
HAL Id: hal-04334826
https://hal.science/hal-04334826

Submitted on 11 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Challenging the ”One Single Vector per Token”
Assumption
Mathieu Dehouck

To cite this version:
Mathieu Dehouck. Challenging the ”One Single Vector per Token” Assumption. The SIGNLL Con-
ference on Computational Natural Language Learning, Dec 2023, Singapore, Singapore. pp.498-507.
�hal-04334826�

https://hal.science/hal-04334826
https://hal.archives-ouvertes.fr


Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL), pages 498–507
December 6–7, 2023. ©2023 Association for Computational Linguistics

498

Challenging the “One Single Vector per Token” Assumption

Mathieu Dehouck
LATTICE, CNRS, ENS-PSL, Université Sorbonne Nouvelle

mathieu.dehouck@ens.psl.eu

Abstract

In this paper we question the almost universal
assumption that in neural networks each token
should be represented by a single vector. In
fact, it is so natural to use one vector per word
that most people do not even consider it as an
assumption of their various models. Via a se-
ries of experiments on dependency parsing, in
which we let each token in a sentence be repre-
sented by a sequence of vectors, we show that
the “one single vector per token” assumption
might be too strong for recurrent neural net-
works. Indeed, biaffine parsers seem to work
better when their encoder accesses its input’s
tokens’ representations in several time steps
rather than all at once. This seems to indicate
that having only one occasion to look at a to-
ken through its vector is too strong a constraint
for recurrent neural networks and calls for fur-
ther studies on the way tokens are fed to neural
networks.

1 Introduction

Since the apparition of Word2Vec in 2013 (Mikolov
et al., 2013), embeddings have become ubiquitous
in natural language processing. However, the over-
whelming majority of works that use them, use a
single vector to represent each token (word or char-
acter) in a sequence. We call this monodianysm,
from mono- (Greek μονος : single) and dianysma
(Greek διανυσμα : vector).

While monodianysm is a very strong assumption,
it is hardly ever presented as such, namely, that
it is just an assumption and that their could be
other possibilities to represent input tokens. This
is an especially strong assumption when working
with recurrent neural networks (RNN) since by the
time they have reached a token, it is already time
to move to the next, and thus an RNN encoder
only has one chance to extract all the necessary
information from the representation of each token.

We make the hypothesis that giving encoders
more time (in term of computation steps) to extract

the relevant information from token representations
is beneficial.

Indeed, while words can easily linger in some-
one’s mind for several minutes and often much
longer after having been read or heard, the most
frequent flavors of recurrent neural networks only
have very limited storage capacity. A Long-
Short Term Memory unit (LSTM (Hochreiter and
Schmidhuber, 1997)) has two internal vectors that
store information, while a Gated Recurrent Unit
(GRU (Cho et al., 2014)) has only one such vector.
Moreover, their internal machinery is too simplis-
tic to allow actual perfect recording of independent
words and thus they have to make the best of the in-
formation available in both the input representation
and their current hidden states right away.

Furthermore, having a single vector per word1

prevents their representations from having a tempo-
ral structure2 which could in principle be beneficial
to the extraction of information from said word
representations by recurrent neural networks.

In this paper, we use dependency parsing as a
benchmark to test our hypothesis. We conduct two
sets of experiments where we train syntactic parsers
whose input words representations are either split
in one, two, four or eight vectors. In the first set of
experiments, word representations are learned from
scratch with the parsing loss, while in the second,
word representations are taken from a pre-trained
large language model.

An increase in parsing scores as the number of

1In this paper we use the terms “word” and “token” quite
liberally. Since we test our hypothesis on dependency pars-
ing, a “word” should be understood as an actual word or a
punctuation symbol (what is usually called a “token”). When
necessary we use the term “word” to make it clear that we are
speaking of “parsing tokens” and not of “(sub-word) tokens”
of modern transformer based language models. This means
that in a different context, a “word” could actually be a char-
acter or any object we want to pass a representation of to an
encoder.

2By temporal structure we refer to the iterative nature of
the computation carried out by recurrent neural networks.
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vectors used per word increases seems to support
our hypothesis.

The remaining of this paper is organized as fol-
lows. In Section 2, we present some works that
have proposed representations beyond vanilla word
embeddings. In Section 3, we introduce the idea of
stratified vectors and their implications for parsing
methods. In Section 4, we describe our experimen-
tal setting and present the results. In Section 5,
we discuss some limitations of the present study.
In Section 6, we draw main directions for future
research on stratified vectors and state a number of
questions opened by the results presented in Sec-
tion 4. Eventually, Section 7 closes the present
work.

2 Related Work

To the best of our knowledge, this paper is the first
to question the otherwise universal assumption that
each token in a sequence should be represented by
a single vector. This being said, other researchers
have looked at related yet orthogonal problems
about word representations.

For example, Huang et al. (2012) proposed a
method for learning multiple vectors per word form
as a mean to deal with polysemy and homonymy
and thus allow words with the same form but dif-
ferent meanings not to interfere with each other’s
representations. Yet, at encoding time, only one
embedding from the set of available prototypes is
used and thus an encoder still sees a word only
once through its chosen vector.

More recently, with the emergence of trans-
former based language models (Devlin et al., 2019;
Conneau et al., 2019) that use sub-word tokenizer,
some words are indeed represented by multiple
vectors. However, this is not due to an attempt at
giving an internal structure to word representations,
but rather this is an artifact appearing from the way
they handle rare and out-of-vocabulary words (Sen-
nrich et al., 2016). Furthermore, not all words end
up being represented by the same number of vec-
tors and one needs to find proper ways to deal with
them when applying those language models to tasks
such as part-of-speech tagging or dependency pars-
ing where one needs to predict an output for each
of the original words (and punctuation symbols)
rather than for the tokenized sub-words for which
contextualized representations are computed.

In fact, what may actually be the closest to
our proposal, if not in design, in potential effect

on word representations, is multi-head attention
(Vaswani et al., 2017). Indeed, multi-head atten-
tion is a way to extract different aspects/views from
a single vector. While multi-head attention does
not give a temporal structure to word representa-
tions (and in fact transformers and attention heads
are quite agnostic to position which need to be arti-
ficially reintroduce with position embeddings), it
can disentangle various relevant aspects of a word,
all stored in a single vector, according to a given
context.

More exotic representations have also been pro-
posed such as Gaussian embeddings (Vilnis and
McCallum, 2015; He et al., 2015) or Quantum em-
beddings (Garg et al., 2019) in the context of knowl-
edge base representation. But it is unclear at this
point how a Gaussian distribution (a vector and a
covariance matrix) should be passed to an RNN
sentence encoder for further processing.

In the domain of distributional semantics, Socher
et al. (2012) propose to give each word both a con-
tent part (a vector) and a functional part (a matrix)
and composition is realized as the aggregation of
the matrix-vector products for pairs of items in a
binary syntactic tree. In works such as those of
Mitchell and Lapata (2010); Baroni and Zamparelli
(2010) and Baroni et al. (2014), words from dif-
ferent parts-of-speech are represented by tensor of
varying shapes depending on their valency profiles.
Nouns for example are vectors while adjectives are
matrices since they modify nouns, and verbs can
have even higher orders if they are transitive or di-
transitive. Here again, it is really unclear how such
representations would be used in a vanilla RNN
architecture, especially so when different words
have different shapes. Furthermore, in these works,
composition is done along the branches of a syn-
tactic tree, which is exactly the structure we want
to elicit.

Moreover, our main goal is to see where chal-
lenging the monodianysm assumption can lead us
with as little intervention on the actual underlying
model’s architecture as possible.

3 Stratified Vectors

Under the monodianysm assumption, RNN en-
coders have the opportunity to make the best of
the vector they are shown only once. If they do
not extract the necessary information the first (and
only) time they meet a token, they never have a
second chance. This may be especially detrimental
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for a word with a high perplexity given the current
encoder’s hidden state, since it is likely to be harder
for the encoder to extract relevant information from
a vector that is unexpected from the context.

We thus propose to add an extra dimension to
word representations. Instead of learning a single
vector per word, we propose to learn a sequence
of vectors for each word that will always come to-
gether. We hypothesize that it will be useful for
three main reasons: (i) it allows different aspects
of a word to be disentangled in the representation
which can be useful for task where words have dif-
ferent roles such as in dependency parsing where
a word can be both a dependent and a governor,
(ii) since the vectors always come together, if a
word is unexpected in a context, while the first vec-
tor will have a high perplexity, the following one
should have a much smaller one, and thus first vec-
tors could act as a warning mechanism to prepare
the encoder to make the best out of the following
vectors, and (iii) having more computation step to
extract useful information should be beneficial.

There are two questions readily appearing when
we decide to abandon monodianysm, namely: (i)
Should every token have the same number of vec-
tors? (ii) Should these vectors be the same or dif-
ferent?

For this work, we decided to keep the same num-
ber of vectors per tokens. Indeed, allowing the
number of vectors to vary, even on a per word-class
basis, would greatly increase the complexity of the
learning process. So we give a positive answer to
the first question as a simplifying starting point.

Regarding the second question, from the idea
of giving more time to spend on each token to the
encoder alone, it could seem natural to simply re-
peat the same vector several time. However, after
having seen the first vector of a given token, the en-
coder is left in a different state than the one it is was
in just a computation step before, and so it might in
fact be more interesting to have a different second
vector in order to mirror this. Furthermore, if we
want to be able to disentangle different aspects of a
word, it might be necessary to have different vec-
tors. We still perform a small experiment to verify
this hypothesis. But then, we should realize that if
instead of a single vector of d dimensions, we al-
low two or more vectors of d dimensions per token,
then the number of parameters of our model also
increases, and thus its information storing capacity
increases too, not only its computation time. In that

case, any increase in accuracy could just as well
be due to the increase in storing capacity as in the
increase in computation time.

Thus, in order to keep a comparable number of
parameters per token, we decided to use k vec-
tors of b dkc dimensions per token. We call these
k vectors the strata of a word’s representation. In
practice, we use a transposed convolution tensor to
turn a vector (a 1×d matrix) into a k×b dkc matrix.
We thus call the stored vector a stratified vector.

Using this new representation, a sentence of t
tokens will be represented as sequence of td vectors
of b dkc dimensions rather than the usual t vectors
of d dimensions. This is depicted in Figure 1.

w0w1w2

· · ·

wn

w0 w1 w2

· · ·

wn

w0 w1 w2

· · ·
wn

Figure 1: A representation of stratified vectors used to
represent a sentence of length n. The top row depicts
the traditional way of using word embeddings with a
single vector of d dimensions per word. The middle
row represents a situation where each word is repre-
sented by two vectors of bd

2c dimensions. In the bot-
tom row, each word is now represented by four vec-
tors of bd

4c dimensions. The dashed lines highlight the
fact that even though the different strata of a word are
trained together and form a single coherent unit, they
are read one by one by the RNN.

We should note that, since the input vectors are
of length b dkc instead of d, assuming the encoder
has the same hidden/output dimension h in both
cases, then the matrix used to feed the input vectors
to the encoder is of size hb dkc < hd. This means,
that every other things being equal, the model based
on stratified vectors is slightly smaller than the
original one, even though marginally so, since in
practice most of the memory will be taken by the
representations themselves and in the case of a
biaffine parse (Dozat et al., 2017) by the relation
label decoder.

Another non negligible effect of using stratified
vectors is the linear increase in time spent in the



501

encoder, since it takes k times longer to process a
k time longer input. We also expect training to be
slightly more difficult since the loss gradient will
need to be back-propagated through k times more
recurrent cells.

3.1 Dependency Parsing

Our task of choice for testing our hypothesis is de-
pendency parsing on Universal Dependencies data
(Zeman et al., 2022) Since we use a graph-based
parser similar to the biaffine parser of Dozat et al.
(2017), each pair of tokens needs to be scored be-
fore we can apply a maximum spanning tree algo-
rithm to recover the actual best parse tree. However,
since each token in a sentence is now represented
by k vectors in the encoded sequence, the typical
scoring mechanism of using a biaffine function ap-
plied to each pair of encoded vectors would now
give k2 scores per pair of tokens. While many
strategies could be used in order to use these k2

scores, we decided to use a simple max-pooling
strategy to only retain a single score per pair of to-
kens. We do the same for the dependency relation
labels. Note that while the encoding step under-
goes a linear complexity increase, the scoring step
undergoes a quadratic one, but that is specific to
dependency parsing.

4 Experiments

We conducted two sets of experiments in order to
test our hypothesis. In both cases, we train biaffine
style dependency parsers (Dozat et al., 2017). The
main difference is the source of the word repre-
sentations fed to the encoders. In the first case,
word embeddings are trained from scratch with
the parsing loss, while in the second case, we use
a frozen pre-trained transformer-based model as
feature extractor, namely XLM-Roberta (Conneau
et al., 2019).

4.1 Parsing Architecture

Beside the major difference regarding the source
of word representations, both architectures are very
similar and revolve around a bidirectional recurrent
neural network encoder made of gated recurrent
units (GRU (Cho et al., 2014)). The outputs of the
encoder, of which there are k for each input token,
are then passed through a biaffine layer in order
to produce scores for potential dependencies and
for relation labels. A final max-pooling layer only
keeps the best score from the k2 computed ones for

each pair of word.
During training and development, we use the

argmax function that is very fast to compute the
parsing loss and to estimate attachment scores and
perform model selection. While it is not guaran-
teed to produce a well formed tree (there could
be cycles and/or several disconnected components
each with its own root) in performs very well in
practice. Only at test time, do we use the Chu-
Liu-Edmonds spanning tree algorithm (Chu and
Liu, 1965; Edmonds, 1967) in order to build actual
trees.

Note that since word representations now have a
temporal structure, it is not the same to read them
from left to right and from right to left, and we
could in principle choose the backward RNN to
read the sentence in the reverse direction but the
word in their original direction. In this work we
decided to stick to the traditional way of using a
bi-directional RNN, therefore each encoder reads
the words’ representations in an opposite direction.
This is again the decision that minimizes the impact
on the underlying architecture.

4.2 Experimental Setting
The encoder is a two layer bidirectional GRU with
a hidden state of 200 dimensions in each direction.
Models are trained on the train set of each corpus
and after each training epoch the unlabeled attach-
ment score (UAS) and labeled attachment score
(LAS) are computed on the development set. We
save model states when either the UAS or LAS or
both increase with respect to the previous maxi-
mum scores reached. Models are optimized with
the ADAM optimizer (Kingma and Ba, 2014). The
code will be released upon publication of this pa-
per.

We perform all our experiments on data from the
Universal Dependency project (Zeman et al., 2022).
We add a special <ROOT> token at the beginning of
each sentence that represent the root of the tree.

4.3 Embedding Trained with the Model
We perform this set of experiments on the English
EWT, French GSD, Irish IDT, Hebrew HTB, In-
donesian GSD and Portuguese Bosque corpora. For
a given language, word forms appearing only once
in the training set and forms that appear only in the
development and test sets are replaced by a special
<UNK> token.

We stop training when there has not been any
UAS/LAS increase for 50 epochs.
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In this first set of experiments, words are sim-
ply represented using embeddings directly trained
alongside the model with the parsing loss. Strati-
fied embeddings of total length 120 are either dis-
tributed in a single vector of 120 dimensions, two
vectors of 60 dimensions, four vectors of 30 dimen-
sions or eight vectors of 15 dimensions each using
a transposed convolution layer.

This model has about 10.4 millions parameters
when k = 1 and the count slightly decreases as
k increases. On top of the core parameters, the
size of the embedding table depends on each lan-
guage. For example, there are 1.9 millions parame-
ters (16096× 120) for the French embeddings but
only 1.2 millions parameters (9665× 120) (a third
less) for the English ones. It took 2 days to run the
whole set of experiments on a server equipped with
a GeForce RTX 3090 graphics card.

4.3.1 Results and Discussion
Table 1 gives the results for the first set of exper-
iments where word embeddings are trained from
scratch with the parsing loss. From French, He-
brew and Portuguese results, it seems clear that
distributing a word’s vectors over multiple encod-
ing step is beneficial. On average, parsers whose
encoder have seen input words’ representation in k
steps rather than one have higher unlabeled attach-
ment scores for k ∈ {2, 4, 8} and better labeled
attachment scores for k ∈ {2, 4}. For English and
Indonesian, the effect seems less pronounced. How-
ever, English parsers still have better attachment
scores (unlabeled and labeled) on average when
k ∈ {4, 8} than k = 1. We also see that when a
model does not perform as well when k > 1 as
when k = 1, the scores of the model with k > 1
are never far behind from the ones of the model
with k = 1.

As we noted above, since the k vectors of a word
are of length b dkc instead of d, the GRU cell has
h(d− b dkc) less parameters, where h is the dimen-
sion of the hidden state. Furthermore, having k
vectors per word instead of one, means that the
input sequence to be encoded is of length kn for
an input sentence of length n. Beside an actual
increase in computation time, this has two main
effects. First, at encoding time, the last and first
vectors of two words separated by l words in an
input sentence are now kl vectors apart in the new
representation and therefore kl computation steps
apart, which gives more time for information era-
sure and thus could make it harder to detect long

distance relations.
Second, at gradient propagation time, this means

that while the parsing loss is essentially the same
as in the monodianysmatic case, its gradient has
to be back-propagated through the encoder RNN
for k times more computation steps. This second
effect may explain why for Hebrew and Indone-
sian, worst performances seem to correlate with a
higher standard deviation of parsing scores. We
see a somewhat similar trend in Portuguese where
standard deviation increases as k increases.

Yet, we still see an increase in performance over-
all in spite of these two potential problems. This
indeed seems to support that having multiple occa-
sion to encode a word into the hidden state of an
RNN is beneficial.

Table 2 reports on a small experiments on En-
glish and French where embeddings are still trained
with the parsing loss, however the 120 dimensions
of the embeddings are now repeated whole one, two
or four times. While not consistent for English, the
performances steadily decrease for French. This
seems to support the hypothesis that word repre-
sentations need to be adapted to the model’s states
and that using the very same representation over
again is not optimal. But we will need more work
to make more conclusive statements.

4.4 Pre-trained Transformer-Based
Representations

In the previous experiments, we trained the word
representations from scratch. However, most cur-
rent works make use of contextualized representa-
tions from language models pre-trained on large
amounts of data. For example, HoPS (Grobol and
Crabbé, 2021) uses an LSTM on top of a com-
bination of word representations including some
transformer-based contextualized embeddings.

Thus, in order to see if the above analysis car-
ries on to more recent pre-trained representations,
in this second set of experiments, we used XLM-
Roberta (Conneau et al., 2019) as a feature extrac-
tor and used the output of its final layer as input to
our model. When a word is split into several tokens
by XLM-Roberta’s tokenizer, we keep them all in
the sequence (they are all stratified) but we only
consider the first token for computing the loss and
predicting the structure.

Since, XLM-Roberta is not trained with our
stratified vector representation in mind, we learn
an extra transposed convolution tensor of size
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Language
Selection

Metric
Average Score / Standard Deviation

Metric k = 1 k = 2 k = 4 k = 8

UAS UAS 79.12 0.33 79.08 0.25 79.52 0.44 79.20 0.25
English LAS LAS 73.69 0.44 73.51 0.54 74.08 0.45 73.84 0.23
EWT

Both
UAS 79.05 0.45 79.01 0.29 79.36 0.22 79.25 0.32
LAS 73.63 0.56 73.54 0.46 73.53 0.35 73.81 0.22

UAS UAS 86.24 0.30 86.58 0.32 86.36 0.34 86.27 0.32
French LAS LAS 80.95 0.47 81.15 0.28 81.02 0.49 80.54 0.22
GSD

Both
UAS 86.13 0.24 86.54 0.29 86.48 0.43 86.24 0.28
LAS 80.77 0.41 81.07 0.25 80.99 0.43 80.56 0.25

UAS UAS 76.67 0.20 77.08 0.57 76.97 0.31 76.64 0.20
Irish LAS LAS 65.94 0.24 66.05 0.73 66.01 0.24 65.67 0.29
IDT

Both
UAS 76.75 0.13 77.08 0.57 76.98 0.18 76.64 0.29
LAS 65.82 0.15 66.07 0.73 65.93 0.14 65.73 0.28

UAS UAS 79.85 0.19 80.42 0.41 80.18 0.56 79.92 0.76
Hebrew LAS LAS 72.83 0.35 73.54 0.42 72.83 0.31 72.71 0.97
HTB

Both
UAS 79.71 0.30 80.55 0.54 80.08 0.45 79.88 0.72
LAS 72.72 0.50 73.63 0.75 72.91 0.37 72.63 0.78

UAS UAS 76.47 0.24 76.79 0.42 76.47 0.45 76.43 0.64
Indonesian LAS LAS 65.39 0.56 65.49 0.62 64.67 0.41 64.36 0.84
GSD

Both
UAS 76.43 0.18 76.81 0.48 76.42 0.50 76.20 0.72
LAS 64.90 0.34 65.50 0.64 64.58 0.66 64.31 0.89

UAS UAS 80.62 0.17 81.04 0.37 80.70 0.45 80.73 0.34
Portuguese LAS LAS 73.75 0.10 74.21 0.38 73.77 0.56 73.93 0.58
Bosque

Both
UAS 80.53 0.08 81.02 0.39 80.69 0.39 80.80 0.42
LAS 73.73 0.09 74.09 0.43 73.75 0.61 73.86 0.54

Table 1: Results for the parsing experiments on English, French, Irish, Hebrew, Indonesian and Portuguese when
tokens embeddings are learnt directly from scratch with the parsing loss. Since there are two main metrics used
to test parsers : unlabeled attachment score (UAS) and labeled attachment score (LAS), we applied two different
epoch selection strategies. We either pick the best model with regard to the desired target metric (UAS for UAS
and LAS for LAS) or picked the last model that improved both metrics at once. These different model selections
are marked with horizontal lines, thus UAS and LAS scores reported in the “Both” rows are computed from the
very same models. In bold are the averages that are higher than the corresponding average when k = 1. Each score
is averaged over five different runs with random seeds set from [0, 1, 2, 3, 4].

Language
Selection

Metric
Average Score / Standard Deviation

Metric k = 1 k = 2 k = 4

UAS UAS 79.12 0.33 79.08 0.38 78.73 0.28
English LAS LAS 73.69 0.44 73.87 0.29 73.46 0.33
EWT

Both
UAS 79.05 0.45 79.14 0.34 78.70 0.28
LAS 73.63 0.56 73.88 0.27 73.22 0.38

UAS UAS 86.24 0.30 85.93 0.15 85.73 0.23
French LAS LAS 80.95 0.47 80.46 0.30 80.16 0.08
GSD

Both
UAS 86.13 0.24 85.94 0.16 85.57 0.15
LAS 80.77 0.41 80.45 0.25 79.93 0.20

Table 2: Results for the parsing experiments on English and French when tokens embeddings are learnt directly
from scratch with the parsing loss. Each token has a single 120 dimensions embedding that is repeated either 1,
2 or 4 times. In bold are the averages that are higher than the corresponding average when k = 1. Each score is
averaged over five different runs with random seeds set from [0, 1, 2, 3, 4].
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1× 768× k×b768k c in order to distribute the origi-
nal XLM-Roberta’s 768 dimensions representation
into k vectors of b768k c dimensions per token which
will then be fed to the actual parsing model.

This model has between 10.4 and 10.8 millions
parameters depending on k and not counting XLM-
Roberta’s own parameters since we can run it only
once and store its outputs. Note that since this
model is a bit more demanding, we set the early
stopping to 20 epochs without UAS/LAS increase.
This set of experiments took 12 hours to run on a
server equipped with a GeForce RTX 3090 graph-
ics card.

4.4.1 Results and Discussion
Table 3 presents the results for the second set of
experiments where word embeddings are taken
from a frozen XLM-Roberta model. In this sec-
ond set of experiments, we only trained models
for k ∈ {1, 2, 4} because the bigger models take
more time to train. In this table, it appears even
clearer that having more vectors per word is benefi-
cial. The average parsing scores (UAS and LAS)
for models with k = 1 and k ∈ {2, 4} are now
several standard deviations apart, making the case
even stronger in favor of using multiple embedding
per words.

The scores of the models using pre-trained con-
textualized representations are much higher than
the one using embeddings trained directly with the
parsing loss. We see increases of the order of 10
UAS points and 13 LAS points for English and 6
UAS points and 9 LAS points for French. While
this is somewhat expected from the literature on
pre-trained contextualized representations (HoPS
(Grobol and Crabbé, 2021) saw a similar increase
when using representations extracted from Flaubert
(Le et al., 2020)), it is interesting to see that the
two types of improvements are cumulative. In fact
it even seems that models using pre-trained con-
textualized representations benefit more from an
increased vector stratification than models relying
solely on a vanilla embedding layer. We hypoth-
esize that this is due to the fact that in the case
of the frozen XLM-Roberta, the models only have
to learn to reorder the information with a unique
transposed convolution layer shared for all tokens
and does not have to learn the representations of
the tokens themselves. However, we would need
more experiments to be able to make a definitive
conclusion.

Thus, both experiments’ results support the idea

that using stratified vectors is beneficial for RNN
as least in the case of dependency parsing.

5 Limitations

This work is limited in two main regards. First,
we only tested our hypothesis on dependency pars-
ing. At this point, it is not clear how this result
should apply to other linguistic tasks if at all. Since
in dependency parsing a word plays several roles
(governor and dependent), it could be that having
multiple output vectors helps more here than for
other tasks. However, early experiments seems to
indicate that only having several output vectors per
word is not enough to see similar parsing gains.

The second limitation is the limited language
selection. We only experimented on six languages.
While there is nothing inherent about these six lan-
guages that should make them more likely to dis-
agree with the monodianysm assumption, it is still
possible that stratified vectors are not suitable for
all languages.

However at this point, there is no strong evidence
pointing in that direction and we simply need more
work to see how these results do or do not general-
ize.

6 Future Work

These first results open many new avenues for fu-
ture research and begs for a better understanding
of what is actually captured by neural networks
and by word embeddings. Here we only present
a few of the many questions that will need to be
answered.

First and foremost, we need to understand the
information structure of stratified vectors. Early
probing attempts did not reveal any directly acces-
sible structure, neither inside the stratified vectors
themselves nor between the strata of the embedding
space. But this may be due to the max-pooling op-
eration that is notoriously oblivious to structure
or to the fact that parsing corpora are rather small
compared to corpora used to train general language
models. So we need to train proper polydianys-
matic language models in order to explore their
inner structure.

Since the k vectors of a word always come to-
gether, we guess that it reduces the overall perplex-
ity of the underlying language model, as the first
vector of a word prepares the model for its succes-
sors. We hypothesize that the first vector of a word
brings the RNN to a state where it is better able to
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Language
Selection

Metric
Average Score / Standard Deviation

Metric k = 1 k = 2 k = 4

UAS UAS 88.49 0.38 89.17 0.23 89.41 0.18
English LAS LAS 84.64 0.68 86.03 0.21 86.65 0.24
EWT

Both
UAS 88.59 0.45 89.17 0.23 89.42 0.16
LAS 84.76 0.67 86.01 0.21 86.43 0.21

UAS UAS 91.88 0,42 92.60 0,37 93.05 0,27
French LAS LAS 87.93 0,46 89.40 0,27 89.99 0,30
GSD

Both
UAS 91.77 0,28 92.61 0,29 93.05 0,27
LAS 87.82 0,39 89.33 0,32 89.99 0,30

Table 3: Results for the parsing experiments on English and French when tokens embeddings are taken from a
frozen XLM-Roberta encoder. Like in the previous experiments, we either pick the best model with regard to the
desired target metric (UAS for UAS and LAS for LAS) or picked the last model that improved both metrics at once.
These different model selections are marked with horizontal lines, thus UAS and LAS scores reported in the “Both”
rows are computed from the very same models. In bold are the averages that are higher than the corresponding
average when k = 1. Each score is averaged over five different runs with random seeds set from [0, 1, 2, 3, 4].

make the best of the subsequent vectors of that very
word. So we need to investigate this hypothesis:
Is it just the expected reduction in perplexity that
makes the model more powerful or is it something
else entirely? Here again, training proper language
models should help answer that question.

Then, as mentioned in Section 5, we have only
experimented on dependency parsing, and thus we
need to know if and how it would transfer to other
tasks. Do stratified vectors work only for tasks
where there is a strong role difference between
tokens as in dependency parsing (governor vs. de-
pendent)? Related to that question, is the fact that
in RNN, more inputs implies more outputs and
therefore more encoding space, so we also need
to investigate the impact of these added degrees of
freedom on the end results.

From a technical standpoint, it is clear that the
increase in computation time discussed in Section
3 is a major limitation of our proposal. How-
ever, this need not be a fatality. If instead of
having several vectors for words in isolation, we
used compositionally crafted n-gram representa-
tions, we could still have information about a given
word passed to the encoder for several computa-
tion steps while only incurring a additive linear
overhead rather than a multiplicative one. For
example, instead of representing a sequence abc
as [a1,a2,b1,b2, c1, c2] (with a1 being the first
vector for a and so on) which is twice as long
as the original sentence, we could represent it as
[f(#ab), f(abc), f(bc#)] (where f is some compo-
sitional embedding function and # representing
sentence boundaries) which still has every word ap-

pearing at least twice and yet has the same length as
the original sentence. This needs to be investigated
further.

We mentioned in Section 4.1 that since stratified
vectors have a temporal structure, it is not the same
to read them in one direction or the other. This
becomes a new parameter for RNN that needs to
be understood. Moreover, we introduce stratified
vectors in the context of recurrent neural networks,
but if it is the multiple outputs that make them pow-
erful then they could also be applied to transformer
type architectures, which as we said earlier are time
agnostic. This would beg even further research on
the information structure of the embedding spaces
and their relation to each other.

Eventually, regarding dependency parsing more
specifically, there are many possibilities for extract-
ing trees from multiple scores beyond max-pooling.
We could always use a single fixed cell and thus let
the remaining vectors encode any useful informa-
tion. We could have different biaffine matrices for
different cells. We could use the different cells to
reconstruct several trees and effectively train sev-
eral parsers at the same time and then have them
vote for example.

As we see, the results presented in this paper
open a lot of new questions that will need to be
answered if we want to make the best of embedding
spaces.

7 Conclusion

In this paper, we have introduced the concept of
stratified vectors as a way to challenge the ubiqui-
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tous monodianysm assumption : “one vector per
word”. Via a series of experiments on dependency
parsing, using either representations learnt from
scratch or extracted from pre-trained language mod-
els, we showed that stratified vectors indeed seem
useful, at least in the context of graph based parsing
with RNN encoders.

We then discussed the current limited scope of
our results and the necessary questions that need to
be answered in order to better challenge the “one
vector per word” assumption and the many direc-
tions for future research granted by these questions.

8 Ethical Considerations

As far as we can tell, this work should not raise any
ethical concerns.

The only potential impact, yet very theoretical
at this point, is due to the increase in computation
time brought by the increased sequences length.
But as we mentioned in Section 6, it should be
possible to reach similar results with a better n-
gram based encoding, which would therefore bring
our proposal back in line with other RNN based
methods in term of computation time.
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