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Abstract 27 

Including the temporal dimension in the Life Cycle Assessment (LCA) method is a very recent research 28 

subject. A complete framework including dynamic Life Cycle Inventory (LCI) and dynamic Life Cycle 29 

Impact Assessment (LCIA) was proposed with the possibility to calculate temporal deployment of 30 

climate change and ecotoxicity/toxicity indicators. However, the influence of different temporal 31 

parameters involved in the new dynamic method was not still evaluated. In the new framework, LCI and 32 

LCIA results are obtained as discrete values in function of time (vectors and matrices). The objective of 33 

this study is to evaluate the influence of the temporal profile of the dynamic LCI and calculation time 34 

span (or time horizon in conventional LCA) on the final LCA results. Additionally, the influence of the 35 

time step used for the impact dynamic model resolution was analyzed. The range of variation of the 36 

different time steps was from 0.5 day to 1 year. The graphical representation of the dynamic LCA results 37 

shown important features such as the period in time and the intensity of the worst or relevant impact 38 

values. The use of a fixed time horizon as in conventional LCA does not allow the proper consideration 39 

of essential information especially for time periods encompassing the life time of the studied system. 40 

Regarding the different time step sizes used for the dynamic LCI definition, they did not have important 41 

influence on the dynamic climate change results. At the contrary, the dynamic ecotoxicity and human 42 

toxicity impacts were strongly affected by this parameter. Similarly, the time step for impact dynamic 43 

model resolution had no influence on climate change calculation (step size up to 1 year was supported), 44 

while the toxicity model resolution requires adaptive time step definition with maximum size of 0.5 day.  45 

 46 

Keywords:  Dynamic Life Cycle Assessment, Sensitivity Analysis, Toxicity, Climate Change 47 

Highlights: 48 

Dynamic LCA framework interconnects temporal inventory and dynamic impact models 49 

Dynamic climate change is not sensitive to LCI time steps lower than 1 year 50 

Dynamic (eco)toxicity indicators are very sensitive to LCI temporal definition  51 

A predefined time horizon has no interest and relevance for dynamic LCA models 52 

  53 
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 54 

1. Introduction 55 

Life Cycle Assessment (LCA) is a widely used methodology for evaluating products and processes. 56 

LCA  methodology consists of four operational steps: the definition of the goal and scope, the 57 

construction of the Life Cycle Inventory (LCI) based on mass and energy balances over the whole  life 58 

cycle of the system, the Life Cycle Impact Assessment (LCIA) based on various impact calculation 59 

models, and the interpretation step (ISO, 2006a; ISO, 2006b).  One of the recognized limitations of the 60 

LCA method is the lack of a time dimension in the definition of both the LCI and LCIA steps (Finnveden 61 

et al., 2009). Such a time dimension has only recently been integrated into LCA and little research is 62 

currently in progress. 63 

Beloin-Saint-Pierre et al. (2014) have developed an approach called Enhanced Structure Path Analysis 64 

for considering time in the LCI step. Cherubini et al. (2011) have performed a calculation considering 65 

dynamic carbon removal by the biomass, which is a step leading up to the calculation of the climate 66 

change impact, while Levasseur et al. (2010) and Kendall (2012) have studied the time dependency of 67 

climate change impact by calculating temporal characterization factors (CF) for substances and applying 68 

them to dynamic emissions. Huijbregts et al. (2000a, 2000b, 2001), Hellweg et al. (2003) and Lebailly 69 

et al. (2014) have also proposed adjustments of conventional methods to include temporal characteristics 70 

in the toxicity category.  In a recent study, Beloin-Saint-Pierre et al. (2016) proposed a complete 71 

framework for the calculation of a dynamic LCA. Tiruta-Barna et al. (2016) provided a dynamic method 72 

for LCI in which they took the complex supply chain and processes present in the LCA system into 73 

account. Their method can be linked to a conventional LCA database, which facilitates its use by LCA 74 

practitioners. Shimako et al. (2016, 2017) applied this dynamic LCI method in two different case studies, 75 

combining it with a dynamic climate change model and a dynamic toxicity model.  76 

Numerous parameters can influence the temporal profile of a dynamic LCA result. At LCI level, these 77 

are physical parameters describing the process and supply chain dynamics, the time scale and its 78 

granulometry, and also specific parameters of the numerical methods used for model resolution. 79 

Dynamic LCIA results are determined by the choice of the impact models/submodels (i.e. static or 80 

dynamic) and their physical parameters, along with numerical method parameters.  81 
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The processes and phenomena involved in all these models are characterized by very different dynamics 82 

and thus prioritization of the most influent parameters is a necessity in the development of a dynamic 83 

LCA method. 84 

Dyckhoff and Kasah (2014) analysed the influence of a time horizon in the calculation of the dynamic 85 

global warming potential indicator. A comparison between the cumulative and instantaneous indicators 86 

demonstrated that contradictory conclusions could be drawn when different time horizons were used in 87 

calculations. The choice of a time horizon depends on the decision maker and is based more on policy 88 

than on scientific considerations. To the best of our knowledge, other important temporal parameters 89 

have not been analysed yet. 90 

Sensitivity analysis is a valuable tool to evaluate the contribution of the temporal inputs to the dynamic 91 

results. There is general agreement that the input parameters of a model are sensitive in two distinct 92 

manners: (1) the uncertainty associated with an input parameter which is propagated in the model and 93 

contributes to the uncertainty of final results, or (2) the strong correlation between the inputs and outputs, 94 

such that a small change in the input leads to large changes in the output (Hamby, 1994). It is the second 95 

aspect that, at this stage of development of the dynamic approaches in LCA, allows the importance of 96 

the temporal parameters’ influence on the LCA results to be identified, and will finally help further 97 

developments.  98 

The objective of this work is to study the influence of temporal parameters involved in the dynamic 99 

LCA methodology we are currently developing. The global dynamic LCA framework was developed 100 

by using the dynamic inventory method proposed by Tiruta-Barna et al. (2016) and the dynamic impact 101 

assessment proposed by Shimako et al. (2016) and Shimako et al. (2017). One of the primary questions 102 

is how the dynamic LCI profile and the details of the inventory temporal definition will influence the 103 

final LCA results. In the aim of answering this question, a sensitivity analysis was conducted on a case 104 

study: a waste water treatment plant life cycle. The choice of the case was guided by the high temporal 105 

variability of the physical parameters involved in the process, leading to a complex LCI temporal profile. 106 

 107 

2. Methods 108 

2.1. Dynamic LCA framework 109 
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Global framework 110 

The global framework for dynamic LCA is presented in Figure 1.  111 

First, SimaPro® LCA software was used for the traditional LCI resolution. This software delivers the 112 

LCI results in matrix form: a technological matrix and an environmental intervention matrix 113 

(interventions by compartments and processes). The dynamic inventory model and the DyPLCA 114 

software (web application http://dyplca.univ-lehavre.fr/) start from the conventional inventory matrix to 115 

create the process flow network as a graph structure and then adds temporal parameters related to 116 

processes and supply chains. After computation of the inventory model on the graph structure as a 117 

function of time, this tool delivers a time vector (days) and the associated environmental intervention 118 

vector (specific units.day-1, e.g. kg. day-1). Besides the temporal parameters specific to the processes and 119 

supply chains, the computation of a dynamic inventory requires specific parameters for the numerical 120 

methods (Figure 1): time step size of graph resolution and consequently the time step size with which 121 

the LCI is calculated (e.g. values of inventory at each 0.5 day), backward time limit (the algorithm will 122 

stop when reaching a specific value of time backwards), numerical precision of the results and threshold 123 

(lower limit of the mass flow value that the algorithm will consider). 124 

The result of the dynamic inventory, i.e. environmental interventions distributed in time, is used for the 125 

calculation of dynamic climate change and toxicity impact categories. Homemade Python programs 126 

were developed with this aim. For the calculation of dynamic impacts, data and phenomenological 127 

dynamic models were implemented: (i) from IPCC (IPCC, 2013) for climate change, and (ii) from the 128 

USEtox® 2 model (Hauschild et al. 2008; Rosembaum et al. 2008) for toxicity categories.  129 

 The parameters required for both climate change and toxicity, in addition to specific phenomenological 130 

parameters, are the time span for the impacts calculation and the time step size for the numerical 131 

calculation and for results retrieval. The maximum step for the ordinary differential equations (ODE) 132 

solver used to find the mass balance in the toxicity dynamic model must also be specified.  133 

 134 
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 135 

Figure 1 – Parameters needed for the dynamic life cycle model in LCI and LCIA steps 136 

 137 

The principles of the dynamic models for climate change and toxicity impacts are briefly described 138 

below.  139 

 140 

Dynamic climate change model 141 

The dynamic climate change impact category was evaluated through two indicators: radiative forcing 142 

and global mean temperature change. The atmospheric burden, Bs, is an important parameter in the 143 

modelling of climate change potential. It can be calculated as the convolution product between the 144 

dynamic emission of the substance s, gs (kg.day-1) and the impulse response function of that substance, 145 

IRFs  (Olivié and Peters, 2013) : 146 

Bୱ(t) = ∫ gୱ(tᇱ) IRFୱ(t − tᇱ)dtᇱ୲


                                                                                                       (1) 147 
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where t and t’ are time scales. Radiative forcing is described as the product between the radiative 148 

efficiency, As, and the atmospheric burden, Bs. For sufficiently small emissions and approximately 149 

constant background conditions, the radiative efficiency As (W.m-2.kg-1) can be approximated as time-150 

invariant (Joos et al., 2013). For emissions starting at time t0 we have: 151 

n୰ୟୢ୧ୟ୲୧୴ୣ ୭୰ୡ୧୬,ୱ(t) = ∫ Aୱ(t)gୱ(tᇱ)IRFୱ(t − tᇱ)dtᇱ୲

୲బ
                                                                          (2) 152 

The dynamic global warming potential (nradiative forcing(t) in W.m-2) for all gases taken together is then:  153 

n୰ୟୢ୧ୟ୲୧୴ୣ ୭୰ୡ୧୬(t) = ∑ n୰ୟୢ୧ୟ୲୧୴ୣ ୭୰ୡ୧୬,ୱ(t)ୱ                                                                                       (3) 154 

Then, the global warming potential for all gases (nradiative forcing in W.m-2.day) over a given time span TH 155 

is: 156 

n୰ୟୢ୧ୟ୲୧୴ୣ ୭୰ୡ୧୬ = ∫ n୰ୟୢ୧ୟ୲୧୴ୣ ୭୰ୡ୧୬(t)𝑑𝑡
்ு

௧ୀ௧బ
                                                                                     (4) 157 

The second indicator, i.e. global temperature potential, is defined as the convolution product between 158 

the radiative forcing and the temperature impulse response function (Olivié and Peters, 2013): 159 

n୲ୣ୫୮ୣ୰ୟ୲୳୰ୣ,ୱ(t) = ∫ ቀ∫ Aୱ(t)gୱ(t)IRFୱ(t′ − t)dt
୲ᇱ

୲బ
ቁ IRF(t − tᇱ)dt′

୲

୲బ
                                             (5) 160 

where ntemperature,s(t) is the global temperature potential for a substance s at time t and IRFT is the 161 

temperature impulse response function, which is independent of the type of GHG. The mean temperature 162 

change at a given time t, ntemperature(t) (K), is obtained by aggregating values for all the substances 163 

concerned: 164 

n୲ୣ୫୮ୣ୰ୟ୲୳୰ୣ(t) = ∑ n୲ୣ୫୮ୣ୰ୟ୲୳୰ୣ,ୱ(t)ୱ                                                                                                  (6) 165 

 166 

Dynamic toxicity model 167 

The dynamic toxicity approach was developed in Shimako et al. (2017) and only a brief background is 168 

presented below. Traditionally, toxicity impact is calculated as the product of the substance mass and 169 
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its characterization factor (CF). CF is the result of combined models for substance fate in environment 170 

(fate factor), exposure of organisms to the hazardous substance (exposure factor) and the negative effects 171 

of the substance (effect factor). The dynamic approach replaces the fate factor by a dynamic model of 172 

substance fate while keeping the exposure and effect factors from the conventional approach. The fate 173 

model of a substance in the environment considers distinct mechanisms, such as the transport between 174 

compartments, reaction processes (e.g. degradation), and removal (immobilization in different media). 175 

The mass balance of a substance in the environment is described by a system of ODE (Mackay, 2002): 176 

 
ୢ୫౩

ୢ୲
= Kୱmୱ + gୱ                                                                                                                                 (7) 177 

where K is the square matrix of rate constants (related to removal, degradation and transport processes) 178 

in each compartment i (day−1), m is the mass vector of substance s in the respective environmental 179 

compartments (kg), g is the vector of emission flows in each compartment (kg day−1), and t is time. 180 

The generic dynamic fate model was adapted with the USEtox toxicity model (specific parameters per 181 

substance and phenomenon, 13 environmental compartments; Jolliet et al., 2006; Ligthart et al., 2004; 182 

McKone et al., 2006). By the end of the calculation, a mass vector (13 values corresponding to each 183 

compartment) had been obtained for each discrete time value. For the toxicity results, following the 184 

matrix approach proposed by Rosenbaum et al. (2007), each mass vector is multiplied by the exposure 185 

matrix (XF) and effect matrix (EF): 186 

𝑛௨,௦(𝑡) = 𝑚௦(𝑡) × 𝑋𝐹௨ ,௦ × 𝐸𝐹௨,௦                                                                               (8) 187 

nhuman,s(t) is the vector that represents human toxicity (cancer and non-cancer, cases.day-1) for a certain 188 

substance s in different compartments, at a given time t. 189 

𝑛,௦(𝑡) = 𝑚௦(𝑡) × 𝑋𝐹,௦ × 𝐸𝐹௨ ,௦                                                                                  (9) 190 

neco,s(t) represents the ecotoxicity expressed in (PAF.m3.day).day-1, due to an emission into a specific 191 

compartment for a certain substance s at a given time t. 192 

The result for the aggregation of all substances s and compartments i, for a given time t, is obtained by: 193 

𝑛௨(𝑡) = ∑ ∑ 𝑛௨ ,௦,(𝑡)௦                                                                                                       (10) 194 
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𝑛(𝑡) = ∑ ∑ 𝑛,௦,(𝑡)௦                                                                                                                  (11) 195 

The cumulated values, nhuman,cumul (cases) and neco,cumul (PAF.m3.day) for human toxicity and ecotoxicity 196 

can then be calculated: 197 

𝑛௨,௨௨(𝑇𝐻) = ∫ 𝑛௨(𝑡)
்ு

௧ୀ௧బ
                                                                                              (12) 198 

𝑛,௨௨(𝑇𝐻) = ∫ 𝑛(𝑡)
்ு

௧ୀ௧బ
                                                                                                         (13) 199 

where t0 represents the time of the first emission into the environment and TH is the time span for which 200 

the cumulated impact is calculated.  201 

 202 

It is worth noting that both dynamic approaches, climate change and toxicity, provide impact results at 203 

any point in time and are independent of the notion of time horizon – a key and controversial concept in 204 

conventional LCA.  205 

 206 

2.2. Case study 207 

In this work, a conventional wastewater treatment plant, WWTP, was used for a case study. The reason 208 

for this choice was the high variability of treatment conditions, leading to variable environmental 209 

interventions in time. The case study allowed a detailed analysis of the influence of temporal parameters 210 

on the dynamic impact results.  211 

Goal and scope definition 212 

A conventional and a dynamic LCA were performed and the results were compared for the target impact 213 

categories: climate change, human toxicity and ecotoxicity. Determining the sensitivity of the LCA 214 

results to temporal parameters was the main objective of this work.  215 

The unit function was 1 m3 of waste water treated respecting the regulatory rejection limits for the outlet 216 

effluent (water discarded into the environment) and the plant lifetime was taken as 30 years.  217 

LCI 218 
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Figure 2 shows the flowsheet of the WWTP studied. It comprised a primary clarification unit, 2 anoxic 219 

tanks and 3 aerobic tanks. A post denitrification zone was also added to achieve acceptable effluent 220 

quality. Nitrate was recycled from the aerobic to the anoxic zone. The sludge was separated in a 221 

secondary clarifier, which was also partly a wastage flow redirected to a thickener, and partly recycled 222 

in the anoxic zone. The resulting sludge was sent to incineration and the effluent discarded into the 223 

environment.  224 

 225 

 226 

Figure 2 – Schema of the WWTP considered in the case study 227 

 228 

WWTP unit processes involve a large number of biological and chemical reactions with various 229 

dynamics. Modelling all the processes would be extensive and time consuming. For this reason, the 230 

dynamic simulation of the WWTP (the foreground process in LCA) was performed in Sumo® software, 231 

a wastewater treatment process simulator that includes biological, chemical, and physical processes. The 232 

database ecoinvent 3.2 was used for the background processes such as the production of raw materials, 233 

energy and infrastructure. 234 

External carbon (methanol) was required to complete the denitrification, and iron chloride (FeCl3) was 235 

added to chemically precipitate phosphorus in the sludge. Both additions were also necessary in order 236 

to satisfy legal discharge requirements for the effluent. The use of methanol releases carbon dioxide 237 

(CO2), a percentage of which originates from a fossil source and should be taken into account in the 238 

inventory. Emissions of N2O from WWTPs are considered to be 0.5% of nitrified ammonia flows in 239 

dynamic conditions (Czepiel et al., 1995). The volume and composition of off-gas were calculated (in 240 
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Sumo® software) using gas/liquid transfer models. Calculations were based on transfer coefficients and 241 

concentration gradients with the atmosphere. 242 

Heavy metal concentrations are not taken into account by Sumo® as these metals are considered to be 243 

inert for biological processes. Their input concentrations in WWTPs were therefore taken from Doka 244 

(2009) and Henze and Ledin (2001) and allocated to effluent and sludge in specific quantities, using the 245 

specific transfer coefficients proposed by the same authors.  246 

The electricity consumption was calculated by taking the sum of all requirements: aeration of aerobic 247 

and nitrification tanks and thickener, mechanical mixing of anoxic tanks, pumping of main lines 248 

(influent input, dosing of chemicals, sludge output, recirculation lines, and effluent output), scraping 249 

and dewatering unit. Incineration of the sludge took account of gas-emissions in the form of CO2, and 250 

metals (copper, lead and zinc). 251 

WWTP basic infrastructure was included using a class 2 capacity data set from ecoinvent (which 252 

includes dismantling) and an annual sewage volume of approximately 1.4E7 m3 was considered.  253 

All inventory results are presented in SI, along with the ecoinvent reference for each flow. 254 

Dynamic LCI 255 

The flow rate and composition of the influent to a WWTP is commonly subject to time variations, i.e. 256 

low rate during the night and high rate during the day, weekend effect, influence of holidays, and 257 

seasonal effects (Gernaey et al., 2011) (flow variations presented in SI). In order to include these 258 

variations in the plant dynamic model, the influent generator of Gernaey et al. (2011) was used. Thus, it 259 

was considered that the operation of the plant and the influent it received had variable and cyclic 260 

behaviour with a period of 1 year. Consequently, the inventories of the foreground processes (direct 261 

emissions of CO2, CH4 and N2O by the plant; CO2, N2O, heavy metals and organic substances from 262 

sludge treatment) and of the supply chain (iron chloride, methanol and electricity consumption) were 263 

also variable. The variations of emissions in the WWTP were calculated with Sumo® for the interval of 264 

one year and the results were replicated for every year of its life span. 265 

Raw materials (methanol, iron chloride) were considered to be supplied every 2 months (delay of 60 266 

days and production period of 1 day). Electricity was considered to be supplied continuously during the 267 

life time of the WWTP. The time considered for the infrastructure construction of the WWTP was 3 268 
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years for the processes of building and 6 months’ delay for the plant start up. The temporal parameters 269 

used for the background processes are shown in SI. The temporal behaviour of the background 270 

environmental interventions was calculated with the web-tool DyPLCA (Tiruta-Barna et al., 2016).  271 

The inventory results obtained with Sumo and DyPLCA are in the form of discrete values in time for a 272 

predefined time step of 0.5 days. This time step corresponds to the smallest duration for a significant 273 

variation of physical parameters involved in the WWTP operation (variation of the influent flow rate 274 

for instance). Coarser time granulometries can also be used, for capturing daily, monthly or seasonal 275 

variations. Consequently, additional time step sizes were analysed: 1 day, 1 week, 1 month, 1 season 276 

and 1 year. The discrete values of the initial dynamic inventory were thus recalculated for each time 277 

granulometry: 278 

gୱ (t) ∆௧
=

ଵ

∆௧
∑ gୱ (tᇱ) ∆௧ೢೝ

∆𝑡௪
ାିଵ
௧ᇲୀ                                                                      (14) 279 

𝑓𝑜𝑟 𝑛 = ൫𝑡, 𝑡 + 𝑚, 𝑡 + 2𝑚, … ,  𝑡൯ 𝑎𝑛𝑑 𝑚 =  
∆௧

∆௧ೢೝ
   280 

where t is the discrete time value for the new time scale granulometry; t’ is the discrete time value in the 281 

initial LCI time scale (step size of 0.5 days); s is the substance being analysed, tfinal is the discrete time 282 

at which the last emission of the dynamic inventory is released (day);  gs(t’)  is the mass flow value for 283 

a specific substance and for a specific time t’, which is the result of the dynamic LCI (kg.day-1), Δtlower 284 

is the time step used for the calculation of the dynamic LCI (i.e. 0.5 days), Δthigher is the new time step 285 

required and t0 is the initial time in the dynamic LCI. 286 

In this way, the same total quantity of a substance can be differently distributed in time (with different 287 

granulometries), leading to different profiles of the dynamic LCI, gs(t).   288 

Conventional LCI values, gs,total (kg), can be retrieved by the time integration of the dynamic LCI: 289 

gୱ,୲୭୲ୟ୪ =  ∫ 𝑔௦(𝑡)𝑑𝑡
௧ೌ

௧ୀ௧బ
                                                                                                                   (15) 290 

LCIA 291 
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The impact categories chosen in this study are those for which a dynamic approach exists, as presented 292 

in section 2.1. The IPCC climate change and USEtox toxicity models are the basis of the dynamic impact 293 

models and were also used in conventional LCA applied to the case under study. 294 

A calculation time span of 100 years was chosen for both dynamic impacts. In conventional LCA, a 295 

time horizon of 100 years is commonly used for climate change while, for toxicity categories steady 296 

state condition equivalent to an indefinite  time horizon is considered.  297 

 298 

2.3. Sensitivity analysis 299 

Dynamic inventory results represent the emission variations due to the behaviour of the supply chain 300 

and processes. Moreover, dynamic impact assessment is based on environmental models that can be 301 

sensitive to different time scales (days, months, years, decades, etc.). One of the major questions 302 

subsequent to a time dependent approach of LCA concerns the extent to which the temporal parameters 303 

influence the LCA results and, in particular, how the time granulometry used in the definition of the 304 

dynamic flows will affect the temporal profile of the calculated impacts.  305 

To investigate this, the influence of each of the following parameters was analysed: i) the detail of the 306 

temporal definition of the inventory (a process and supply chain characteristic), ii) the calculation time 307 

span (time horizon in conventional LCA) for the dynamic impact methods, iii) the time step size 308 

resolution of the dynamic impact models (including the ODE specifications).  309 

 310 

For this study, several emissions from the system’s life cycle were selected based on a significant 311 

variation in their temporal profile, and also based on their important contribution to the LCA results as 312 

pointed out by previous studies (Bisinella de Faria et al., 2015; Bisinella de Faria et al., 2016). In this 313 

sense, CO2, CH4 and N2O were considered as they are direct emissions from the WWTP, from sludge 314 

incineration and from the infrastructure processes. Metals emitted by sludge incineration (copper, zinc, 315 

lead, chromium, mercury) and infrastructure processes (mercury) were analysed, all of them being 316 

included in the USEtox database. Phenomenological parameters inherent to the LCIA models had 317 

already been investigated for climate change and toxicity in other studies (IPCC, 2013; Henderson et al. 318 

2011; Rosembaum et al. 2011) and were not analysed in this work. 319 
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Several approaches exist for sensitivity analysis, such as variance decompositions, partial derivatives or 320 

elementary effects. A one-at-a-time sensitivity method was used, i.e. the effects of only one parameter 321 

were investigated at a time. The sensitivity indicator is the relative difference between the impact results 322 

of a given scenario (with a modified parameter) and the reference scenario (reference values for the 323 

temporal parameters), calculated by: 324 

relative difference (t) =
(௧)ೞି(௧) ೞ

ೝ

(௧) ೞ
ೝ                                                                                            (16) 325 

where n(t)step is the impact value at time t for the calculation scenario with a variable temporal parameter 326 

‘step’ (e.g. LCI time step size), ‘ref’ indicates the reference calculation scenario with predefined values 327 

for the temporal parameters (e.g. LCI time step of 1 year).  328 

 329 

3. Results and discussion 330 

3.1. Influence of the dynamic LCI profile and the time span of the impact calculation 331 

LCI results for different time steps are available for all the substances selected in this work. The mass 332 

balance was verified by calculating the cumulated inventory gs,total per substance. Table 1 shows that the 333 

values do not present any great variation when the step size is changed. The calculation of the relative 334 

difference between the cumulated values for different step sizes and the reference (time step size of 1 335 

year) did not exceed 1%. These results are in accordance with the mass balance, which does not change 336 

with the calculation time step. 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 
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Table 1 - Cumulated LCI results for WWTP case study calculated with different time step sizes (0.5 345 

day, 1 day, 1 week, 1 month, 1 season and 1 year).  346 

 Carbon 
dioxide Methane Dinitrogen 

monoxide Copper Lead Zinc Copper 
0.5 day 9.5E-02 2.1E-04 2.9E-06 2.0E-06 1.9E-06 1.1E-05 2.1E-08 
1 day 9.5E-02 2.1E-04 2.9E-06 2.0E-06 1.9E-06 1.1E-05 2.1E-08 

1 week 9.5E-02 2.1E-04 2.9E-06 2.0E-06 1.9E-06 1.1E-05 2.1E-08 
1 month 9.5E-02 2.1E-04 2.9E-06 2.0E-06 1.9E-06 1.1E-05 2.1E-08 
1 season 9.5E-02 2.1E-04 2.9E-06 2.0E-06 1.9E-06 1.1E-05 2.1E-08 
1 year 9.5E-02 2.1E-04 2.9E-06 2.0E-06 1.9E-06 1.1E-05 2.0E-08 

 Lead Zinc 
Methylene 
chloride 

Chloroform 
Chromium 

III 
Mercury 

 
0.5 day 2.0E-08 1.2E-07 7.9E-08 1.7E-07 3.3E-09 2.9E-11  
1 day 2.0E-08 1.2E-07 7.9E-08 1.7E-07 3.3E-09 2.9E-11  

1 week 2.0E-08 1.2E-07 7.9E-08 1.7E-07 3.3E-09 2.9E-11  
1 month 2.0E-08 1.1E-07 7.9E-08 1.7E-07 3.3E-09 2.9E-11  
1 season 2.0E-08 1.2E-07 7.9E-08 1.7E-07 3.3E-09 2.9E-11  
1 year 2.0E-08 1.1E-07 7.8E-08 1.7E-07 3.3E-09 2.9E-11  

 347 

 348 

Climate change results 349 

Figure 3 shows the dynamic LCI results for the emission of carbon dioxide in kg.day-1 during the life 350 

cycle of the WWTP studied. The different graphics of Figure 3 were obtained for LCI time step sizes of 351 

0.5 day, 1 day, 1 week, 1 month, 1 season and 1 year. 352 
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 353 

Figure 3 – CO2 emission by the life cycle system of a WWTP. Dynamic inventory for different time 354 

step sizes (A - 0.5 day, B - 1 day, C - 1 week, D- 1 month, E- 1 season and F- 1 year). Zoom on the year 355 

between 0 and 0.5 for A, B and C. 356 

 357 

Figures 3.A, B and C show the important influence of the variation of emissions due to the different 358 

temporal characteristics of the process. On the other hand, the profile of emissions represented in the 359 

graphics 3.D, E and F tend to a constant value around 3.3E-3 kg.day-1, representing almost steady state 360 

conditions. For this reason, the calculation scenario with the time step of 1 year was chosen as the 361 

reference calculation scenario (ref in formula 16). The maximum time step for which the inventory 362 

variations can be clearly distinguished is a week for this case study. The amplitude of the emissions also 363 

change: the values for the emissions in Figure 3.A range between 0 and 0.06 kg.day-1 while they range 364 

only between 0.001 and 0.01 kg.day-1 in Figure 3.C.   365 
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Figure 4 shows the comparison between the results for dynamic mean temperature change and 366 

cumulated radiative forcing, calculated with different inventory step sizes (0.5 day, 1 day, 1 week, 1 367 

month, 1 season and 1 year) for a time span of 100 years. Carbon dioxide, methane and dinitrogen 368 

monoxide were considered. The step size used for the calculation of the dynamic climate change impact 369 

was 0.5 days.  370 

 371 

 372 

Figure 4 – Mean temperature change and cumulated radiative forcing for the case study of the WWTP, 373 

calculated for a time span of 100 years. Dynamic LCI inventory step sizes analysed: 0.5 day, 1 day, 1 374 

week, 1 month, 1 season and 1 year. Results for conventional methods: cLCA curve. 375 

 376 

No noteworthy difference could be seen between the curves corresponding to the dynamic method, 377 

highlighting the low response of the climate change model (both indicators) to the temporal variations 378 

of emissions at daily to monthly levels.  379 

Table 2 details the relative difference between the values calculated with the dynamic model for different 380 

LCI time step sizes and the case when step size was 1 year. The case of step size of 1 year is considered 381 

as the reference since the plant behaves as steady state system with constant emissions. The values of 382 

dynamic impact for both climate change indicators were calculated at year 100. At this time point, they 383 

did show a marked difference when the LCI step size was modified. 384 

 385 
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Table 2 – Relative difference of mean temperature change and cumulated radiative forcing for a time 386 

span of 100 years. The reference is the case of LCI time step size of 1 year. LCI time step sizes of 0.5 387 

day, 1 day, 1 week, 1 month and 1 season were analysed. 388 

Relative difference of  ΔT results at year 100 (K) 

Substance 0.5 day 1 day 1 week 1 month 1 season 

Carbon dioxide -1.2% -1.2% -1.2% -1.1% -0.8% 

Methane -0.6% -0.6% -0.5% -0.4% -0.3% 

Dinitrogen 
monoxide 

-1.1% -1.1% -1.1% -1.0% -0.8% 

All substances -1.2% -1.2% -1.2% -1.1% -0.8% 

Relative difference of cumulated radiative forcing results at 100 years (W.m-2.day) 

Substance 0.5 day 1 day 1 week 1 month 1 season 

Carbon dioxide -1.6% -1.6% -1.5% -1.4% -1.1% 

Methane -1.2% -1.2% -1.1% -1.0% -0.8% 

Dinitrogen 
monoxide 

-1.5% -1.6% -1.5% -1.5% -1.1% 

All substances -1.3% -1.3% -1.3% -1.3% -0.9% 

 389 

 390 

As expected, the lower the time step size, the higher the relative difference (with respect to the steady 391 

state emission) in the climate change results. However, these results show that the dynamic model is not 392 

significantly sensitive to the time step size of LCI (at least for the present case study and similar systems) 393 

at any time. This allows a higher time step size to be used in the dynamic inventory calculation, which 394 

is more practical and easier to obtain, and requires less computational work and time.  395 

 396 

Regarding the conventional mean temperature change in Figure 4 (left side), this method considers that 397 

all the emission occurs at time zero. The maximum value for mean temperature change is higher for the 398 

conventional method than for the dynamic method. The conventional method gives a maximum value 399 

of 7.8E-17 K and it is reached by year 16. For the dynamic method, the maximum value is 7.4E-17 K 400 

by year 37. The result obtained at year 100 is similar for both methods, presenting a value of around 401 

5.5E-17 K. The cumulated radiative forcing is the impact indicator in the conventional climate change 402 

impact method.  In Figure 4 (right), the values attained at year 100 are around 8.5E-15 W.m-2.day for 403 
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the dynamic method and 9.6E-15 W.m-2.day for the conventional method. The difference between 404 

dynamic and conventional results is almost constant during the whole calculation period, showing that 405 

the conventional calculation overestimates the impact from the beginning.  406 

Table 3 shows the mean temperature change and cumulated radiative forcing values for the WWTP case 407 

study at a time span of 100 years. It also shows the relative difference between dynamic and conventional 408 

values in parentheses. Considering the mean temperature change for a time span (or time horizon) of 409 

100 years, methane presented a large difference, of about 20%, between the conventional and dynamic 410 

results. On the other hand, the relative difference between the conventional and dynamic mean 411 

temperature change values for carbon dioxide was quite small, about 3%.  412 

Considering the comparison between the dynamic and conventional cumulative radiative forcing, there 413 

is almost no difference for the methane results. On the other hand, dinitrogen monoxide and carbon 414 

dioxide present large differences. The global cumulated radiative forcing is higher in conventional LCA 415 

than in the dynamic approach, which signifies that, for a time horizon of 100 years, conventional LCA 416 

overestimates the climate change impact.  417 

Table 3 also points out that the values obtained for all substances taken together are very close to the 418 

values obtained for CO2, which is explained by the fact that CO2 is the major GHG in this case study. 419 

Obviously this behaviour cannot be generalized.   420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 
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Table 3 –Dynamic and conventional climate change (cLCA) values (mean temperature change and 430 

cumulated radiative forcing) for a time span of 100 years. In parentheses are the relative differences 431 

between conventional and dynamic values. 432 

Mean ΔT value at year 100 (K) 

Substance 
Dynamic inventory step size 

cLCA 
0.5 day 1 day 1 week 1 month 1 season 1 year 

Carbon 

dioxide 

5.3E-17 

(2.3%) 

5.3E-17 

(2.3%) 

5.3E-17 

(2.4%) 

5.4E-17 

(2.5%) 

5.4E-17 

(2.8%) 

5.4E-17 

(3.6%) 
5.2E-17 

Methane 
5.7E-19 

(19.3%) 

5.7E-19 

(19.3%) 

5.7E-19 

(19.4%) 

5.7E-19 

(19.6%) 

5.7E-19 

(19.6%) 

5.8E-19 

(20.0%) 
4.8E-19 

Dinitrogen 

monoxide 

4.1E-19 

(9.3%) 

4.1E-19 

(9.3%) 

4.1E-19 

(9.3%) 

4.1E-19 

(9.4%) 

4.1E-19 

(9.7%) 

4.1E-19 

(10.5%) 
3.7E-19 

All 

substances 

5.4E-17 

(2.5%) 

5.4E-17 

(2.5%) 

5.4E-17 

(2.6%) 

5.4E-17 

(2.7%) 

5.5E-17 

(3.0%) 

5.5E-17 

(3.8%) 
5.3E-17 

Cumulated radiative forcing at 100 years (W.m-2.day) 

 0.5 day 1 day 1 week 1 month 1 season 1 year cLCA 

Carbon 

dioxide 

7.7E-15 

(-12.0%) 

7.7E-15 

(-12.0%) 

7.7E-15 

(-12.0%) 

7.7E-15 

(-11.9%) 

7.7E-15 

(-11.6%) 

7.8E-15 

(-10.6%) 
8.8E-15 

Methane 
5.3E-16 

(-0.6%) 

5.3E-16 

(-0.6%) 

5.3E-16 

(-0.5%) 

5.3E-16 

(-0.4%) 

5.3E-16 

(-0.2%) 

5.4E-16 

(-0.6%) 
5.4E-16 

Dinitrogen 

monoxide 

6.3E-17 

(-10.8%) 

6.3E-17 

(-10.9%) 

6.3E-17 

(-10.8%) 

6.4E-17 

(-10.7%) 

6.4E-17 

(-10.5%) 

6.4E-17 

(-9.4%) 
7.1E-17 

All 

substances 

8.5E-15 

(-9.3%) 

8.5E-15 

(-9.3%) 

8.5E-15 

(-9.3%) 

8.5E-15 

(-9.3%) 

8.5E-15 

(-8.9%) 

8.6E-15 

(-8.1%) 
9.4E-15 

 433 

 434 

In order to flesh out the results observed above, Figure 5 shows the results obtained for methane with 435 

the same calculation conditions as for Figure 4. Here too, no important difference can be seen between 436 

the curves obtained for various inventory time step sizes. The maximum value for mean temperature 437 

change is higher for the conventional method than for the dynamic method. It has a value of 1.2E-17 K, 438 

which is reached by year 10. For the dynamic method, the maximum value is 9.5E-18 K by year 30. 439 
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Both curves tend towards a low limit as methane has a limited lifetime in the atmosphere and is 440 

transformed into CO2. 441 

 442 

  443 

Figure 5 – Mean temperature change and cumulated radiative forcing for methane calculated for a time 444 

span of 100 years. Dynamic LCI inventory step sizes analysed: 0.5 day, 1 day, 1 week, 1 month, 1 season 445 

and 1 year. Results for conventional method: cLCA curve. 446 

 447 

Figures 4 and 5 clearly show that the effects in terms of mean temperature change and cumulated 448 

radiative forcing have amplitudes and positions on the time scale that depend on the GHG emission 449 

duration and time position, and on the lifetime of each GHG. In conventional LCA, all information 450 

related to the time occurrence of the (worst) effects, at the human time scale of about 100 years, is lost 451 

by the zero time point emission on one hand, and by an arbitrarily chosen time horizon on the other. For 452 

industrial processes with lifetimes of about 20 – 30 years, a time horizon of 100 years (or any other fixed 453 

value) is not suitable. Instead, dynamic methods offer the possibility of monitoring the climate change 454 

indicators over time.    455 

 456 

Toxicity results 457 

Figure 6 shows the dynamic LCI results for the emission of chloroform in kg.day-1 during the life cycle 458 

of the WWTP studied. The different graphics of Figure 6 were obtained for step sizes of 0.5 day, 1 day, 459 

1 week, 1 month, 1 season and 1 year. 460 
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Chloroform emission was directly linked to the effluent flow, which presents seasonal effects during the 461 

year. Among the organic compound released, chloroform had the major influence on the toxicity. The 462 

maximum amplitude of the emissions is observed for the smallest time step (0.5 days) in Figure 6.A. It 463 

ranges between 4E-9 and 1.8E-8 kg.day-1. 464 

 465 

 466 

Figure 6 – Chloroform emission by the life cycle system of a WWTP. The dynamic inventory was 467 

calculated for different time step sizes (A - 0.5 day, B - 1 day, C - 1 week, D- 1 month, E- 1 season and 468 

F- 1 year) and zooms are presented for the time between 0 and 0.5 years in A, B and C. 469 

 470 

Figures 7 and 8 show the results for the current ecotoxicity, neco(t), and human toxicity, nhuman (t), 471 

calculated over 100 years with the dynamic approach.  472 

In Figure 7 current human toxicity and ecotoxicity were calculated separately for organic (non 473 

persistent) compounds and inorganic (persistent) substances. The origin of the different behaviours 474 
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observed for these two groups of substances was previously discussed (Shimako et al., 2017). Figure 7 475 

was obtained by simulations using a time step size of 1 day for the temporal LCI definition. As 476 

chloroform is the major contributor, the results in graphics A are dominated by chloroform’s behaviour. 477 

The toxicity temporal profile follows the emission profile (Figure 6 – B: time step 1 day) in terms of 478 

periodicity and regularity of amplitudes. Overall, inorganic substances (Figure 7 – B) seemed to 479 

dominate the results, the toxicity values being of several orders of magnitude higher than those of 480 

organics.  481 

 482 
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Figure 7 – Current toxicity (cancer: graphics II, non-cancer: graphics III) and ecotoxicity (graphics I). 483 

Calculation for all organic substances: graphics A (left side of the figure), and for all inorganic 484 

substances: graphics B (right side of the figure). 485 

 486 

 487 

A more detailed analysis was performed on the global results obtained for all substances selected for the 488 

case study. In Figure 8 different time step sizes (0.5 day, 1 day, 1week, 1 month, 1 season and 1 year) 489 

were used in the calculation of the dynamic inventory, which was the input to the dynamic toxicity 490 

model. The time step size used to retrieve toxicity results (from the toxicity model calculation) was the 491 

lowest one investigated, i.e. 0.5 day.  492 



26 
 

 493 

Figure 8 - Ecotoxicity (A), human cancer toxicity (B) and human non-cancer toxicity (C) for the case 494 

study (all substances) calculated over 100 years, for different time step sizes in the LCI. 495 

 496 

 497 

A 

B 

C 
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Ecotoxicity results present slight differences between the amplitudes and temporal profile of the impacts 498 

calculated with different step sizes. The difference of amplitudes is much greater for both cancer and 499 

non-cancer human toxicity results. The observed differences of amplitudes and temporal profiles in the 500 

dynamic toxicity results are the direct reflection of the substance emission behaviour of the life cycle 501 

system and thus of the dynamic LCI. This aspect has already been pointed out by Shimako et al. (2017).   502 

Figure 9 shows the relative difference between the results for dynamic toxicity (all substances) 503 

calculated with different step sizes compared with the reference result (step size of 1 year). The most 504 

spectacular differences are observed for human toxicity. The profiles calculated for 0.5 and 1 day present 505 

significantly higher amplitudes than those obtained with other time step sizes. The relative difference 506 

for ecotoxicity is much smaller. Two distinct high amplitudes were obtained, one by year 0 and the other 507 

by year 30 but this is, in fact, an artefact attributable to the numerical integration method (equation 14).  508 

 509 

 510 
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 511 

Figure 9 - Relative difference for current ecotoxicity (A), human cancer toxicity (B) and human non-512 

cancer toxicity (C), calculated with the dynamic approach for a time span of 100 years. Reference step 513 

size = 1 year. Step sizes analysed: 0.5 day, 1 day, 1 week, 1 month and 1 season. 514 

 515 
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Table 4 shows the results of dynamic cumulated toxicity at 100 years, and the relative difference with 516 

respect to the conventional LCA results. In a previous study (Shimako et al., 2017), it was demonstrated 517 

that toxicity impacts due to non-persistent (organic) and persistent (mostly inorganic) substances had 518 

very different temporal profiles. For that reason, in the present work, calculations were performed 519 

considering all substances, or only organic substances, or only inorganic substances.  520 

Differences between the dynamic approach and conventional LCA are very significant for “all 521 

substances” and “inorganic substances”, reaching 85% in the human cancer toxicity category. In 522 

contrast, relative differences are insignificant for “organic substances” at the chosen time span of 100 523 

years. The concentration of non-persistent organic substances in all environmental media tends to zero 524 

by year 100, while inorganics persist and generate more and more cumulated impact. As conventional 525 

LCA considers steady sate conditions (theoretically reached for constant emissions over very long time 526 

frames), i.e. an infinite time horizon, the conventional toxicity method overestimates the effect of 527 

inorganic substances. The dynamic approach provides much more realistic results at a given moment on 528 

the time scale. Indeed, the contribution of sink reservoirs in the Simplebox model (substance degradation 529 

and removal) is much more influent in real systems and dynamic conditions (emissions taking place 530 

over a limited duration) as in the theoretical “ideal” condition of continuous constant emission over 531 

infinity.  532 

Moreover, the LCI time step size is not a sensitive parameter when the dynamic and conventional results 533 

are compared since the observed gap is dominated by the predefined time horizon of infinity.  534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 
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Table 4 – Cumulated values for dynamic toxicity impact calculated over 100 years and values for 542 

conventional LCA (cLCA). Relative difference between dynamic and conventional results is given in 543 

parentheses.  544 

All substances 

 0.5 day 1 day 1 week 1 month 1 season 1 year cLCA 

Ecotoxicity 

(PAF.m3.day) 

3.1E+00 

(56.5%) 

3.1E+00 

(56.5%) 

3.1E+00 

(56.4%) 

3.1E+00 

(56.4%) 

3.1E+00 

(56.2%) 

3.1E+00 

(55.8%) 
7.1E+00 

Human cancer 

(cases) 

1.1E-11 

(85.6%) 

1.1E-11 

(85.6%) 

1.1E-11 

(85.6%) 

1.1E-11 

(85.6%) 

1.1E-11 

(85.5%) 

1.2E-11 

(85.3%) 
7.8E-11 

human non –

cancer 

(cases) 

1.7E-08 

(80.9%) 

1.7E-08 

(80.9%) 

1.7E-08 

(80.9%) 

1.7E-08 

(80.9%) 

1.7E-08 

(80.8%) 

1.7E-08 

(80.6%) 
8.9E-08 

Organic substances 

 0.5 day 1 day 1 week 1 month 1 season 1 year cLCA 

Ecotoxicity 

(PAF.m3.day) 

2.8E-06 

(-0.3%) 

2.8E-06 

(-0.3%) 

2.8E-06 

(-0.3%) 

2.8E-06 

(-0.3%) 

2.8E-06 

(-0.6%) 

2.8E-06 

(-1.1%) 
2.7E-06 

Human cancer 

(cases) 

3.7E-14 

(0.2%) 

3.7E-14 

(0.2%) 

3.7E-14 

(0.2%) 

3.7E-14 

(0.2%) 

3.7E-14 

(0.1%) 

3.8E-14 

(-0.6%) 
3.7E-14 

human non –

cancer 

(cases) 

1.4E-13 

(0.0%) 

1.4E-13 

(0.0%) 

1.4E-13 

(0.0%) 

1.4E-13 

(0.0%) 

1.4E-13 

(0.4%) 

1.4E-13 

(0.8%) 
1.4E-13 

Inorganic substances 

 0.5 day 1 day 1 week 1 month 1 season 1 year cLCA 

Ecotoxicity 

(PAF.m3.day) 

3.1E+00 

(56.5%) 

3.1E+00 

(56.5%) 

3.1E+00 

(56.4%) 

3.1E+00 

(56.4%) 

3.1E+00 

(56.2%) 

3.1E+00 

(55.8%) 
7.1E+00 

Human cancer 

(cases) 

1.1E-11 

(85.6%) 

1.1E-11 

(85.6%) 

1.1E-11 

(85.6%) 

1.1E-11 

(85.6%) 

1.1E-11 

(85.5%) 

1.1E-11 

(85.4%) 
7.8E-11 

human non –

cancer 

(cases) 

1.7E-08 

(80.9%) 

1.7E-08 

(80.9%) 

1.7E-08 

(80.9%) 

1.7E-08 

(80.8%) 

1.7E-08 

(80.8%) 

1.7E-08 

(80.6%) 
8.9E-08 

 545 

 546 
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It can be concluded that current dynamic toxicity exhibits a temporal profile with marked variations and 547 

large amplitude differences when distinct LCI time step sizes are used. For all toxicity categories, the 548 

relative difference (between curves with different time step sizes) vanishes after the life time of the 549 

system, i.e. 30 years. At 100 years, the values of cumulated dynamic toxicities, calculated with different 550 

LCI time step sizes, are much the same (the relative differences between the reference case and the 551 

others do not exceed 1.7% - see SI). The temporal variation of the potential toxicity impact (cases.day-552 

1) and thus the most relevant point in time for the assessment is information that is inaccessible in the 553 

conventional method.  554 

 555 

3.2. Influence of the time step of the dynamic impact model resolution 556 

Climate change 557 

The variation on the dynamic LCI step size (section 3.1) showed that there was no significant difference 558 

in the climate change results, for the mean temperature change, when calculations were performed with 559 

time steps from 0.5 day to 1 year. Using a 1 year step size for the inventory allows different step sizes 560 

(less than 1 year) to be used for the calculation of the dynamic climate change impact. The calculation 561 

was done for the dynamic LCIA step size of 0.5 day, 1 day, 1 week, 1 month, 1 season and 1 year.  562 

The three main GHG were considered in this analysis (carbon dioxide, methane and dinitrogen 563 

monoxide). A time step greater than 1 year was not envisaged in the present case study as it would have 564 

neglected some discrete mass values from the dynamic inventory.  565 

Table 5 shows the relative difference between the results obtained for the mean temperature change with 566 

different time step sizes. The relative difference is not significant for step sizes in the interval of 0.5 day 567 

to 1 season. However, the result obtained with a step size of 1 year shows differences of about 5%. 568 

Considering that the smallest time step size gives the most precise results, this means that any step 569 

between 0.5 days and 1 season can be used, given the insignificant difference between the results. 570 

 571 

 572 

 573 
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Table 5 – Relative difference for mean temperature change, obtained for different time step sizes in the 574 

climate change model resolution.   575 

Relative difference 

for ΔT 
0.5 day 1 day 1 week 1 month 1 season 1 year 

0.5 day 0.0% 0.0% 0.0% -0.1% -0.4% -5.2% 

1 day - 0.0% 0.0% -0.1% -0.4% -5.2% 

1 week - - 0.0% -0.1% -0.4% -5.1% 

1 month - - - 0.0% -0.3% -5.0% 

1 season - - - - 0.0% -4.8% 

1 year - - - - - 0.0% 

Calculation time 9h 34m 30s 2h 23m 20s 3m 15s 6s 8s 

 576 

 577 

In this work, a personal computer with an Intel Core i5-2540M processor at 2.60 GHz and 4 GB of RAM 578 

was used. Even though the computer can support multithread, only a single core was used for the 579 

computation. The calculation time decreased substantially when the step size for the convolution 580 

calculation was increased, because of the number of iterations required by a convolution product (Garge 581 

and Shirali, 2012): 582 

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =
௨  ௗ௦௧௭௧௦ (௨  ௗ௦௧௭௧ )

ଶ
                                                  (17) 583 

As the difference between the results is not substantial, a time step size of 1 month or 1 season could be 584 

envisaged for the calculation and would provide a good compromise between accuracy of results and 585 

computational efficiency. 586 

 587 

Toxicity 588 

A similar comparison between different step sizes was not possible in the dynamic toxicity model 589 

because the dynamic toxicity results are, first of all, very sensitive to the time step size of the inventory. 590 
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Calculation of dynamic toxicity using a 1 year step size for the dynamic inventory is not suitable as it 591 

does not consider all the potential variations and amplitudes of the toxicity impact. Moreover, it has 592 

been shown (Shimako et al., 2017) that the resolution of the dynamic toxicity model depends on the 593 

resolution of an ODE, which requires an adaptive integration time step. Thus, the lower the time step is, 594 

the more reliable is the dynamic impact profile and the more accurate is the numerical resolution. It is, 595 

however, possible to set the maximum step for the ODE solver in the toxicity model at the LCI step size, 596 

e.g. 0.5 days.  597 

 598 

4. Conclusion 599 

The dynamic LCA framework presented here combined the DyPLCA inventory model with dynamic 600 

climate change and dynamic toxicity impact assessment models. Sensitivity analysis was conducted on 601 

a case study in order to identify the influence of the temporal profile of the dynamic LCI and of the time 602 

horizon on the final LCA results. Additionally, parameters of numerical methods used for the resolution 603 

of the impact models were investigated.    604 

 605 

As a general remark, both impact categories exhibit high variation over the calculation period (100 years 606 

in this study), which cannot be captured in a single impact value at a given time (or a fixed time horizon), 607 

e.g. 100 years. Instead, a detailed analysis is necessary during the first few decades. In this case, a 608 

graphical representation of the LCA results is of great interest for the identification of the general 609 

temporal profile. The subsequent conclusion is that a fixed time horizon, as implemented in conventional 610 

LCA, deprives us of essential information, especially for short and medium time periods corresponding 611 

to the lifetime of the studied system and about the following twenty years.  612 

 613 

For climate change impact, two dynamic indicators were analysed: the global mean temperature change 614 

and the cumulated radiative forcing. The temporal profile of both indicators depends on the target 615 

substance and the global positioning of the GHG emissions on the time scale, i.e. emission beginning 616 

and duration. In consequence, a fixed time horizon as in conventional LCA is highly arbitrary and does 617 
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not correspond to any point of interest on the time scale of the processes, i.e. temporal LCI and dynamic 618 

phenomena involved in impact deployment.  619 

In this work it is shown that neither dynamic indicator is sensitive to the level of detail of the temporal 620 

LCI definition. Simulations performed for the same process system, but varying the granulometry of the 621 

LCI from 0.5 day to 1 year, led to similar results.  622 

The dynamic climate change model is not sensitive to the change of time step size for numerical 623 

resolution, on condition that it lies below the LCI time step size (otherwise inventory information can 624 

be lost). For the case study, a time step of 1 month satisfied the resolution accuracy condition, for a very 625 

reasonable computational effort.  626 

 627 

The dynamic toxicity model was based on USEtox model parameters. As in the case of climate change, 628 

the toxicity temporal profile depends on the target substance and temporal definition of LCI. However, 629 

unlike for climate change, in the case of toxicity, the level of detail of the LCI definition (time 630 

granulometry) has a major influence on the results: toxicity results are highly sensitive to the LCI time 631 

step. The time step size of the temporal LCI definition is intrinsically linked to the behaviour of the 632 

studied system and should not be chosen by the LCA practitioner. However, if a choice is possible, the 633 

smallest time step for toxicity assessment is advised. 634 

Concerning the time span of calculation, as in the case of climate change, there is no justification for 635 

fixing a predefined value. In conventional LCA, the fate of substances in the environment is considered 636 

to be at steady state, i.e. the time horizon is undefined and sink processes are compensated by the 637 

continuous infinite emission. However, it is shown here that the most interesting period is the lifetime 638 

of the studied system, i.e. the emission duration, and several decades afterwards.  639 

In the toxicity dynamic model, a finer time grid is necessary in order to capture the inventory information 640 

and for the resolution of the ODE system. The maximum time step could be set at the lowest LCI time 641 

step (e.g. 0.5 days).  642 

Finely, the comparison with conventional LCA results shows that the dynamic toxicity results are very 643 

different in many aspects: (i) quantitatively, only the cumulated toxicity could be compared with 644 

conventional one; (ii) dynamic approach is more close to the risk assessment methods where the real 645 
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state of the substance in environment is identified and, from this point of view, the relevance of LCA 646 

result is improved; (iii) cumulated toxicity results can be very different from the conventional ones (e.g. 647 

10 times, 100 times), depending on the case study and on the point in time analysed; (iv) the position in 648 

time of the toxicity potential can be obtained only with a dynamic approach (e.g. for peoples living after 649 

the end of emissions there is no/less toxic potential from organics but still a toxic potential from 650 

inorganics). 651 
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