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Abstract

Internal motions play an essential role in the biological functions of proteins and have

been the study of numerous theoretical and spectroscopic studies. Such complex environ-

ments are associated to anomalous diffusion where, in contrast to the classical Brownian

motion, the relevant correlation functions have power law decays with time. In this work,

we investigate the presence of long memory stochastic processes through the analysis of

atomic velocity auto-correlation functions. Analytical expressions of the VACF spectrum

obtained through a Mori-Zwanzig projection approach were shown to be compatible with

molecular dynamics simulations of a small helical peptide (8-polyalanine).
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Introduction

Complex molecular systems are characterized by the existence of highly irregular energy

landscapes that admit numerous local energy minima that originate from the presence

of, potentially diverse, mutually interacting units. Such systems have been identified in

various contexts, ranging from glasses, liquid crystals, to polymers and proteins,1–3 in

which the dynamics is described as ensembles of particles evolving in a rough potential.

The existence of complex environments is associated to the phenomenon of anomalous

diffusion (for a general review, see for instance4), where, in particular, relevant correlation

functions have power law decays with time, in contrast to the classical Brownian motion.

The interior of a protein provides an illustration of such an irregular medium, and the

existence of subdiffusive processes has been indeed investigated in the context of protein

dynamics using various techniques, such as fluorescence correlation spectroscopy,3,5 as

well as in the context of neutron scattering6,7 or in an NMR perspective focusing on spin

relaxation.8–10

Anomalous diffusion can be described theoretically by a variety of approaches (Con-

tinuous time random walk,11–14 fractional Fokker-Planck equations,4,15,16), all of which

have in common the existence of a stochastic process with long memory kernels. In the

context of protein NMR relaxation, MD-computed orientation correlation functions of

bond vectors were fitted to models based on Mittag-Leffler functions, which are solutions

of fractional diffusion equations.8–10 These correlation functions were shown to better fit

the MD correlation functions based on mono-exponentials, without introducing any addi-

tional assumptions about local geometry and supporting the assumption of subdiffusive

stochastic processes underlying the internal motions in proteins. Such models were used

for backbone, side chain methyl groups as well as for chemical shift fluctuations. These

studies support a fractional diffusion model, as suggested by the consistency of the sub-

diffusion parameter when motions are analyzed at different time scales.10,17

However, some ambiguity persists as a Mittag-Leffler function is itself a continuous
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superposition of exponentials (albeit of a particular kind) and therefore may be compati-

ble with a function decaying multi-exponentially, such as expected in a Markovian, mem-

oryless process. This calls for a complementary, or more fundamental, characterization.

The projection approach in the phase space introduced by Mori18 and Zwanzig19 (MZ

projection approach), and leading to the Generalized Langevin Equation (GLE), allows

one to describe the evolution of a small subsystem of a larger one in order to focus on the

dynamics of the former. The evolution of the complete system is partitioned according

to the projection onto a set of phase variables, the evolution of which is governed by the

GLE, where the random forces appear as an additive noise term, and friction arises as

the convolution with a memory kernel. From the dynamical point of view, characterizing

the statistical properties of the Langevin forces appears more fundamental than studying

the decay of position correlation functions. However, stochastic forces are not directly

inferred from MD simulations that give only access to the sum of the deterministic and

random forces acting on the system. This can be circumvented by adopting an alternative

projection proposed by Boon and Yip (BY projection approach)20 and using the relation-

ship between the memory kernels obtained by both approaches, as we show briefly in the

next Section. We analyze then the existence of long memory processes by deriving exact

expressions for the spectra of the velocity correlation functions in the case of a power-law

kernel. The analytical expressions are then applied to the analysis of molecular dynamics

trajectories of a small, 8-residue, polyalanine peptide (polyala8), considered as a simple

case study.

Overview of MZ and BY projections The goal of a projection technique is to isolate

the dynamics of a small relevant (e.g. directly observable) part (the ”system”) from the

rest of the system (the ”bath”). Consider a classical conservative system, characterized

by the phase space of N positions and momenta E = (q,p) where q = (q1, . . . , qN), p =

(p1, . . . , pN). A vector of M phase variables At(t) = [A1(t), . . . , AM(t)], functions of the

4



positions and momenta, obeys the exact time evolution equations:

d

dt
A(t) = Ȧ = iLA(t) (1)

where L = {·,H} is the Liouvillian of the system. following the MZ approach, the

evolution of the phase variables A(t)) of a larger system can be obtained by projecting

Eq. 1 onto the phase variables A using the projector operator Pf =
∑

ij AiSij⟨Aj|f⟩ =

AtS⟨A|f⟩, where ⟨f |g⟩ is the Hermitian product and S = M−1, having defined the over-

lap matrix M = ⟨A|At⟩. The GLE can now be recovered (cfr SI for details) in the form

d

dt
At(t) = iAt(t)Ω−

∫ t

0

At(t− t′)k(t′)dt′ + F(t) (2)

where iΩ = S⟨A|Ȧt⟩, F is the Langevin random force and the memory kernel k(t) obeys

the relation:

k(t) = SCF (t) (3)

where the force correlation matrix CF (t) = ⟨F(0)|F(t)t⟩ is defined. Eq. 3 takes the role

of a fluctuation-dissipation theorem, which relates the correlation function of the random

force to the memory kernel.

Most physical measurable quantities in linear spectroscopy involve position or ve-

locity correlation functions that are contained in the phase variable correlation matrix

Ψ(t) = S⟨A|At(t)⟩. The latter can be derived from the Mori-Zwanzig GLE:

d

dt
Ψ(t) =

∫ t

0

dt′Ψ(t− t′)[iΩδ(t′)− k(t′)] (4)
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Taking into account that Ψ(0) = 1 one gets for the Laplace transform Ψ̃(s) of Ψ(t):

Ψ̃(s) =
[
s− iΩ+ k̃(s)

]−1

. (5)

In principle, the GLE kernel contains all the necessary information to characterize the

time evolution of relevant correlation functions. The direct evaluation of the random

force via MD simulations, however, is difficult, since only the total forces, and not their

stochastic components as defined within the MZ approach, are computed. An alternative

approach developed by Boon and Yip20 bridges this gap by making use of the projection

operator directly on the evolution equation of Ai(t). One gets an alternative expression

for Ψ̃(s) (the derivation is detailed in the SI). The results is of the form:

Ψ̃(s) = [s1+ K̃(s)]−1Ψ(0), (6)

where the memory kernel K̃(s) is given explicity in the SI. Equation 6 is the memory, or

master equation:

d

dt
Ψ(t) =

∫ t

0

dt′K(t′)Ψ(t− t′) (7)

The master equation is obtained using the same definition of the projection operator as in

the Mori-Zwanzig approach that leads to the generalized Langevin equation. However,

in the latter, the kernel k̃(s) is equal to the Laplace transform of the random force corre-

lation function, to within a normalization factor. The connection between both projection

approaches and their associated kernels can be deduced easily. By comparing Eqs. 5 and

6 after some passages we get

K̃−1(s) =
[
F̃(s)− iΩ

]−1

− s−11 (8)
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linking the kernel of the BY approach directly to the total force and the streaming part of

the MZ approach.

GLE with power law kernel As underlined previously, the rewriting of the Liouville

equation yields the GLE with a memory kernel and a stochastic force F(t).We now pro-

ceed to apply such a description to atoms in a molecular structure (e.g. a peptide or

a protein) in order to investigate the possible presence of long memory effects, i.e., of

a power law Langevin kernels k(t) ∼ (t/τ)−α. For this purpose we compare the spec-

tra of the normalized atomic velocity autocorrelation functions (VACFs) ⟨vl(t)vl(0)⟩/⟨v2⟩,

l = x, y, z computed from MD simulations, to the analytical solutions obtained from the

GLE with long memory.

Consider the dynamics of a single component q of the vector position of a single atom

with mass m, and its conjugate momentum p, with velocity v = p/m. It can be shown that

the general form of the GLE given by Eq. 2 simplifies for the phase variables At
a = (q, p)t,

to yield (see Eqs. SI 34-SI 37 in the SI):


q̇(t) =

p(t)

m

ṗ(t) = −κq(t)−
∫ t

0

k(t′)p(t− t′)dt′ + F (t)
(9)

where the fluctuation-dissipation theorem is ⟨F (0)|F (t)⟩ = k(t)⟨p(0)|p(t)⟩. In the case

of a local harmonic potential κq2/2, where κ is identified as a force constant, and κ =

kBT/⟨q2⟩ . The (from now on) normalized momentum autocorrelation function is C(t) =

⟨p(t)p(0)⟩/⟨p2⟩ and its Laplace transform C̃(s) can be obtained (see SI) from the autocor-

relation matrix:

C̃(s) =
m

ms[s+ k̃(s)] + κ

 s+ k(s)
1

m

−κ s

 (10)
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Consider the power law memory kernel:

k(t) =
⟨|f2|2⟩
⟨p2⟩

(
t

τ

)−α

= ξ

(
t

τ

)−α

, 0 < α < 1 (11)

Its Laplace transform is k̃22(s) = ξΓ(1 − α)τ(sτ)α−1 = γa(sτ)
α−1, where γa = ξΓ(1 − α)τ

and Γ(x) is the Gamma function, so that the normalized correlation function C̃vi(s) =

Ψ̃22(s)/⟨p2i ⟩ writes:

C̃(s) =
s

γaτα−1sα + s2 +
κ

m

(12)

In the case of free diffusion, i.e., when the driving term ω0 = κ/m = 0 , the expression of

C̃(s) simplifies and one obtains:

C̃(s) =
1

s+ γa(sτ)α−1
(13)

the inverse Laplace transform of which is:21

C(t) = E2−α(−ξΓ(1− α)τ 2(t/τ)2−α), (14)

where:

E(z) =
∞∑
k=0

zk

Γ(αk + 1)
(15)

is the Mittag-Leffler function.22 Moreover, using the asymptotic property of the Mittag-

Leffler functions:21–26

Eα,β(−t) ∼ 1

Γ(β − α)

1

t
, t → +∞ (16)
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the following expression of C(t) at long times is obtained:

C(t) ∼ tα−2

Γ(α− 1)ξΓ(1− α)τα
(17)

It is clear that the projected dynamics of Eq. 9 alone, together with its associated VACF

(Eq. 12), do not account for the typical VACF spectra computed from MD simulations that

exhibit many vibrational resonant peaks. In contrast, the velocity correlation spectra can

be fairly well reproduced based on a conventional Markovian (memoryless) Langevin or

Fokker-Planck dynamics of atoms in the molecule.27,28 The associated Langevin modes

thus correspond in this case to vibration (underdamped) and diffusion (overdamped)

modes of the velocity correlation function.29 Importantly, the modes are all exponen-

tially damped, owing to the Markovian and therefore memoryless nature of the Langevin

equation. A remark is in order here. Power law memory kernels arise in analyses of

subdiffusion motions, where the associated correlation functions are constructed based

on stretched Mittag-Leffler functions Eα(−(t/τ)α). Subdiffusion processes are described

as a continuous tile random walk in a “rugged” potential that represents the various

conformational “substates” of the fractal potential energy surface. This eventually leads

to long waiting times and time-fractal correlation functions ( the streched Mittag-Leffler

functions), where the parameter α characterizes the “rugosity” of the potential, that is, its

self-similarity. Thus, by construction, α indicates the presence of a significant density of

frequency components towards zero in the VACFs. However, this has to be distinguished

from the time scales related to the different energy wells in a potential surface, as it can

be shown that in this model of subdiffusion, each relaxation mode τi decays not as an

exponential, but as a stretched Mittag-Leffler function Eα(−(t/τi)
α). This expresses the

fact that each mode is associated to the same degree of “rugosity” characterized by the

parameter 0 ≤ α < 1. This was discussed for instance in ref.4 and illustrated in refs.10,17 in

the context of NMR spectroscopy. The obvious discrepancies noted between the model
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of Eq. 9 and MD-computed velocity correlation functions are an expected consequence

of the ”linear” Mori-Zwanzig projection leading to a generalized Langevin equation that

involves a single resonance for the selected dynamical variable {q}. Such a procedure

actually transfers the nonlinearities to the Langevin forces and to the memory kernel.30,31

However, we are mainly interested in the behaviour of the velocity correlation function

for long lag times or, equivalently, in its frequency spectrum at extreme low frequencies,

when ω → 0+. Note that, by nature, a power law kernel is an asymptotic model, meaning

that it is indeed expected to take the form of Eq. 11 only at long times, when t → ∞, when

the vibrational processes responsible for the resonance spectra of the vacfs have died out.

Moreover, analyses based on neutron scattering experiments and MD simulations32 sug-

gest that in the low energy range (≲ 10 meV or ≲ 2.4 ps−1) protein vibrations propagate

mainly along the backbone, and that the atoms in the molecule undergo a linear potential,

in line with our assumption of a memory kernel free from absorbed nonlinearities in the

extreme-low frequency regime.

A generalized Langevin equation can be obtained in several ways, the Mori-Zwanzig

projection being only one of them, beside the linear response theory or a perturbation ap-

proach.30,33,34 It has been proposed to analyze stochastic processes in various perspectives.

In the present case, because we are ultimately interested in the motions of individual

atoms in the molecule, we use the MZ projection approach that is directly derived from

the hamiltonian equations in the phase space. This is consistent with the perspective of

NMR spectroscopy that provides dynamical information on individual atoms, and where

the characterization of the stochastic properties of the forces acting upon each atom is of

primary interest. Note, however, that, by construction, the MZ approach yields a mean

force term that is linear in the phase variable, which is the derivative of a potential only in

special case where it is quadratic. Otherwise, the MZ projection rejects nonlinearities into

the kernel, which may bias the analysis by lumping contributions from the potential with

memory effects, potentially leading to multi-exponential behaviours of the VACFs that
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are not related to memory effects. The use of the GLE in our work thus differs in this sense

from other approaches recently introduced to study protein folding in MD simulations,

where, in a completely different perspective, a phenomenological GLE was employed to

study the evolution of some reaction coordinate in a complex energy landscape where the

nonlinear potential is explicitly taken into account.35

These arguments therefore lead to a model where at short times the dynamics of the

system is described along the conventional lines of an ensemble of particles governed by

the Langevin equations, whereas at long times, each atom obeys a long memory diffusion

process given by the generalized Langevin equation obtained by the Zwanzig-Mori pro-

jection approach. We implemented the proposed model using this simple strategy to the

small polyala8 peptide.

Because the Laplace transform of the VACF admits an analytical expression, it is nat-

ural to tackle the problem in the frequency domain. Thus, a frequency threshold ωM is

introduced that defines two different regimes. For frequencies above ωM , the atomic mo-

tion is governed by a Markovian process that contributes a sum of exponentially damped

cosine functions. The corresponding VACF spectrum is therefore composed of a series of

Lorentzian lines centered at a number of frequencies ωj . Alternatively, for frequencies be-

low ωM , the VACF is described by Eq. 12. The VACF spectrum is obtained for arguments

s = ϵ+ iω in the limit ϵ → 0+. Thus, the MD-computed VACF spectra were fitted as:

C̃(ω) =
∑
j

Aj

w2
J + (ω − ωj)2

, Im(s) ≥ ωM

C̃(ω) = Re

 iω

γaτα−1eiαπ/2ωα − ω2 +
κ

m

 , Im(s) ≪ ωM (18)

where Aj and wj are the amplitudes and widths of the Lorentzians components of the

VACF.
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Analysis of the polyala8 peptide In order to illustrate our approach, the above results

were tested against MD simulations by using a simple model system poly-alanine pep-

tide, which adopts a globally stable helix structure. The molecular geometry was first

optimized via a Molecular Mechanics energy minimization, using the molecular mod-

eling toolkit (MMTK) software package.36 Minimization was carried out in vacuo using

the Amber99 force field,37 which is the default force field in MMTK. We carried on 200

ns-long MD simulations, using the MD package NAMD,38 following a standard protocol

consisting in energy minimization, heating, equilibration, and production. Parameters

and conditions for the MD simulations are reported in Table 2 in the Methods section. Box

dimensions have been chosen equal to 30 Å39 have shown that 8-alanine is unaffected

by the dimension of the simulation box ranging from 30 to 50 Å. It has also been shown

that no particular differences are found in the backbone populations and that one con-

figuration (PPII) is relevant.40 Such an observation is compatible with the description of

the molecules (at least for relatively short polyalanines, like in our case) as flexible objects

oscillating around a global minimum. The spectra of the VACFs were obtained from

MD simulations for a selection of backbone atoms (amide N and C’) as well as side chain

methyl Cβ carbons. In practice, fitting of the spectra was achieved by using a distribution

of Lorentzian lines at frequencies down to a frequency threshold below which the spectra

were fitted according to the second of Eq. 18. The choice of ωM was guided by the fact

that the model of Eqs.12 and 18 has a single maximum, so the additional maxima ob-

served in the MD-computed VACF were fitted using Lorentztians. In all cases, the lower

frequency boundary of the Lorentzian spectrum was taken ωM ≈ 1.5 ps−1. For each cat-

egory of atoms, a single distribution of frequencies, albeit with different ωM values, was

used to define the Lorentzian part of the spectrum in the VACF analysis at different tem-

peratures (278 K, 283 K, and 293 K). Finally, in order to facilitate the fitting process, and

because the high frequency part of the spectrum does not affect the low frequency region,

only the narrower spectral region ≲ 10 ps−1 of the VACF spectrum was considered in all
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cases. Most of the VACF spectra were found to be satisfactorily reproduced by multi-

ple Lorentzians, except for their extreme lower ends that could only be captured by the

model with long memory. All spectra exhibited a convex curvature towards ω → 0, a

feature well reproduced by the model of Eq. 18. On the contrary pure Lorentzian fitting

showed, as expected, a concave curvature at low frequencies. This is illustrated in the

example of Figure 1.

(a) (b)

Figure 1: Left: spectrum of the x component of the VACF computed from MD simulations for
the Cβ atom of the Ala6 residue (T = 278 K). Right: the low frequency region of the spectrum (red
box in (a)) is plotted in black, together with with model spectra obtained from a purely Lorentzian
model (orange and green solid lines) or a mixed model that includes a long-memory kernel for low
frequencies (red dashed line). The vertical black arrow indicates the lowest Lorentzian component
of the spectrum for the long memory model. Two implementations of the purely Lorentzian model
were computed, with lowest Lorentzian centered at 0.9 ps−1 (orange arrow and orange line) and
0.4 ps−1 (green arrow and green line). The latter two illustrate that such a model leads to a concave
spectrum towards zero, whereas the long memory kernel is able to reproduce the concavity of the
spectrum for ω → 0.

The VACF spectra for N, C’ and Cβ atoms in the peptide were fitted according to the

model described above and results are depicted in Figures 2 and 3. In addition, the α

parameter that characterizes the power law of the kernel was extracted for each atom of

these selections. Results are shown in Fig. 4 and in Table 1. The fits all yielded α val-

ues that were significantly lower than 1 and that clustered in a relatively narrow range

α ∈ [0.7 − 0.8]. However, local variations were found to be more pronounced for amide
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Figure 2: Spectra of the x component of the amide N VACF at T = 298 K. The model of Eq. 18 is
shown in red, and the lower end contribution is depicted in blue.

Figure 3: VACF spectra of the x component of the C’ (left) and Cβ (right) velocity autocorrelation
functions at T = 298 K. Color coding is the same as in Figure 2.

N atoms, whereas they appeared more uniform for C’ and Cβ atoms. Nevertheless, all

these values obviously indicate the departure from the exponential decay, and and there-

fore suggest an asymptotic power law decay of the relaxation functions at long times.

This kind of behaviour has received several interpretations, in terms of the presence of a
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Figure 4: Parameter α of Equation 12 for amide, C’ and Cβ atoms of the poly-ALA8 pep-
tide.

Table 1: Average values and standard deviations of the parameter α, ⟨α⟩± ⟨σα⟩ computed for the
three atom populations NH, C’ and Cβ of the polyAla8 peptide.

NH C’ Cβ

278 K 0.77± 0.01 0.71± 0.01 0.69± 0.00
288 K 0.78± 0.01 0.73± 0.01 0.69± 0.00
298 K 0.81± 0.01 0.77± 0.01 0.70± 0.00

complex conformational energy landscape with a hierarchy of conformational substates

organized in a self-similar manner, or to the fractal structure of the protein itself,41 lead-

ing to fractal time processes and subdiffusion, although the origin of such arrangements

may be several.42 In the case at hand, the variations of the kernel parameter α suggest

different local distributions of such substates across the backbone and for the different

classes of backbone atoms (N, C’, Cβ). Interestingly, recent work based on the analysis

of MD simulations of a similar 8-residue poly-Alanine peptide suggests the existence of

a fractal topology of the energy landscape, where traps are physically correlated rather

than random.43,44

Analysis of the MD simulations performed at the different temperatures (278 K, 288
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K, and 298 K) for the chosen sets of atoms shows that the average value of α across the

peptide sequence, ⟨α⟩, tends to increase with temperature (see Table 1). This trend is more

pronounced for the C’ atoms, and to a lesser degree for N amides, whereas Cβ atoms seem

to be less sensitive to temperature. In the perspective of rugged energy landscapes and

correlated traps,1,44 the observed trend can be interpreted as the progressive decrease of

these correlations with temperature, therefore of the self-similarity of the conformational

energy landscape. Interestingly, a similar increase of α with temperature was first noticed

in ref.1 There, oxygen binding to myoglobin was described as a reaction kinetic process

between a ground and an excited state of the protein. The process was analyzed in terms

of fractional diffusion to account for self-similarity of a continuous distribution of time

scales.

Although a wide variety of approaches has been used to investigate memory effects

in protein dynamics and kinetics,1 including conformational dynamics or folding,45 the

present study is essentially driven by the perspective of NMR spectroscopy, where one

is primarily interested in characterizing the motions of bond or atomic motions through

the correlation functions attached to them. In this case, the interpretation of spin relax-

ation requires sound physical models in order to disentangle dynamics from the statistical

properties, including memory effects, and to provide plausible models of dynamics that

can be used for the analysis of relaxation data, whilst avoiding overfitting. This work

focuses on the atomic VACF as the quantity connecting to the Langevin kernel because

neither this or the Langevin random forces are directly accessible from MD simulations.

However, the autocorrelation functions of the velocities and of the total forces (see Eq. SI

44 in the SI) involve the same (α, τ) characteristic parameters. The spectrum of the force

autocorrelation function, which is numerically more demanding, can therefore be calcu-

lated. This approach, based on the long-time behaviour of the memory kernel leads to

exact expressions that occur naturally in the frequency domain, and are easier to handle

than time domain expressions. This therefore provides an effective tool to account for the
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low frequency region of the spectra.

Methods

MD simulations

A 300 ns MD simulation of a poly-ALA peptide was performed and positions and veloci-

ties of the atoms were stored. Long MD simulations were performed, as the computation,

of the ACFs required both high sampling rate (2 fs) of the trajectory in order to avoid alias-

ing (the highest expected frequencies are on the order of 250 ps−1) and a long duration

to achieve sufficient signal-to-noise ratio and good enough statistics in the low-frequency

region of the velocity spectra. Details of the simulations are found in Table 2

Table 2: Setup conditions for the MD simulations of the polyala8 peptide

Parameter Value
Cubic box side length / Å 30
Boundary conditions periodic
Number of water molecules 845
Force field CHARMM22 with CMAP correction for the

peptides,46 TIP3P for water
Ensemble NpT
Thermostat Langevin, T = 298.15 K
Barostat Langevin, piston period 200 fs, piston decay

100 fs, p = 1 atm
Non-bonded interactions cut-off / Å 12.0
Electrostatics particle mesh Ewald, order 6, tolerance 10−5

Integration time step / fsa 2
Minimization steps 5000
Heating time / ps 72
Equilibration time / ns 2
Production time / ns 200

aAll bonds with H atoms were constrained with the SHAKE algorithm.
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Data processing and analysis

VACF computations and fittings were performed using homewritten scripts using the

Scilab software.47

The trajectories of the velocities of individual atoms in the peptide were analyzed by

splitting the trajectories in 16 k chunks. MD simulations were sampled every 2 fs, so that

each of these spanned ∼ 32 ps. Velocity auto-correlation functions were computed for

each of these extracts. Velocity ACFs are typically expected to decay very fast, so that

these extracts of the MD trajectory are likely to sample processes that contain frequen-

cies down to ≈ 30−1 ps−1 with satisfactory statistics.48 The VACFs were then obtained by

summing the functions obtained for each excerpt of the total trajectory. The associated

velocity spectra were obtained for each atom through numerical Fast Fourier Transfor-

mation.

The VACF spectra were fitted based on the model described above using the differen-

tial evolution algorithm49 implemented in the Scilab Differential Evolution Toolbox.

Supporting Information

Derivation of Eqs.1-8; derivation of the force autocorrelation function for a power law

kernel.
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