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La modélisation multi-échelle non-linéaire par éléments finis des composites reste aujourd'hui un défi dans des applications industrielles. En effet, son utilisation nécessite une puissance de calcul élevée et donc souvent couteuse en temps, ce qui constitue un verrou majeur rendant impossible la prise de décision en temps réel. C'est pourquoi, la construction de modèles paramétriques est un outil primordial pour pouvoir analyser et optimiser les structures composites. À cette fin, une approche basée sur la PGD non-intrusive est proposée afin d'offrir une solution multi-paramétrique capable d'évaluer quasi-instantanément la réponse macroscopique non-linéaire des composites tissés en fonction de certains paramètres de microstructure. La solution paramétrique est développée pour un matériau composite à renfort tissé (sergé 2,2) et à matrice polyamide 66 pour des séquences d'empilement symétriques et équilibrées de

Cette solution permet d'analyser le comportement macroscopique du composite non linéaire lors de divers types de sollicitations, notamment monotones, charge-décharge et en fluage-recouvrance. Elle prend en considération à la fois le caractère viscoélastique-viscoplastique de la matrice et les dommages subis par les torons.

Introduction

Malgré leur coût généralement élevé, les composites s'avèrent être aujourd'hui une alternative indispensable aux matériaux classiques. Ils sont couramment utilisés dans diverses applications industrielles pour répondre aux exigences de haute résistance et de légèreté, notamment dans l'industrie de transport. Cette demande augmente avec les tendances croissantes en matière de durabilité des véhicules électriques et à hydrogène, qui visent à réduire l'impact des émissions de CO 2 sur l'environnement. En outre, grâce aux procédés de fabrication avancés, la conception des composites devient de plus en plus flexible. De ce fait, il est possible de fabriquer des composites stratifiés sur mesure avec des paramètres optimaux de microstructure afin d'obtenir les performances mécaniques souhaitées. Dans ce contexte, il est essentiel de disposer d'un modèle numérique paramétrique reliant les différents paramètres du composite avec sa réponse mécanique macroscopique. À cette fin, une méthode basée sur la PGD (Proper Order Generalized Decomposition) non-intrusive [START_REF] Chinesta | A short review on model order reduction based on proper generalized decomposition[END_REF][START_REF] Sancarlos | PGD-based advanced nonlinear multiparametric regressions for constructing metamodels at the scarce-data limit[END_REF][START_REF] Borzacchiello | Non-intrusive sparse subspace learning for parametrized problems[END_REF][START_REF] Pasquale | A parametric metamodel of the vehicle frontal structure accounting for material properties and strain-rate effect : application to full frontal rigid barrier crash test[END_REF] est adoptée ici pour fournir des solutions avec une dépendance paramétrique explicite. Ce type d'approche a récemment été utilisé [START_REF] Idrissi | Multiparametric modeling of composite materials based on non-intrusive PGD informed by multiscale analyses : Application for real-time stiffness prediction of woven composites[END_REF] pour construire une solution multi-paramétrique capable d'évaluer quasi-instantanément les propriétés macroscopiques élastiques des composites à renforts tissés en fonction de plusieurs paramètres microstructuraux (architecture, paramètres géométriques, paramètres matériaux, ...).

Dans ce travail, cette approche est étendue au comportement non-linéaire des composites tissés. Dans ce cas, des essais virtuels sont préalablement calculés pour divers paramètres microstructuraux lors de la phase Offline à l'aide d'un modèle multi-échelle non-linéaire intégrant l'endommagement dans les torons ainsi que la rhéologie complexe de la matrice [START_REF] Chatzigeorgiou | Multiscale Modeling Approaches for Composites[END_REF][START_REF] Praud | Fully integrated multi-scale modelling of damage and time-dependency in thermoplastic-based woven composites[END_REF][START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and time-dependent behaviour[END_REF][START_REF] Praud | Phenomenological multi-mechanisms constitutive modelling for thermoplastic polymers, implicit implementation and experimental validation[END_REF][START_REF] Praud | Hybrid micromechanical-phenomenological modelling of anisotropic damage and anelasticity induced by micro-cracks in unidirectional composites[END_REF]. La solution multi-paramétrique obtenue à l'issue de la phase Online permet de visualiser en temps réel l'influence de la microstructure sur le comportement macroscopique non-linéaire du composite lors de sollicitations monotones, charge-décharge et en fluage-recouvrance. La solution développée dans ce travail a été testée et validée sur un composite à matrice polyamide 66 et à renfort en fibres de verre de type sergé 2/2 sous trois configurations de chargement et pour deux orientations différentes. Par ailleurs, cette solution multi-paramétrique peut être également utilisée à la volée pour calibrer des modèles phénoménologiques ou pour alimenter des modèles basés sur des réseaux de neurones en produisant une base d'essai virtuels.

2.

Paramètres du problème :

Les composites tissés se caractérisent par un comportement anisotrope complexe résultant de l'arrangement géométrique de leur microstructure ainsi que des propriétés de leurs constituants, à savoir le renfort tissé et la matrice. Afin de développer une solution paramétrique s'appliquant pour divers types de sollicitations, les trajets de chargement suivant sont considérés dans la présente étude :

-Essai de traction monotone : Le matériau est soumis à une traction monotone suivant l'axe ì 𝑥 selon deux orientations différentes (𝜃 = 0 • et 𝜃 = 45 • ). Lors de cet essai, une déformation macroscopique 𝜀 𝑥 𝑥 = 0.02 est appliqué pour 𝜃 = 0 • , tandis qu'une déformation de 𝜀 𝑥 𝑥 = 0.035 est appliquée pour 𝜃 = 45 • . Trois vitesses de déformation différentes sont considérées pour chacune des orientations ( 𝜀 𝑥 𝑥 = 2 × 10 -4 s -1 , 𝜀 𝑥 𝑥 = 2 × 10 -3 s -1 et 𝜀 𝑥 𝑥 = 2 × 10 -2 s -1 , comme le montre la Figure 3a.

-Essai de charge-décharge : La représentation schématique de cette simulation est illustrée sur la Figure 3b où le matériau est soumis à un signal triangulaire cyclique de contrainte (charge-décharge) sous des amplitudes progressivement croissantes correspondant à 10 %, 30 %, 50 %, 70 % et 100 % de la contrainte maximale 𝜎 max , successivement. Cette dernière dépend de l'orientation 𝜃 (pour 𝜃 = 0 • , 𝜎 max =350 MPa et pour 𝜃 = 45 • , 𝜎 max =90 MPa). Il convient de noter que le même taux de contrainte est maintenu pendant cet essai qui est égal à 35 MPa.s -1 pour 𝜃 = 0 • et à 9 MPa.s -1 pour 𝜃 = 45 • .

-Essai de fluage-recouvrance : Des tests de fluage-recouvrance sont réalisés sur le matériau en appliquant progressivement trois niveaux de contraintes croissantes : 50 %, 75% et 100 % de la contrainte maximale 𝜎 max (Figure 3c). Cette configuration d'essai met en évidence les effets de fluage causés par le comportement viscoélastique et viscoplastique de la matrice. La première étape de cet essai consiste à charger le matériau en 2.5 secondes à une contrainte équivalente à 50% de 𝜎 max . Cette contrainte est ensuite maintenue pendant 300 secondes avant d'être relâchée en 2.5 secondes. Le composite est alors laissé libre de toute contrainte pendant 300 secondes supplémentaires. Le test se poursuit en répétant les mêmes étapes de chargement en augmentant l'amplitude de la contrainte appliquée sans changer le taux de chargement. Il faut noter que pour 𝜃 = 0 • , 𝜎 max atteint 350 MPa, tandis que pour un angle 𝜃 = 45 • , la contrainte maximale 𝜎 max est de 90 MPa. 

Modélisation Multi-échelle :

3.1.

Homogénéisation périodique :

En utilisant cette représentation paramétrique, une cellule unitaire est créée et maillée automatiquement pour chaque ensemble de paramètres microstructuraux 𝒑 dans l'espace de paramètres correspondant (Figure 1b). Cette opération est effectuée de manière automatisée à l'aide d'un script python spécialement développé dans le logiciel TexGen [START_REF] Brown | TexGen[END_REF].

La réponse macroscopique non-linéaire du composite est alors déterminée, pour chaque trajet de chargement prédéfini (voir les Figures 3a, 3b et 3c), en utilisant le concept d'homogénéisation périodique. Comme toutes les approches multi-échelles, l'homogénéisation périodique impliquent une connexion entre les échelles microscopique et macroscopique. Cette liaison est définie en utilisant le théorème de la moyenne [START_REF] Chatzigeorgiou | Multiscale Modeling Approaches for Composites[END_REF] qui permet d'écrire la contrainte et la déformation macroscopique, 𝝈 et 𝜺 comme étant la moyenne volumique de leurs contreparties microscopique sur l'ensemble du domaine de la cellule unitaire 𝔅 :

𝝈(𝑡) = 1 𝑉 ∫ 𝔅 𝝈(𝒙, 𝑡) d𝑉, 𝜺(𝑡) = 1 𝑉 ∫ 𝔅 𝜺(𝒙, 𝑡) d𝑉, (Eq. 1)
où 𝑉 représente le volume du domaine 𝔅. Dans le cas de l'homogénéisation périodique, les relations de transition d'échelle sont complétées par l'hypothèse de périodicité [START_REF] Suquet | Elements of homogenization for inelastic solid mechanics[END_REF], qui permet d'écrire le champ de déplacement 𝒖 à l'intérieur de la cellule unitaire sous la forme suivante :

𝒖(𝒙, 𝑡) = 𝜺(𝑡) • 𝒙 + 𝒖 ′ (𝒙, 𝑡) + 𝒖 0 (𝑡), ∀𝒙 ∈ 𝔅. (Eq. 2)
On remarquera que cette équation est composée d'une partie affine, 𝜺 • 𝒙, d'une fluctuation périodique 𝒖 ′ et d'un éventuel mouvement de corps rigide 𝒖 0 . La périodicité de 𝒖 ′ implique que ce champ prend des valeurs identiques à chaque pair de points opposés 𝒙 + et 𝒙 -se trouvant sur les bords de la cellule unitaire 𝜕𝔅. En combinant cette condition avec (Eq. 2), la condition de périodicité peut se reformuler en fonction de 𝒖, tout en impliquant directement le tenseur de déformation macroscopique 𝜺 :

𝒖(𝒙 + , 𝑡) -𝒖(𝒙 -, 𝑡) = 𝜺(𝑡) • (𝒙 + -𝒙 -), ∀𝒙 + , 𝒙 -∈ 𝜕𝔅, (Eq. 3) 
définissant ainsi les conditions aux limites à appliquer sur la cellule unitaire [START_REF] Chatzigeorgiou | Multiscale Modeling Approaches for Composites[END_REF][START_REF] Praud | Fully integrated multi-scale modelling of damage and time-dependency in thermoplastic-based woven composites[END_REF][START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and time-dependent behaviour[END_REF][START_REF] Li | General unit cells for micromechanical analyses of unidirectional composites[END_REF]. La réponse macroscopique du composite peut alors se déduire en solutionnant par éléments finis le problème de la cellule unitaire avec ces conditions aux limites, tout en considérant les relation de transition entre les échelles macroscopique et microscopique (Eq. 1).

Modèles constitutifs locaux pour la matrice et les torons :

La matrice thermoplastique présente un comportement dissipatif bien connu combinant des propriétés solides et fluides tout en étant sujet à des mécanismes de dégradation. Au sein de la phase matricielle 𝔅 0 de la cellule unitaire 𝔅, ce comportement est décrit à l'aide d'un modèle développé au sein de l'équipe et appelé VEVPD (Viscoplastique-Viscoélastique avec Endommagement) [START_REF] Praud | Phenomenological multi-mechanisms constitutive modelling for thermoplastic polymers, implicit implementation and experimental validation[END_REF]. Les équations constitutives de cette loi intègrent les déformations viscoélastiques et viscoplastiques ainsi que de l'endommagement ductile selon le schéma rhéologique représenté sur la Figure 4a 

Ψ = Ψ(𝜺, 𝜺 𝑠 , 𝛾 𝑐 ) ⇒ 𝝈 = 𝜕Ψ 𝜕𝜺 = [C 0 -D(𝛾 𝑐 )] : (𝜺 -𝜺 𝑠 ), ∀𝒙 ∈ (𝔅 1 ∪ 𝔅 2 ) ⊂ 𝔅, (Eq. 5) 
cette relation étant complétée par des lois d'évolution des variables internes 𝜺 𝑠 et 𝛾 𝑐 .

(a) Schéma rhéologique de la loi de comportement de la matrice thermoplastique.

(b) Principe de modélisation pour la loi de comportement des torons. De la même manière, on cherche aussi à estimer la déformation macroscopique 𝜺 𝑥 𝑥 en fonction des paramètres 𝒑 lorsque le composite est subit un trajet de chargement de type charge-décharge ou fluage-recouvrance contrôlé en contrainte macroscopique {𝝈 𝑥 𝑥 (𝑡)} (Comme précédemment décrit dans la section 2) :

Décomposition Propre Généralisée non-intrusive (PGD non-intrusive)

𝜺 𝑥 𝑥 ( 𝑝 1 , 𝑝 2 , 𝑝 3 , 𝑝 4 ; {𝝈 𝑥 𝑥 (𝑡)}) = 𝑀 ∑︁ 𝑖=1 𝑁 =4 𝑗=1 𝐹 𝑖 𝑗 ( 𝑝 𝑗 ; {𝝈 𝑥 𝑥 (𝑡)}).
(Eq. 8)

Résultats

En faisant appel à une stratégie d'échantillonnage parcimonieux adaptatif comprenant 81 points de collocation répartis sur les bords et au centre de l'espace paramétrique, des solutions de haute fidélité ont été obtenues à ces points en utilisant l'approche multiéchelle présentée précédemment afin d'entrainer le modèle PGD non-intrusive. Ensuite, une série de calculs est effectuée sur 34 microstructures générées aléatoirement dans l'espace des paramètres géométriques afin de tester ce modèle. Parmi celles-ci, quatre microstructures {𝑀 1 , 𝑀 2 , 𝑀 3 , 𝑀 4 }, listées dans la Table 1 ont été sélectionnées pour comparer leur réponse macroscopique (courbe contrainte-déformation et courbe déformation-temps) avec les résultats éléments finis lorsque ces échantillons sont soumises à différentes sollicitations telles que de la traction monotone à différents taux de déformation, des cycles de charge-décharge et des essais de fluage-recouvrance. Dans cette étude, la solution paramétrique est obtenue à l'aide de la méthode SSL (Sparse Subspace Learning) [START_REF] Borzacchiello | Non-intrusive sparse subspace learning for parametrized problems[END_REF] qui est basée sur PGD non-intrusive, tout en utilisant une interpolation spline pour déterminer les fonctions unidirectionnelles. Les Figures 5a et 5b illustrent les comparaisons entre les valeurs de la contrainte macroscopique de référence obtenue par la méthode des éléments finis (𝜎 𝑅 𝑥 𝑥 ) et celles de la contrainte macroscopique prédite par la méthode de PGD non-intrusive (𝜎 𝑃 𝑥 𝑥 ) lors de l'essai de traction monotone à trois vitesses de déformation (2 × 10 -4 , 2 × 10 -3 et 2 × 10 -2 s -1 ). Les résultats sont présentés pour deux séquences d'empilement, à savoir [±, 0 • ]s et [±, 45 • ]s. Il est pertinent de mentionner que, dans le but de simplifier la représentation graphique, seules certaines valeurs de contrainte ont été sélectionnées pour chaque essai. Ces points sont uniformément répartis le long du trajet de chargement (Figure 3a) pour les 34 microstructures de test. En observant ces courbes, il est évident que cette méthode est capable de prédire précisément les valeurs de la contrainte lorsque l'un des paramètres microstructuraux varie. Les Figures 5c et 5d comparent la courbe contrainte-déformation de référence (EF) avec la courbe prédite (PGD non-intrusive) de quatre échantillons, mettant également en évidence l'influence de la microstructure et de la vitesse de déformation sur la réponse macroscopique pour

Microstructure 𝑎 1 [mm] 𝑎 2 [mm] h[mm] c[mm] 𝑀 1 2.
[± 0 • ] s et [± 45 • ] s , respectivement.
En utilisant la même représentation graphique que celle présentée précédemment pour l'essai de traction, les Figures 6a et 6b permettent cette fois-ci de comparer respectivement la déformation macroscopique prédite (𝜀 𝑃 𝑥 𝑥 ) avec la déformation de référence (𝜀 𝑅 𝑥 𝑥 ) pour les mêmes microstructures utilisées dans le test, lorsqu'elles sont soumises aux essais de charge-décharge et orientées à des angles de 0 

Conclusions

En se basant sur des méthodes de PGD non-intrusive, ce travail vise à développer une solution multi-paramétrique pour simuler le comportement macroscopique d'un composite thermoplastique à renfort tissé de type sergé 

Fig. 2 .

 2 Fig. 2. -Schéma représentant les deux orientations prises en compte, à savoir 0 • et 45 • , ainsi que l'axe de chargement.

( a )

 a Essais de traction monotone effectué à trois vitesse de déformation 2×10 -4 , 2×10 -3 et 2 × 10 -2 s -1 . (b) Essai de charge-décharge . (c) Essai de fluage-recouvrance.

Fig. 3 .

 3 Fig. 3. -Trajets de chargement appliqués au composite stratifié pour un empilement symétrique de [± 0 • ] s par rapport à l'axe de chargement ì 𝑥 .

Fig. 4 .

 4 Fig. 4. -Schémas illustratifs des lois de comportement pour la matrice thermoplastique et pour les torons.

Fig. 5 .

 5 Fig. 5. -Résultats de l'essai de traction monotone à trois vitesses de déformation (2 × 10 -4 , 2 × 10 -3 et 2 × 10 -2 ) pour deux séquences d'empilement correspond aux [± 0 • ] s et [± 45 • ] s . (a) et (b) Contrainte macroscopique de référence obtenue par EF (𝜎 𝑅 𝑥 𝑥 ) vs. Contrainte macroscopique prédite par PGD non-intrusive (𝜎 𝑃 𝑥 𝑥 ) calculée à dix endroits uniformément répartis sur le trajet de chargement pour les 34 microstructures de test. (c) et (d) Comparaison de courbe contrainte-déformation (Référence vs. Prédiction) pour les quatre microstructures (𝑀 1 , 𝑀 2 , 𝑀 3 et 𝑀 4 ).

Fig. 6 .

 6 Fig. 6. -Résultats de l'essai de charge-décharge pour deux configurations de stratifiés correspond aux [± 0 • ] s et [± 45 • ] s . (a) et (b) Déformation macroscopique de référence obtenue par EF (𝜀 𝑅 𝑥 𝑥 ) vs. Déformation macroscopique prédite par PGD non-intrusive (𝜀 𝑃 𝑥 𝑥 ) calculée à des endroits uniformément répartis sur le trajet de chargement pour les 34 microstructures de test. (c) et (d) Comparaison de courbe contrainte-déformation (Référence vs. Prédiction) pour les quatre microstructures (𝑀 1 , 𝑀 2 , 𝑀 3 et 𝑀 4 ).

  (a) 𝜀 𝑅 𝑥 𝑥 vs 𝜀 𝑃 𝑥 𝑥 pour le stratifié [± 0 • ] s . (b) 𝜀 𝑅 𝑥 𝑥 vs. 𝜀 𝑃 𝑥 𝑥 pour le stratifié [± 45 • ] s . (c) 𝜎 𝑥 𝑥 vs. 𝜀 𝑥 𝑥 pour le stratifié [± 0 • ] s . (d) 𝜎 𝑥 𝑥 vs. 𝜀 𝑥 𝑥 pour le stratifié [± 45 • ] s . (e) 𝜎 𝑥 𝑥 vs. temps pour le stratifié [± 0 • ] s . (f) 𝜎 𝑥 𝑥 vs. temps pour le stratifié [± 45 • ] s .

Fig. 7 .

 7 Fig. 7. -Résultats de l'essai de fluage-recouvrance pour deux configurations de stratifiés correspond aux [± 0 • ] s et [± 45 • ] s . (a) et (b) Déformation macroscopique de référence obtenue par EF (𝜀 𝑅 𝑥 𝑥 ) vs. Déformation macroscopique prédite par PGD non-intrusive (𝜀 𝑃 𝑥 𝑥 ) calculée à des endroits uniformément répartis sur le trajet de chargement pour les 34 microstructures de test. (c) et (d) Comparaison de courbe contrainte-déformation (Référence vs. Prédiction) pour les quatre microstructures (𝑀 1 , 𝑀 2 , 𝑀 3 et 𝑀 4 ). (e) et (f) Comparaison de courbe déformation-temps (Référence vs. Prédiction) pour les mêmes microstructures.

avec les angles suivants : 𝜃 = 0 • et 𝜃 = 45 • , comme le montre les Figures 2a et 2b. Il convient de rappeler que

  Les renforts tissés classiques sont généralement obtenus à partir d'un entrelacement orthogonal de torons trames et chaînes, eux-mêmes composés de nombreuses fibres orientées selon les directions (1) et (2), respectivement. Plusieurs types d'architectures (équilibrée/déséquilibrée) sont couramment utilisés dans diverses applications industrielles, comme le taffetas, sergé et satin. Ils se distinguent non seulement par leurs différents motifs de tissage, mais aussi par leurs caractéristiques distinctes telles que la stabilité et le drapé. Par conséquent, le comportement mécanique des composites tissés est fortement influencé par leur microstructure. Ainsi, différentes réponses macroscopiques peuvent être obtenues en modifiant la géométrie du renfort, le modèle de tissage ainsi que le comportement de leurs constituants.La présente contribution se concentre sur les composites tissés à renfort sergé 2/2. Sur la base de cette architecture, la Figure1amontre les paramètres prise en compte dans cette étude pour définir la géométrie de cette microstructure, la largeur du toron trame 𝑎 1 ∈ [0.8, 4.5] (mm), la largeur du toron chaîne 𝑎 2 ∈ [0.8, 4.5] (mm), la distance entre deux torons adjacents 𝑐 ∈ [0.3, 0.6] (mm) et l'épaisseur de tissu ℎ ∈ [0.2, 0.6] (mm). Il convient de noter que la distance entre deux torons adjacents 𝑐 est considérée comme étant la même pour les torons trame et chaîne. En outre, les torons ont une épaisseur égale à la moitié de l'épaisseur du tissu ℎ, tandis que 10% de ℎ sont ajoutés pour définir l'épaisseur du domaine de la matrice. Ces paramètres sont regroupés dans un vecteur 𝒑 = {𝑝 1 , 𝑝 2 , 𝑝 3 , 𝑝 4 } T contenant les quantités mentionnées ci-dessus. , dans cette configuration, il n'y a pas de couplage traction-cisaillement ou traction-flexion, de sorte que l'ensemble du stratifié peut être chargé axialement sans générer de cisaillement ou de courbure. L'épaisseur d'une seule couche est d'environ 1.1 × ℎ mm, ce qui donne une épaisseur totale de 4.4 × ℎ mm pour chaque échantillon.
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  . Ce dernier consiste en un ressort soumis à une déformation élastique instantanée, 𝑁 branches viscoélastiques de Kelvin-Voigt, chacune étant soumise à une déformation viscoélastique 𝜺 𝑣 𝑖 , et une branche viscoplastique soumise à une déformation viscoplastique 𝜺 𝑝 s'accompagnant d'un écrouissage 𝑟. Par ailleurs, l'endommagement, considéré ici comme un phénomène isotrope est décrit par la variable d'endommagement 𝐷. Dérivant d'un potentiel d'état, l'expression de la contrainte dans la matrice est donnée par :Ψ = Ψ(𝜺, 𝜺 𝑣 𝑖 , 𝜺 𝑝 , 𝑟, 𝐷) 𝑣 𝑖 -𝜺 𝑝 , ∀𝒙 ∈ 𝔅 0 ⊂ 𝔅, (Eq. 4)cette relation étant complétée par des lois d'évolution des variables internes 𝜺 𝑣 𝑖 , 𝜺 𝑝 , 𝑟 et 𝐷. Ce type de modélisation permet de capturer certains effets bien connus des polymères thermoplastiques tels que la dépendance à la vitesse de sollicitation, le fluage, la relaxation, ainsi que le couplage de ses effets avec l'endommagement.

	⇒	𝝈 =	𝜕Ψ	= (1 -𝐷)C
			𝜕𝜺	

𝑒 : 𝜺 -𝑁 ∑︁ 𝑖=1 𝜺

Dans les torons, représentés par les sous-domaines 𝔅 1 et 𝔅 2 pour les torons de trame et de chaîne, respectivement, la présence d'un renfort continu (fibres longues) fait que le comportement longitudinal apparaît comme étant linéaire élastique jusqu'à rupture brutale. Cependant, le comportement transverse présente une dégradation plus progressive provoquée par la croissance d'un réseau diffus de micro-fissures dans l'inter-fibre. Ce comportement est modélisé ici par la loi de comportement développée par

[START_REF] Praud | Hybrid micromechanical-phenomenological modelling of anisotropic damage and anelasticity induced by micro-cracks in unidirectional composites[END_REF] 

à travers une approche hybride phénoménologique/micro-mécanique. La perte de rigidité anisotrope D induite par la micro-fissuration est calculée par un schéma d'homogénéisation par champs moyens en introduisant une densité de micro-fissure 𝛾 𝑐 dans le volume élémentaire représentatif, comme le montre la Figure

4b

. Par ailleurs, l'endommagement dans les torons s'accompagne de déformations permanentes dues à au frottement des micro-fissures, empêchant ces dernières de se refermer. Cet aspect est phénoménologiquement décrit par un tenseur de déformation inélastique noté 𝜺 𝑠 qui s'ajoute à la déformation élastique. Dérivant aussi d'un potentiel d'état, l'expression de la contrainte dans les torons est donnée par :

  La prédiction de la réponse macroscopique des composites tissés dépend d'un processus numérique impliquant des techniques d'homogénéisation, l'utilisation d'un solveur éléments finis, ainsi que la génération de la microstructure et son maillage. Ce coût de calcul élevé que tout ce processus implique est suffisamment important pour entraver son utilisation dans un contexte industriel, et plus particulièrement quand il est nécessaire d'évaluer plusieurs configurations avec différentes valeurs de paramètres. Cela peut rendre le processus de conception et d'optimisation excessivement long. Pour surmonter ces limitations, la présente contribution se propose d'utiliser le concept de PGD non-intrusive pour mettre en oeuvre une approximation multi-paramétrique basée sur des solutions pré-calculées en certains points de l'espace paramétrique[START_REF] Sancarlos | PGD-based advanced nonlinear multiparametric regressions for constructing metamodels at the scarce-data limit[END_REF][START_REF] Chinesta | PGD-based computational vademecum for efficient design, optimization and control[END_REF]. Les méthodes de PGD non-intrusives sont particulièrement pratiques dans ce contexte, car elles n'utilisent que des données qui peuvent être obtenues indépendamment des processus numériques standard, tels que les simulations M désignent le nombre de paramètres et le nombre de modes, respectivement.En se basant sur la représentation séparée des variables (Eq. 6), nous cherchons dans ce travail à approximer la contrainte macroscopique 𝝈 𝑥 𝑥 en fonction des paramètres microstructuraux lorsque le matériau est soumis à une traction monotone pilotée par une déformation macroscopique {𝜺 𝑥 𝑥 (𝑡)}, sous forme séparée comme suit : 𝝈 𝑥 𝑥 ( 𝑝 1 , 𝑝 2 , 𝑝 3 , 𝑝 4 ; {𝜺 𝑥 𝑥 (𝑡)}) =

	où N et 𝑀	𝑁 =4
	∑︁	𝐹 𝑖 𝑗 ( 𝑝 𝑗 ; {𝜺 𝑥 𝑥 (𝑡)}).	(Eq. 7)
	𝑖=1	𝑗=1
	𝑀	𝑁	
	∑︁		𝐹 𝑖 𝑗 ( 𝑝 𝑗 ),	(Eq. 6)
	𝑖=1	𝑗=1

par éléments finis. Cela contraste avec les méthodes conventionnelles basées sur la PGD classique

[START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids[END_REF] 

qui nécessitent des processus numériques ou des solveurs spécifiquement adaptés. L'idée principale de cette technique est d'approximer la solution 𝑠( 𝑝 1 , ..., 𝑝 𝑁 ) en une somme finie de produits de fonctions unidimensionnelles 𝐹 𝑖 𝑗 ( 𝑝 𝑗 ) :

𝑠( 𝑝 1 , ..., 𝑝 𝑁 ) ≈

  • et 45 • par rapport à l'axe de chargement ì 𝑥. Encore une fois, ces Figures démontrent la capacité de cette méthode à reproduire la réponse macroscopique pour d'autres microstructures qui n'ont pas été utilisées lors de la phase d'entraînement. Cette capacité est clairement visible dans les Figures 6c et 6d, qui présentent les courbes de contrainte-déformation macroscopique. Ces courbes mettent en évidence l'influence de la microstructure sur la réponse macroscopique, y compris la dégradation du matériau. La déformation macroscopique obtenue par EF (𝜀 𝑅 𝑥 𝑥 ) vs celle calculée par PGD non-intrusive (𝜀 𝑃 𝑥 𝑥 ) est présentée dans les Figures 7c et 7d pour les essais de fluage-recouvrance. Là aussi, ces essais sont simulés sur des éprouvettes avec des séquences d'empilement de [±, 0 • ]s et [±, 45 • ]s. Une comparaison entre les courbes macroscopiques de contrainte-déformation des microstructures {𝑀 1 , 𝑀 2 , 𝑀 3 , 𝑀 4 } est également établie dans les Figures 7a et 7b. Les Figures 7e et 7f illustrent les réponses en déformation obtenues à partir de la solution paramétrique et des résultats de référence pour différentes valeurs de paramètres géométriques. Ces essais mettent en évidence de manière significative la nature visqueuse du composite, qui est induite par la loi de comportement de la matrice PA66.

  2/2 et matrice polyamide 66. L'objectif est de construire, dans une phase Offline, une solution globale décrivant le comportement viscoplastique-viscoplastique avec endommagement du composite tissé lorsque ce dernier est soumis à des trajets de chargement prédéfinie (sollicitations monotones, fluage-recouvrance et charge-décharge), pour deux configurations de stratifiés[± 0 • ] s et [± 45 • ] s .Cette solution permettra par la suite, dans une phase Online, d'accéder à la réponse macroscopique du composite pour tout type de microstructure possible sans avoir recours à la génération de la microstructure ou au calcul élément finis. Ce type d'approximation paramétrique est numériquement plus attractive pour enrichir des modèles basés sur les réseaux de neurones ou pour calibrer des modèles phénoménologiques de composites en fournissant une base de données d'essai virtuels. En outre, sur la base de cette approximation, l'optimisation des structures composites (identification des paramètres optimaux permettant d'atteindre les performances mécaniques souhaitées) devient plus facile en visualisant, en temps-réel, l'impact de la microstructure sur la réponse macroscopique du composite. (a) 𝜀 𝑅 𝑥 𝑥 vs. 𝜀 𝑃 𝑥 𝑥 pour le stratifié [± 0 • ] s . (b) 𝜀 𝑅 𝑥 𝑥 vs. 𝜀 𝑃 𝑥 𝑥 pour le stratifié [± 45 • ] s . (c) 𝜎 𝑥 𝑥 vs. 𝜀 𝑥 𝑥 pour le stratifié [± 0 • ] s . (d) 𝜎 𝑥 𝑥 vs. 𝜀 𝑥 𝑥 pour le stratifié [± 45 • ] s .
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