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SINGULARITIES OF HOLOMORPHIC CODIMENSION ONE FOLIATIONS

OF THE COMPLEX PROJECTIVE PLANE

DOMINIQUE CERVEAU AND JULIE DÉSERTI

ABSTRACT. We prove that any holomorphic codimension 1 foliation on the complex projective plane has
at most one singularity up to the action of an ad-hoc birational map. Consequently, any algebraic foliation
on the affine plane has no singularities up to the action of a suitable birational self map of the complex
projective plane into itself.

Let F be a codimension one holomorphic foliation of degree N on P
2
C

. Denote by π : C3
r{0}→ P

2
C

the canonical projection. The homogeneous foliation π−1F extends to C3 and is defined by a 1-form

ω = a(x,y,z)dx+b(x,y,z)dy+ c(x,y, z)dz

where a, b, c are homogeneous polynomials of degree N +1 without common component satisfying the

Euler identity: ax+by+ cz = 0; it is the Chow theorem for foliations. The singular set Sing(F ) of F is

given by

π({a = b = c = 0}r{0}).

Let us recall what is the Milnor number µ(F ,m) of a foliation F at a singular point m. Let us fix a local

chart (u,v) such that m = (0,0). The germ of F at m is defined, up to multiplication by a unit at 0, by a

1-form E du+F dv. Denote by 〈E, F〉 the ideal generated by E and F , then

µ(F ,m) = dim
C{u,v}

〈E, F〉
;

it is also the multiplicity of intersection of the germs of curves (E = 0) and (F = 0). Let us recall that

([Bru15, Chapter 2, Section 3, Example 2])

∑
m∈Sing(F )

µ(F ,m) = N2 +N +1;

in particular, F has a least one singular point.
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Example. Let us consider the diagonal linear foliation F given by the 1-form

ω = λyzdx+ xzdy− (1+λ )xydz

with λ ∈Cr{0,−1,−2}. Note that Sing(F ) =
{
(0 : 0 : 1), (1 : 0 : 0), (0 : 1 : 0)

}
; moreover, xλ yz−(1+λ)

is a first integral of F .

The birational involution from P
2
C

into itself given by

I1 : (x : y : z) 99K (xy : y2 : x2 − yz),

defines an isomorphism of {y 6= 0}. Remark that the foliation I
−1

1 F is described by the 1-form

−y
(
(2+λ )x2 +λyz

)
dx+ x

(
(2+λ )x2 − yz

)
dy+(1+λ )xy2 dz;

in particular, Sing(I −1
1 F ) =

{
(0 : 0 : 1), (0 : 1 : 0)

}
.

Let us now consider the birational involution I2 from P
2
C

into itself given by

I2 : (x : y : z) 99K (x2 : −xy+ z2 : xz);

note that I2 defines an isomorphism of {x 6= 0}. Furthermore, the restriction of I
−1

2 I
−1

1 F on (x = 0)

is described by the 1-form (1−λ )z5 dx; consequently, Sing(I −1
2 I

−1
1 F ) =

{
(0 : 1 : 0)

}
.

Can we generalize this to all holomorphic foliations on P
2
C

? The answer is yes:

Theorem 1. Let F be a holomorphic foliation on P
2
C

. There exists a birational self map φ from P
2
C

into

itself such that φ−1F has at most one singular point.

Note that many properties are preserved by conjugacy by birational maps, for instance the existence

of invariant algebraic curves of genus ≥ 2, but also the existence of dense leaves.

Corollary 2. Let F be an algebraic foliation on C2. There exists a birational map φ from C2 into itself

such that φ−1F has no singular point.

In a certain sense Corollary 2 indicates that algebraic foliations of C2 have no special properties.

Note that the situation is completely different on P
1
C
×P

1
C

; in that space there exist foliations without

singularities: a foliation on P1
C
× P1

C
birationally conjugate to a foliation without singularities has a

rational first integral ([Bru15]).

To prove Theorem 1 we will use the following statement:

Lemma 3. Let F be a holomorphic codimension one foliation on P
2
C

. Assume that F has N singular

points, and among them n ≥ 2 singular points on a line L. There exists a birational self map φ from P
2
C

into itself such that φ−1F has N −n+1 singular points, one on L and N −n on P
2
C
rL.
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Proof. ⋄ Assume first that L is not invariant by F . Let us choose coordinates such that






L = (z = 0)
(0 : 1 : 0) 6∈ Sing(F )
L is not tangent to the leaf of F through (0 : 1 : 0) at (0 : 1 : 0) (⋆)

The foliation F is defined by

ω = A(x,y,z)dx+B(x,y,z)dy+C(x,y,z)dz.

Let us recall the Euler condition: xA+ yB+ zC = 0; in particular note that B(0,1,0) = 0. The

tangency condition (⋆) says that A(0,1,0) 6= 0.

Let us consider the birational involution φ of P2
C

into itself given by

φ : (x : y : z) 99K (xz : −yz+ x2 : z2);

note that

Ind(φ) = {(0 : 1 : 0)}, Exc(φ) = {(z = 0)}

where Ind(φ) (resp. Exc(φ)) denotes the set of indeterminacy (resp. the exceptional set) of φ .

In particular, φ defines an isomorphism of {z 6= 0}. One has

φ∗ω = A(xz,−yz+ x2
,z2)(xdz+ zdx)

+B(xz,−yz+ x2
,z2)(−ydz− zdy+2xdx)+2C(xz,−yz+ x2

,z2)zdz,

and

φ∗ω
∣
∣
z=0 = xA(0,x2

,0)dx+B(0,x2
,0)

︸ ︷︷ ︸

=0

(
− ydz+2xdx

)
= xA(0,x2

,0)dx;

in particular φ∗ω
∣
∣
z=0 vanishes only at x= 0 since A(0,1,0) 6= 0. As a consequence, #

(
Sing(φ−1F )∩

(z = 0)
)
= 1 and #Sing(φ−1F

)
= N −n+1.

⋄ Suppose now that L is invariant by F . Let us choose coordinates such that

{
L = (z = 0)
(0 : 1 : 0) 6∈ Sing(F )

The foliation F is defined by

ω = zA(x,y,z)dx+ zB(x,y,z)dy+C(x,y,z)dz.

Let us still consider the birational involution φ of P2
C

into itself given by

φ : (x : y : z) 99K (xz : −yz+ x2 : z2)

that defines an isomorphism of {z 6= 0}. Then

φ∗ω = z
(

zA(xz,−yz+ x2
,z2)(xdz+ zdx)

+zB(xz,−yz+ x2
,z2)(−ydz− zdy+2xdx)+2C(xz,−yz+ x2

,z2)dz
)

,



SINGULARITIES OF HOLOMORPHIC CODIMENSION ONE FOLIATIONS OF THE COMPLEX PROJECTIVE PLANE 4

and the restriction of φ−1F on (z= 0) is described by the 1-form 2C(0,x2
,0)dz. But C(0,1,0) 6=

0 (because (0 : 1 : 0) 6∈ Sing(F )) so C(0,x2
,0)= 0 if and only if x= 0. In particular, #

(
Sing(φ−1F )∩

(z = 0)
)
= 1 and #Sing(φ−1F

)
= N −n+1.

�

Proof of Theorem 1. We get the result by iteration using Lemma 3. �

Assume that F is an algebraic foliation of any codimension of Cn; is it true that there exists a bira-

tional self map of Pn
C

into itself such that φ−1F has no singularity ? In the real case (for example in P
2
R

)

what is the best result we can expect ?

Remark that following [CDGBM10] in which we classify, up to automorphisms of P2
C

, the quadratic

foliations having a unique singularity there is a lot of activity around the foliations of P2
C

having a unique

singularity (for instance [FPR22, Alc22, Cou22, CJ21, CF21, CF20]).
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