) = k + 1. As a result µ( f ) 2 lim k→+∞ deg( f k ) k = 2 × 1 = 2.
3.2. Examples that illustrate Theorem B.2.

3.2.1. First example. Consider the map of J given in the affine chart y = 1 by

f = x, x(1 -xz) z .
The matrix associated to f is 3.2.2. Second example. Consider the map f of J associated to the matrix

M f = -x 2 x 1 0 , the Baum Bott index BB( f ) of f is -x
M f = y 2y 8 y 1 . The Baum Bott index BB( f ) of f is (y+1) 2
y(1-2y 8 ) and f belongs to J (Proposition 1.1). Theorem B.2.a.

asserts that µ( f ) = 9. We can see it another way: a computation gives deg(

f 2k ) = 9k + 1 and deg( f 2k+1 ) = 9k + 8 for any k ≥ 0. Since 2 lim k→+∞ deg( f k ) k = µ( f ) one gets µ( f ) = 9.
3.2.3. Third example. Let us consider the Jonquières map of P 2 C given in the affine chart z = 1 by f = y(y + 2)x + y 5 x + y(y + 2) , y .

The matrix associated to f is

M f = y(y + 2) y 5 1 y(y + 2)
and the Baum Bott index BB( f ) of f is 4(y+2) 2 (y+2) 2 -y 5 . In particular f is a Jonquières twist (Proposition 1.1).

According to Theorem B.2.b. one has µ( f ) = 3. An other way to see that is to compute deg f k for any k: for any ℓ ≥ 1 one has

deg( f 2ℓ ) = 3(ℓ + 1), deg( f 2ℓ+1 ) = 3ℓ + 5.
Then we find again µ( f

) = 2 lim k→+∞ deg( f k ) k = 3.
3.2.4. Fourth example. Consider the map f of J associated to the matrix The birational map f t belongs to J if some multiple of t is equal to 1, and to J ∖ J otherwise. Furthermore, ⋄ if no multiple of t is equal to 1, then µ( f t ) = 2 because lim C . Given a point m in P 2 C , draw the line (p 1 m) and denote by m ′ the third intersection point of this line with the cubic of our pencil that contains m: the map m → σ 1 (m) = m ′ is a birational involution. Replacing p 1 by p 2 , we get a second involution and, for a very general pencil, σ 1 • σ 2 is a Halphen twist that preserves our cubic pencil. At the opposite range, consider the degenerate cubic pencil, the members of which are the union of a line through the origin and the circle C = {x 2 + y 2 = z 2 }. Choose p 1 = (1 : 0 : 1) and p 2 = (0 : 1 : 1) as our distinguished base points. Then, σ 1 • σ 2 is a Jonquières twist preserving the pencil of lines through the origin; if the plane is parameterized by (s,t) → (st,t), this Jonquières twist is conjugate to (s,t) → s, (s-1)t+1 (s 2 +1)t+s-1 . Now, if we consider a family of general cubic pencils converging towards this degenerate pencil, we obtain a sequence of Halphen twists converging to a Jonquières twist. So there exists a sequence ( f n ) n of birational self-maps of P 2 C whose limit is also a birational self-map of P 2 C and such that ⋄ µ( f n ) = 0 for any n ∈ N; ⋄ µ lim n→+∞ f n > 0.

M f = y(y + 2) 8 y 5 1 y(y + 2) 8 . The Baum Bott index BB( f ) of f is 4(y+2) 16 ( 
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  3 and f belongs to J (Proposition 1.1). Theorem B.2.a. asserts that µ( f ) = 3. We can see it another way: a computation gives deg( f 2k ) = 3k + 1 and deg( f 2k+1 ) = 3(k + 1) for any k ≥ 0. Since µ( f ) = 2 lim k→+∞ deg( f k ) k one gets µ( f ) = 3.
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  otherwise µ( f t ) = 0. 3.3.2. Second family, illustration of Theorem A.3. Let us recall a result of[START_REF] Cantat | Three chapters on Cremona groups[END_REF]: let f be any element of PGL 3 (C), or any elliptic element of Bir(P 2 C ) of infinite order; then f is a limit of pairwise conjugate loxodromic elements (resp. Jonquières twists) in the Cremona group. Hence there exist families ( f n ) n of birational self-maps of the complex projective plane such that⋄ µ( f n ) > 0 for any n ∈ N; ⋄ µ lim n→+∞ f n = 0.3.3.3. Third family, illustration of Theorem A.4. Let us recall a construction given in[START_REF] Cantat | Three chapters on Cremona groups[END_REF]. Consider a pencil of cubic curves with nine distinct base points p i in P 2

  is conjugate to g = Denote by d P (resp. d F ) the degree of P (resp. F). Remark that deg(g) = max(d P + 1, d F , 2).

	P(y)x+F(y) x+P(y) , y with P, F ∈ C[y]. Let us now express deg(g k ). Consider M g =	P F 1 P	and set

  First family. Let us consider the family ( f t ) t of elements of J given by f t = x + t, y x

	The matrix associated to f is		
			M f =	y(y + 1)(y + 2) y + 2	y 2 y(y + 1)(y + 2)
	and the Baum-Bott index BB( f ) of f is 4(y+1) 2 (y+2) (y+1) 2 (y+2)-1 ; in particular f is a Jonquières twist (Proposition
	1.1).				
	Theorem B.2.c. asserts that µ( f ) = 3. An other way to see that is to compute deg f k for any k: for
	any k ≥ 1				
			deg( f 2k ) = 3k + 2		deg( f 2k+1 ) = 3k + 4
	so 2 lim k→+∞	deg( f k ) k	= 3 and we find again µ( f ) = 3.
	3.3. Families.			
	3.3.1. x+1 . A
	straightforward computation yields to	
			f n t = x + nt, y	x x + 1	x + t x + t + 1	. . .	x + (n -1)t x + (n -1)t + 1

y+2) 16 -y 3 and f belongs to J (Proposition 1.1). According to Theorem B.2.b. one has µ( f ) = 16. An other way to see that is to compute deg f k for any k: for any

k ≥ 1 one has deg f k = 8k + 2. Then we find again µ( f ) = 2 lim k→+∞ deg( f k ) k = 2 × 8 = 16.

3.2.5. Fifth example. Let us consider the Jonquières map of P 2 C given in the affine chart z = 1 by f = y(y + 1)(y + 2)x + y 2 (y + 2)x + y(y + 1)(y + 2) , y .
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