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S
oft robotics has been a trending topic within the 
robotics community for almost two decades. 
However, available tools for the modeling and 
analysis of soft robots are still limited. This article 
introduces a user-friendly MATLAB toolbox, Soft 

Robot Simulator (SoRoSim), that integrates the geometric 
variable-strain (GVS) model of Cosserat rods to facilitate the 
static and dynamic analysis of soft, rigid, and hybrid robotic 
systems. We present a brief overview of the design and 
structure of the toolbox and validate it by comparing its 
results with those published in the literature. To highlight the 
toolbox’s potential to efficiently model, simulate, optimize, 
and control various robotic systems, we demonstrate four 
sample applications. The demonstrated applications explore 
different actuator and external loading conditions of single-, 
branched-, open-, and closed-chain robotic systems. We 
think that the soft robotics research community will 
significantly benefit from the SoRoSim toolbox for a wide 
variety of applications.

Introduction
One of the most trending topics in the robotics community is 
the development and design of soft robots that can tackle 
challenges otherwise hard and even impossible to solve using 
their traditional rigid counterparts [1]. Soft robots are light-
weight, cheap, and adaptable to different environments and 
scenarios, as demonstrated by the vast number of applications 
where they have been employed. On the other side, their 
compliance and infinite number of degrees of freedom (DoF) 
intrinsically increase the complexity of their modeling.

Different modeling approaches have been proposed previ-
ously, varying in their simplifying assumptions and applica-
bility. Some of the most commonly used approaches in soft 
robotics include the lumped mass model (LMM), finite-ele-
ment (FEM)-based models, discrete elastic rod (DER) model, 
and the piecewise constant curvature (PCC) model. The 
LMM assumes soft links to be repeated segments of point 
masses connected by springs and dampers corresponding to 
their geometry, expected motion, and DoF. FEM-based mod-
els provide a way of numerically approximating partial differ-
ential equations governing the motion and deformation of the 
soft body. The PCC model constructs kinematic relations 
based on the robot’s geometry and behavior under loading by 
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discretizing its links into a finite number of circular arcs char-
acterized by constant curvature [2]. Rod models, such as the 
Euler–Bernoulli beam, Timoshenko beam, and the Cosserat 
rod, model the material deformation of the robot or manipu-
lator by assuming it to be a 1D continuum mechanics object. 
The development of precise theoretical models is crucial, but 
theory alone may not be enough to satisfy the demand for 
computational tools in the soft robotics field. Knowledge 
sharing initiatives become essential to allowing the growth of 
this relatively new research field [3]. Generalized modeling 
platforms eliminate the need to write robot-specific scripts for 
the simulation, design optimization, and model-based control 
of specific manipulators by providing user-friendly, accurate, 
fast, and reliable algorithms.

Popular examples of such platforms include, Soft Motion 
(SoMo) [4], a Python-based toolbox to simulate continuum 
manipulators as approximated spring mass systems, and Sim-
ulation Open Framework Architecture (SOFA) [5], a simula-
tion tool that employs simplified FEMs. Toolboxes such as 
ChainQueen [6] and SimSOFT [7] also employ FEM-based 
modeling techniques to simulate soft robots. Titan [8], which 
is a GPU-accelerated C++ library, is another example of a 
simulator that models soft robots as a spring mass system. 
Toolboxes based on DERs include Elastica [9], which employs 
the Cosserat rod theory to model and control slender bodies 
with a finite number of lumped DoF, and Volume Invariant 
Position-based Elastic Rods (VIPER) [10], which uses a vol-
ume-invariant position-based elastic rods model to simulate 
the behavior of muscular hydrostats (muscle-like). Finally, the 
MATLAB package TMT Dynamics (TMTDyn) [11] uses dis-
cretized lumped systems and reduced-order models to con-
trol and analyze hybrid rigid–soft robots.

The majority of the available toolboxes for soft robotics 
modeling are based on FEM and lumped mass systems. These 
are theoretically simple but computationally heavy approach-
es, with a lot of nodes and DoF, designed for general-purpose 
simulation instead of analysis and control. Most of the DER-
based simulators are oriented toward computer graphics rath-
er than real mechanical systems. TMTDyn is a geometrically 
exact package based on the parametrization of positions and 
orientations rather than strains. Within this scenario, we pres-
ent SoRoSim, which is a MATLAB toolbox based on the GVS 
approach and that directly extends rigid robot modeling tech-
niques to soft and hybrid systems while maintaining a high 
level of accuracy. The toolbox takes advantage of the high 
fidelity of the Cosserat rod approach and the simplifying 
assumptions of the GVS approach that minimize the number 
of DoF required to represent the system and provide a geo-
metrically exact framework, leading to accurate, fast, and 
computationally less expensive results. We implement a new 
computational approach based on a nested Gaussian quadra-
ture scheme to solve the GVS formulation.

The SoRoSim toolbox allows the user to define and 
manipulate links (rigid and soft) and robotic systems (linkag-
es) using user-friendly GUIs and the MATLAB workspace. 
The GUIs assist the definition of links, the links’ assembly, the 

definition of the links’ DoF, the assignment of constraints as 
closed-loop joints, and the application of external and actua-
tion forces. A variety of typical external forces and actuation 
inputs are handled by GUIs, which provides a black-box 
experience, allowing users from all backgrounds to easily use 
the toolbox to perform static and dynamic analyses. The tool-
box provides specific MATLAB files that the user can edit to 
input customized values of external and actuation forces as 
functions of joint coordinates, their derivatives, positions, 
velocities, and so on. Moreover, as a MATLAB toolbox, it can 
be used alongside built-in functions; add-ons, such as the 
Optimization Toolbox; and user-written codes to further 
facilitate the analysis and control of robotic systems. The 
intrinsic limitation of the toolbox is that it can model soft 
links only as Cosserat rods. However, rigid links can be mod-
eled with no limitation on geometry and DoF. Figure 1 shows 
a small subset of robotic systems the toolbox can analyze. The 
SoRoSim toolbox package and user manual are available for 
free on [15]. The “Toolbox Design and Structure” section pro-
vides details on various aspects of SoRoSim toolbox, includ-
ing its design, structure, and workflow.

We perform several toolbox sanity tests by comparing the 
toolbox’s analysis results with published data and commercial 
software output. We compare the static equilibrium results 
with published solutions and ANSYS workbench results. We 
study the dynamic simulation of a flexible flying rod and com-
pared it with existing literature. We also investigate the energy 
transfer among the kinetic, gravitational potential, and elastic 
potential energy of a cantilever beam under gravity. We discuss 
these validation studies in the “Toolbox Validation” section. In 
addition to validation, in the “Modeling Applications” and 
“Design Analysis and Control Applications” sections, we dem-
onstrate four innovative applications where the soft robotics 
community can use the toolbox. The examples include the 
analysis of the static equilibrium and contact dynamics of 
hybrid robotic arms, an underwater locomotor, a design opti-
mization problem, and a study of two cases of inverse dynamic 
control problems. Finally, in the “Discussion and Conclusion” 
section we discuss the computational performance of the tool-
box and draw conclusions and future directions of SoRoSim.

Governing Equations
The GVS approach was recently introduced by Renda et al. 
[16] in statics and Boyer et al. [17] in dynamics. It is based on a 
variable-strain parametrization of soft links represented by 
Cosserat rods, 1D slender rods that can bend, twist, stretch, 
and shear. Cosserat’s model is the most general rod model, as it 
accounts for the orientation as well as the position of beam ele-
ments and allows for all six modes of deformation to be con-
sidered during analysis [2]. Since the strain is parameterized in 
the GVS approach, it is easy to disable any deformation modes. 
Thus, other beam theories can be kinematically reproduced. 
For instance, SoRoSim users can enable the rotational modes 
along with shear along y and z to create a Timoshenko beam. 
The GVS model is also geometrically exact and generalizes the 
geometric theory of rigid robotics to hybrid systems of soft 
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and rigid links with multidimensional joints, externally 
applied point and distributed forces, and distributed actuation 
forces [18]. In this section, we give a summary of the model 
and an overview of the efficient computational techniques 
implemented in the SoRoSim toolbox.

Consider a floating hybrid kinematic chain composed of 
interconnected rigid and soft bodies represented by Cosserat 
rods. The configuration of a soft body i (respectively, a rigid 
body) with respect to its predecessor in the chain is defined as 
a curve:

 ( ) : , ( ) ( )g gX L X SE0 1 30
R r

i i i i i
i i

7$ ! != c m6 @  (1)

[respectively, a point ( )],g SE 3i !  mapping the body frame at 
Xi  to the body frame of the previous body at the reference 
configuration, as demonstrated in Figure 2.

To study the exponential representation of ( ),g Xi i  we 
introduce its partial derivative with respect to space, 

( ) ,g gXi i i ip=l t  and with respect to time, ( ) ,g gX. r
i ii i h= t  

where ( )X Ri i
6!p  defines the strain twist in the body 

frame, ( )X Ri
r

i
6!h  is the velocity twist relative to the pre-

decessor in the body frame, and ( )$Y  is the isomorphism 
from R6  to se(3). The space derivative of ( )g Xi i  is a matrix 
differential equation that can be integrated in space 
according to ( ) ( ) ,expg X Xi i iX= t^ h  where Xt  is the Mag-
nus expansion of the field .pt  For the rigid link case, ( )Xi ipt  
is constant in Xi  and equal to the body frame representa-
tion of the joint twist attached to i, while for the soft link 
case, ( )Xi ipt  is variable. The equality of the mixed partial 
derivative of g i  provides the relation between the time 
derivative of the strain twists and the link’s relative velocity 
and acceleration twists [19]:
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where ad R( )
6 6!$
#  is the adjoint operator of s ( )e 3  [20].

It is time now to discretize the system and introduce the 
generalized coordinates. The continuous strain fields 

( )Xi ip  are parametrized by a finite functional basis of strain 
modes [16]:

 ( ) ( ) ( )qX X Xi i i i i iip pU= + )
p  (3)

where ( )X Ri
n6

i
i!U #

p  (ni  being the number of DoF of 
link i) is a matrix function whose columns form the basis for 

(c) (e)

(f) (g)

(a)

(b) (d)
2.5 cm

Figure 1. A visual representation of the various robotics systems the toolbox can model. These systems include rigid–soft hybrid 
robots, where the soft links can be approximated as Cosserat rods. (a) X-RHex, a hybrid robot with compliant legs. (b) Tuft Softworm, 
a soft robot that relies on shape memory alloy actuators and frictional forces for locomotion. (c) PoseiDRONE, a hybrid robot that 
uses tendon-based soft appendages to swim underwater and move on the seafloor [1]. (d) STIFF-FLOP, a pneumatic soft manipulator 
designed for use in surgical procedures [11]. (e) FinRay, a closed-chain soft gripper with rigid connectors [12]. (f) A two-finger tendon-
driven hybrid gripper consisting of modular segments [13]. (g) A bioinspired hybrid flagellate robot for underwater applications [14]. 
The SoRoSim toolbox can model all these classes of robots by including contact, friction, and fluidic interactions as custom external 
forces similar to the examples in the “Modeling Applications” section.

g34

g23

g1(X1)
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ξ4

ξ1(X1)
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r

Figure 2. The proposed kinematics for a floating hybrid soft–rigid 
chain.
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the strain field, q Ri
ni!  is the vector of coordinates in that 

basis, and ( )X Ri i
6!p)  is a reference strain whose primary 

function is to model nonzero yet constrained strains, such as 
inextensibility. Note that the matrix ( )XiiUp  is constant 
for rigid joints.

The integration of (2) using (3) for all the bodies leads to 
the definition of the geometric Jacobian ( , )J q X Ri

n6! #6 @ 
and its derivative ( , , )J q q X R

. .
i

n6! #  ( ).nn iR=  Once Ji  and 
J
.

i  are found, we project the free dynamics of the floating 
hybrid chain onto the space of generalized coordinates to 
yield the generalized dynamics of the system:

 ( )Mq C D q Kq Bu F...
+ + + = +  (4)

where ( )M q Rn n! #  is the mass matrix, ( , )C q q R
. n n! #  is the 

Coriolis matrix, D Rn n! #  is the damping matrix, K Rn n! #  
is the stiffness matrix, ( )B q Rn na! #  (na  being the total 
number of actuators) is the actuation matrix, ( , )F q q R

. n!  
is the vector of generalized external forces, and u Rna!  is the 
vector of applied actuation forces.

We developed a recursive two-level nested quadrature 
scheme to estimate the coefficients of (4). For soft links, the 
SoRoSim toolbox uses the Gauss quadrature numerical inte-
gration method (the order is chosen by the user) to evaluate 
these coefficients. Stiffness (K) and damping (D) coefficients, 
which are associated with linear elastic models, are precom-
puted offline. However, the framework also allows the com-
putation of nonlinear strain-dependent constitutive laws. 
Apart from (K) and (D), all the other coefficients (M, C, B, 
and F) of (4) are computed as functions of q and .q.

Estimating these coefficients involves assessing ,g i  ,Ji  and 
J
.

i  at every evaluation point, such as Gaussian points of the 
soft divisions and the center of mass of rigid links. In our pre-
vious article, we used a fourth-order Zannah collocation 
approximation to estimate the value of g i  recursively: 

( ) ( ) ( ) ,expg gX h X hi i k i i i
k

kX+ = t^ h  where hk  is the material 
length in the kth interval between two consecutive Gauss 
quadrature points and ( )hi

k
kXt  is the approximation of the 

Magnus expansion [16]. Inspired by this, we derived recursive 
formulations for the computation of Ji  and .J

.
i  The complete 

theory and description of the computational strategy behind 
the toolbox are available at the link provided in [15].

Equation (4) is an ordinary differential equation that could 
be solved using explicit time integrators, such as “ode45” and 
“ode15s” in MATLAB. The static equilibrium equation of the 
system can be derived from (4) by equating the time deriva-
tives of q (qo  and )q..  to zero. The resulting static equation 
could be solved numerically using root finder functions, such 
as “fsolve” in MATLAB. For the case of closed-chain robots, 
additional terms corresponding to the constraint forces due to 
the closed-loop joints will be present in (4) [12].

Toolbox Design and Structure
We developed the SoRoSim toolbox in MATLAB, which pro-
vides users with a vast library of functions for mathematical 
computations and gives access to various built-in functions, 

add-ons, and toolboxes to analyze different aspects of robotic 
systems. We also employ an object-oriented programming 
(OOP) approach, which entails program design around data 
and objects rather than functions and logic. OOP allows the 
developer to group “objects” with similar attributes under a 
“class,” providing a well-structured map of the program and 
allowing easy access and adjustment to object-specific data 
(“properties”) with the help of class-specific “methods.” The 
SoRoSim toolbox consists of three MATLAB class elements: 
SorosimLink, Twist, and SorosimLinkage. These classes work 
together to facilitate linkage creation and simulation through 
a sequence of user-friendly GUIs.

The SorosimLink class allows the user to construct soft and 
rigid links with various joint types and geometry. The user can 
choose from nine different types of lumped joints (fixed, revo-
lute, prismatic, helical, cylindrical, universal, planar, spherical, 
and free) and three default cross-sectional shapes (circular, 
rectangular, and ellipsoidal). However, analysis performed 
within the toolbox is not limited to the link’s default cross-sec-
tional shapes. Once a link is defined, the user can update its 
properties, such as the screw inertia matrix and stiffness 
matrix, to account for any arbitrary cross-sectional shape and 
nonhomogeneous mass distribution. The shape may also vary 
as a function of curvilinear abscissa along the link axis, X. The 
default material model used to compute the cross-sectional 
screw stiffness matrix is a linear elastic model. This material 
model provides an accurate representation of the material 
behavior when it is subjected to strains that do not exceed 
100%; since this is the case for most soft robotics applications 
this is an appropriate material model to use. However, the tool-
box allows users to use a custom material model by modifying 
the elasticity tensor matrix in the SorosimLink class. An over-
view of the SorosimLink creation is provided in Figure 3(a).

The Twist class specifies the active DoF of lumped joints 
and the deformation modes and corresponding strain orders of 
soft link divisions. For a soft link division, the class allows the 
user to enable the required modes among six deformation 
modes: torsion about the x-axis, bending about the y-axis, 
bending about the z-axis, elongation along the x-axis, shear 
along the y-axis, and shear along the z-axis. The order of a par-
ticular mode corresponds to the polynomial that is used to esti-
mate the strain values. The Twist class also allows the user to 
define a reference strain value for the soft division correspond-
ing to its rest configuration. The inset in Figure 3(b) shows a 
sample GUI with which the user creates the Twist class for a 
soft link division. The GVS model allows the definition of the 
strain base of the soft links as a continuous or discontinuous 
function of X. The user may change the default polynomial 
basis of soft links once the SorosimLinkage is defined.

The SorosimLinkage class allows the user to assemble previ-
ously defined links into various single-, branched-, open-, and 
closed-chain systems. SorosimLinkage calls the Twist class to 
determine each link’s DoF. The user can also add closed-loop 
joints by selecting appropriate joint types. The class allows the 
definition of various external forces and actuation inputs. The 
class automatically precomputes and saves constant properties 
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of the linkage, such as the generalized stiffness matrix (K) and 
the generalized damping matrix (D). It also allows the users to 
program custom external and actuation forces. An overview of 
the SorosimLinkage creation is given in Figure 3(b).

We pack the SorosimLinkage class with “methods” that 
facilitate the analysis of multibody systems and the postprocess-
ing of results (static equilibrium configuration and dynamic 
video output). The methods for analysis include functions to 
solve the GVS model for static and dynamic analyses. The 
SorosimLinkage methods can also compute values of system 
parameters, such as the Jacobian (J), generalized mass (M), and 
Coriolis (C) matrices for a given value of q and .q.  Users can 
utilize these methods for problem-specific analyses. The reader 
may refer to the toolbox manual [15] for a detailed description 
of all the properties and methods of SoRoSim classes.

Toolbox Validation
To validate the toolbox, we conduct several numerical tests 
and comparisons with verified and published data. We pres-
ent these tests in this section.

Test 1: Fixed–Free Beam With a Follower Tip Force
We first simulate the bending behavior of a cantilever 
beam with a follower force applied at the tip. Many authors 
have considered this problem and solved it using numeri-
cal approaches, such as the finite-strain rod method [21] 
and other geometrically exact models [17]. Using the tool-
box, we construct a 100-m-long cylindrical beam with 
Young’s modulus .E 6 75 GPa=  and a diameter of 57 cm. 
We set a fourth-order bending strain about the y-axis to 
model the deflection of the rod when subjected to the fol-
lower tip force. The force is varied between 0 N and 
130 kN. We use 15 Gauss quadrature points, specified dur-
ing the SorosimLink creation process, for the computation 
of integrals (in this case, K). Figure  4(a) illustrates the 
deflection of the link as well as the horizontal and vertical 
displacement of the tip as modeled by the toolbox. The 
results obtained match those obtained in [21], as detailed 
in Figure 4(b). The total DoF of the rod modeled using 
SoRoSim is 5 DoF, while Simo et al. [21] used a 1D finite-
element mesh consisting of five elements with quadratic 
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Figure 4. (a) The toolbox simulation output. (b) The results obtained in [21]. (1) The clamped beam profile under varying follower tip 
loads. (2) The horizontal and vertical tip displacement at different loads.
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shape functions corresponding to 10 DoF. This demon-
strates the GVS approach’s ability to recreate accurate 
results by using fewer DoF. Additionally, the reported 
computation time is 16.4 s per loading step in [17], while it 
took 42 ms for the same in the SoRoSim toolbox.

We also use this example to highlight the scaling process 
the toolbox uses. The toolbox performs internal computa-
tions on a soft division after normalizing its length into one 
unit (here, there are 100 m to one unit). Consequently, physi-
cal quantities with length dimensions are scaled using the 
original length of the division. Once the simulation is com-
plete, the toolbox scales back the resulting values of joint 
coordinates into their actual dimensions. The normalization 
of soft divisions avoids poorly scaled matrices, such as the 
generalized stiffness matrix. This allows faster static solutions 
and more stable dynamic simulations.

Test 2: FEM Study of a Fixed–Fixed L-Shaped Beam
To test the performance of the toolbox with respect to com-
monly used methods of modeling, we compare the results 
obtained when a soft linkage is subjected to a distributed load 
(gravity) with those obtained through FEM simulation. Two 
0.7-m-long soft links with a 5 5-cm#  square cross section 
(aspect ratio: 14:1) are connected to form an L-shaped linkage 
clamped at each end. We use a fixed closed-loop joint to fix 
the rear end of the second link with the ground. All six defor-
mation modes are enabled for this simulation; quadratic and 
linear polynomials are used to estimate the rotational and 
translational modes, respectively. Hence, there are 15 DoF for 
a link (30 in total). For the material, E 10 MPa;=  Poisson’s 
ratio, . ;0 5o =  and density, ,1,200 kg/m3t =  are used.

We compare the static equilibrium results obtained from 
the toolbox with those of ANSYS Workbench. A linkage with 
the same geometry and material properties is created in 

ANSYS. A total of 152 quadratic 3D elements with 1,062 
nodes (~3,000 DoF) are used for the simulation. Figure 5(a) 
describes the toolbox result, while Figure 5(b) conveys that of 
ANSYS. The maximum deformation obtained from the tool-
box result is 12.98 cm, whereas the FEM simulation gives a 
deformation of 13.27 cm. Hence, with fewer DoF ( : ),1 100  the 
GVS method can estimate the deformed shape of the 
L-shaped beam. The simulation results also suggest that the 
toolbox can effectively handle closed-loop problems.

Test 3: Dynamics of a Flexible Flying Rod
In this comparison, we look at the dynamics of a freely flying 
flexible rod (also known as the flying spaghetti problem) 
which is a problem introduced by Simo and Vu-Quoc [22] 
and replicated in [17]. We model a 10-m-long soft rod, with 
a free lumped joint and initially at rest in the position shown 
in Figure 6(a)(1). The position and orientation of the base of 
the soft rod are parameterized by lumped DoF of the free 
joint. We used the inextensible Kirchhoff model with a qua-
dratic polynomial basis to define the basis of the rod. Hence, 
including the six DoF of the free joint, there are 15 DoF in 
this system. Time-dependent point force F1 and moments 
M2 and M3 are applied at the tip of the rod, as in Figure 6(a)
(1). The magnitude of M2 is defined as a triangular pulse 
function that starts at time ,t 0 s=  peaks at 200 N·m in 2.5 s, 
and goes back to zero at 5 s. The numerical values of the 
magnitude of F1 and M3 are 1/10 and half of M2, respective-
ly. The user can define such dynamic inputs as a function of 
time (t) in the GUI.

We perform the dynamic analysis of the system for the 
first 7 s. Figure 6(a)(2) and (3) show two views of superim-
posed snapshots of the rod in midflight at different times, as 
solved by the SoRoSim Toolbox. The rod’s position, orienta-
tion, and deformation match exactly with the published 
results in [17], provided in Figure 6(b)(2) and (3). This exam-
ple also demonstrates the capabilities of the toolbox in model-
ing lumped and distributed joints (soft body) within the same 
framework.

We use this example to highlight the computational effi-
ciency of the toolbox. The system uses 15 DoF to simulate a 
complex dynamic motion in 3D. Boyer et al. report a compu-
tational time of 4 h, 30 min for a 30-s simulation of the same 
problem [17]. Hence, on average, the reported computational 
time for a second of the simulation was 9 min. Using SoRo-
Sim, we were able to solve a 7-s simulation in less than 1 s of 
computational time, which is three orders ( , )3 000#2  faster 
than the previously reported computational time. Faster-
than-real-time computation (7# faster in this case) will allow 
the use of SoRoSim for real-world applications. To better 
appreciate the dynamic simulations presented in this article, 
the reader may refer to the supplementary video available at 
https://doi.org/10.1109/MRA.2022.3202488.

Test 4: Energy Balance in SoRoSim Dynamics
Here, we investigate the energy balance in damped and 
undamped cantilever beams released from rest with an initial 

0.1

0

–0.1

–0.2

Z
 (

m
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X (m)

(a)

(b)

(0.7, –0.025, –0.025)

(0.682, –0.009, –0.153)

0.1298 m

C: Copy of Static Structural
Total Deformation
Type: Total Deformation
Unit: m
Time: 1 s
2/10/2022 4:24 PM

0.13265 Max
0.11791
0.10317
0.088435
0.073696
0.058956
0.044217
0.029478
0.014739

0 Min

0 0.15 0.3 (m)

0.075 0.225

y

xz

Figure 5. (a) The SoRoSim results showing the reference and 
deformed shape of the linkage. (b) The total deformation and 
deformed shape obtained from ANSYS.
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strain under gravity. We create a soft link with a length (L) of 
0.5 m and a radius that linearly decreases from 2 to 1 cm. The 
material properties of the link are ,E 1 MPa=  . ,0 5o =  and 

.01, 00 kg/m3t =  For the damped rod, we use an elastic 

damping of 11.2 KPa. We enable all three angular modes of 
deformation (torsion and rotations about the y- and z-axes) 
with a cubic polynomial approximation for the strains. To 
obtain a complex dynamic motion, the soft link is released 
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from rest with an initial bending of 1 rad/m about the y-axis. 
We run the dynamic simulation for 5 s. Figure 7 describes the 
motion of the damped and the undamped rod between time 
t 0=  and . .t 0 75 s=

The total energy of the beam at a given time is given by 
the sum of kinetic, gravitational potential, and elastic 
potential energies:
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where h  is the screw velocity, Mr  is the cross-sectional screw 
inertial matrix, A is the area of cross section, g is acceleration 
due to gravity, h is the y coordinate of a cross section of the 

rod (in the opposite direction of gravity), p  is the screw 
strain vector, p)  is the reference screw strain, and R  is the 
cross-sectional screw stiffness matrix. Here, M and K are 
defined as in (4).

The first, second, and third terms on the right-hand side of 
the equation represent kinetic, gravitational potential, and 
elastic potential energies, respectively. We plot these for the 
damped and the undamped cases in Figure 7(a). The total 
energy of the damped system is decaying, and that of the 
undamped system remains a nonzero positive constant corre-
sponding to the initial strain energy. The results highlight the 
robustness of the SoRoSim dynamics, as any deviation in the 
energy conservation is solely attributed to errors in numerical 
integration (in time and space).

For the undamped case, the system’s total energy should 
remain the same as the initial elastic potential energy, while 
for the damped case, the total energy should decrease mono-
tonically. Figure 7(a) conveys the change in the values of vari-
ous forms of energies of the system. The total energy of the 
damped system is decaying, and that of the undamped system 
remains a nonzero positive constant, as expected. This exam-
ple also emphasizes that apart from dynamic and static simu-
lations, we can use the toolbox for postprocessing. The 
methods of the SorosimLinkage class allow the user to com-
pute quantities, such as the configuration (the position and 
orientations of cross sections), velocities, and generalized 
mass matrices, as functions of q and .q.  The user can compute 
these values in a separate MATLAB code for postprocessing, 
such as the energy computations in this example.

Modeling Applications
This section presents examples of the static equilibrium and 
dynamic simulations relevant to the soft robotics field that the 
toolbox can solve. We demonstrate the applicability of the 
toolbox to different systems and the use of custom functions 
to model various external forces, including contact and fluid 
interactions.

Hybrid Manipulators
Serial robotic arms are widely used to automate manufactur-
ing processes and any task requiring object gripping and 
manipulation. We show the toolbox’s ability to model and 
analyze hybrid manipulators for two different cases.

Case 1: Static Equilibrium
This example demonstrates the static equilibrium analysis of a 
hybrid (rigid-continuum) robotic arm with soft grippers 
under a wide range of loading conditions, including gravity 
(distributed load), a point force (F), rigid joint actuation, and 
cable actuation of soft links for gripping. We use the toolbox 
to investigate the static equilibrium analysis of the manipula-
tor and demonstrate its ability in modeling systems with mul-
tiple types of links, joints, and forces within the same 
framework.

The system consists of 11 links that form open-, 
branched-, and closed-chain components, as illustrated in 
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Figure 8(a). The first link is a rigid link that is connected to 
the ground via a planar joint, which allows displacement in 
the xy-plane and rotation about the z-axis. The second and 
third links are rigid links connected using revolute joints, 
which rotate about the y- and z-axes, respectively. These three 
rigid links are controlled by their joint coordinate values. The 
toolbox allows the user to enter values of their joint coordi-
nates as inputs to the simulation, as shown in Figures 8(b)(2)–
(4). Following the third link, there is a passive buffer 

consisting of three parallel soft links connected to two rigid 
disks at each end, as in Figure 8(c). These soft links are 
attached to the base disk via spherical joints and connected to 
the end disk via closed-loop fixed joints. The buffer, which 
adds to the system’s complexity, is an example of a multi-DoF 
joint, parallel link, and closed-loop component, which the 
SoRoSim toolbox can model. We assign two divisions for 
these soft links, enable all rotational DoF, and assign constant 
strain bases. Using appropriate reference strain values, we set 
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the precurvatures of the soft buffer links. An angle-controlled 
rigid disk attached at the end of the buffer assists further ori-
entation of the grippers by rotating about its local x-axis as in 
Figure 8(b)(5).

Finally, we have a soft gripper with two fingers that are 
cable actuated. The thin sections of the finger act as flexible 
links, while the thick sections act as rigid links. We assign a 
strain basis with constant bending about the local y-axis to 
the thin sections. This design of the gripper, where the cable is 
positioned outside the thin soft section, is widely used in the 
soft robotic community [13]. This particular mode of actua-
tion, where the actuators go in and out of the system, is an 
important class of prototype that SoRoSim is able to simulate.

We compute the static equilibrium configuration of the 
system for the actuation inputs given in Figure 8(b). The sys-
tem is subject to gravity and a follower point force. The direc-
tion of the gravity and the point force (F) are included in 
Figure 8(a). The value of the point force is 2 N. The corre-
sponding equilibrium configurations are detailed in Figure 
8(b)(2)–(5). Figure 8(b)(6) demonstrates the actuation of the 
grippers when a cable tension of 2 N is applied. We show a 
rod as a reference grip target. There are 39 DoF and seven 
actuation inputs for the system. On average, the static equilib-
rium simulations [shown in Figure 7(b)(1)–(6)] take 1.2 s.

This example analyzed a system with passive and actuated 
rigid joints controlled by joint coordinate values. The toolbox 
can also define joints controlled by joint force and moment 
values. The user can also assign stiffness values for rigid 
joints. For instance, a prismatic joint with a positive stiffness 
value is equivalent to a linear spring.

Case 2: Contact Dynamics
Analysis of mechanical systems involving contact–impact 
events is demanding for many real-world applications. Con-
tact dynamics involve determining potential contact points 
between colliding bodies, evaluating contact–impact forces, 
and establishing the transition between different contact sce-
narios. The implementation of contact mechanics is one of 
the most challenging and complex problems in modeling and 
computation [23].

Contact between two points involves the application of 
equal and opposite normal and tangential forces on each 
other. The current SoRoSim toolbox does not have built-in 
capability for contact dynamics. However, the user can apply 
various kinds of external loads by enabling a property of the 
SorosimLinkage class, namely, “Custom External Force 
Present,” and then editing a MATLAB function, 
“CustomExtForce.m,” to model the external force. Quantities 
such as Jacobian J, screw velocity ,h  and transformation 
matrices g are passed as inputs into the “CustomExtForce” 
function. The user can apply a custom external force as a 
function of these quantities.

To demonstrate contact dynamics using SoRoSim, we ana-
lyze a three-fingered gripper system attempting to grip and 
manipulate a spherical rigid body [Figure 8(d)]. The system 
consists of two rigid links with prismatic joints and three 

symmetrically arranged fingers similar to the previous case. 
We choose the dimensions of links arbitrarily. The inputs to 
the dynamic simulations are the kinematic inputs of the pris-
matic joints (vertical and horizontal translation) and the cable 
tension, which actuates the fingers.

We make the following approximations to simplify the 
estimation of contact points and the evaluation of contact 
forces.
1)  The three thick rigid sections of each finger are approxi-

mated as spheres with diameters ( )r2 i  equal to the section 
heights and centered at the center of mass of the links.

2)  We neglect the tangential (frictional) component of the 
contact forces. The normal force due to nine different con-
tact points (three on each finger) is sufficient to provide a 
force closure grasp.

3)  We use a linear spring with a linear damper to represent 
the normal contact force (f). The contact force acting on 
the ith link is given by

 ( ) ( ) || ||f p
p

H k b
.

i i i i
si

si
$d d d= +  (6)

where psi  is the vector from the center of the sphere to the 
center of the ith link, || ||,pr ri s i sid = + -  rs  is the radius of 
the spherical target, k is the contact stiffness constant, b is a 
damping constant, and ( )H id  is the Heaviside function, 
which ensures that the force is applied only if there is contact 
( ) .0i 2d  While fi  acts on the ith link, fiR  acts on the grip 
target. Figure 8(e) contains snapshots of the grip manipula-
tion maneuver.

While the gripper in Figure 1(f) is a planar equivalent of 
this example, the robots in Figure 1(a), (b), and (e) can be 
modeled as rigid–soft hybrid robots with contact dynamics. 
This example demonstrates that we can use the SoRoSim 
toolbox to analyze robotic systems with collision and contact 
events.

Underwater Robotics
Due to their compliant nature, soft robots pose no risk to 
underwater habitats or organisms, making them an excellent 
choice to employ in underwater exploration. Bacteria-
inspired flagellate propellers could be employed for the loco-
motion of robots underwater. The idea of soft propellers is 
based on the observation that an inclined rotation of a soft fil-
ament in a liquid environment generates a helical filament 
shape, which produces positive thrust for propulsion. An 
advanced version of an underwater robot propelled by four 
soft flagellate modules is presented in [14], with experimental 
validations of the dynamic simulation. For those simulations, 
the authors used custom-made MATLAB codes with con-
stant strain (order 0 strain polynomials) approximations. 
Here, using the SoRoSim toolbox, we demonstrate the vari-
able-strain dynamics of a similar system with a propeller con-
sisting of three flagella [Figure 9(a)].

To rotate the filaments in an inclined fashion, we attach 
them to the terminals of a rigid body, namely, the hook [the 
inset in Figure 9(a)]. All hook terminals have an inclination of 
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45º with the local x-axis. They are also separated by a rotation 
of 120º with respect to one another. The hook is connected to 
a motor shaft that provides the required torque. Additional 
components, such as motors, electronics, the battery, and bal-
ancing weights, are kept inside the spheroidal shell of the 
robot. We create a SorosimLinkage consisting of six links: the 
shell, shaft, hook, and three filaments. The shell is modeled as 
a rigid link with an adjusted inertia matrix to account for the 
internal components and spheroidal (nondefault) shape. Its 
joint is a passive prismatic joint that allows translation only 
along the x-axis. The shaft is modeled as a cylindrical rigid 
link with an angle-controlled revolute joint to simulate the 
motor’s input to the propeller. The hook is modeled as a fixed-
joint rigid link with an adjusted inertia matrix to account for 
its shape. Finally, we define the three 0.7-m-long soft fila-
ments as fixed-joint soft links with linear angular strains (tor-
sion about the x-axis and bending about the y- and z-axes). 
The dimensions and material properties of these components 
are arbitrary but inspired by the proposed design in [14].

To simulate the fluid–robot interaction forces described in 
Figure 9(a), we need to include the external forces due to the 
presence of the fluid (buoyancy, drag, and lift forces) and the 
forces due to the volume of fluid moved by the propeller 
(added mass), described in [14], that are not part of the 
default force inputs during the SorosimLinkage creation. 
However, this does not prevent the user from implementing 
them using the “CustomExtForce.m” function.

By providing an actuation input of ,t2i r=  we run the 
simulation to capture the system’s dynamic response for the 
first 5 s. Figure 9(b) presents superimposed images of the 
motion of the robot, starting from rest to . .t 1 5 s=  In the 
inset, we plot the robot’s forward velocity as a function of 
time. The combination of actuation and environmental inter-
action leads to the emergence of intelligent helical deforma-
tions of the filaments, which, in turn, cause a thrust that 
propels the robot forward. This example emphasizes the use-
fulness of the SoRoSim toolbox in modeling rigid–soft hybrid 
underwater robots. The toolbox can model the robots men-
tioned Figure 1(c) and (g) in a similar way.

Design Analysis and Control Applications
In addition to static equilibrium analysis and dynamic simu-
lations, we can use the toolbox for design optimization, 
inverse kinematics, and control applications. In this section, 
we demonstrate examples of an optimization problem and 
two control problems that can be solved using the SoRoSim 
package and custom-made MATLAB codes.

Design Optimization
Here, we demonstrate the use of the toolbox in optimizing an 
objective function based on the static equilibrium of a single 
cable-actuated soft manipulator. We begin by defining a soft 
link with two divisions, with a total length of 80 cm and a 
radius linearly varying from 4 to 2 cm. We use a Young’s 
modulus of 10 MPa and a Poisson’s ratio of 0.5. We enable all 
the rotational DoF (torsion about the x-axis and bending 

about the y- and z-axes) and approximate the corresponding 
strains using a first-order polynomial. No external forces are 
taken into account for the static equilibrium. We set up an 
optimization problem to find an appropriate cable path and 
cable tension, minimizing the error in the manipulator end, 
and middle point coordinates with desired positions at static 
equilibrium. The objective function is given by

 || || || ||r r rrmid mid end endX = - + -r r  (7)

where rmid  and rend  are the equilibrium positions of the mid-
point and the endpoint of the manipulator and rmidr  and rendr  
are the desired mid- and endpoint positions.

We set the desired midpoint rmidr  to ( . , . , . )0 35 0 1 0 1- -  
and the desired tip point rendr  to ( . , . , . ) .0 45 0 1 0 4- -  Since 
the cable position is constrained to be inside the soft manipu-
lator, the problem is a bounded optimization problem with an 
inequality condition. We parametrize the cable path’s y and z 
coordinates by using quadratic polynomials. Hence, we need 
to optimize seven variables: the coefficients of the quadratic 
polynomials defining yc  and zc  (the y and z coordinates of 
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Figure 9. Underwater robotics. (a) The forces acting on the robot, 
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the flagellate robot (superimposed images) due to the thrust 
generated by the soft propeller, with an inset showing the 
robot’s speed versus time. Dotted lines show the tip trajectory of 
each soft filament.
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the cable as a function of X) and the cable tension that is 
applied.

We use the MATLAB “patternsearch” algorithm to find 
the optimal values of variables at the local minimum of the 
objective function. The initial condition is obtained from 

. , ,y X X z X X0 0 0 02 0 0 0c c
2 2= + + = + +  and .T 0 N=  

The “patternsearch” algorithm, with parallel computing 
enabled, takes about 1.5 min (93 s) to converge at the optimized 
parameters. There are 2,887 objective function evaluations (>30 
evaluations per second), including static equilibrium and for-
ward kinematics evaluation to estimate the mid and endpoint 
coordinates. The optimal solution is given by 

. . . , . .y X X z X X0 024 0 003 0 010 0 015 0 012c c
2 2= + - = -  

. ,0 012-  and . .T 112 5 N=  The initial and optimized cable 
path is shown in Figure 10(a) and (b). The static equilibrium 
state of the manipulator at the optimized parameters is in Fig-
ure 10(c). The manipulator tip position matches perfectly 
with the desired tip position. However, there is an error of 
about 14% in the midpoint position. The error could be due 
to geometric constraints, such as the length and radius of the 
manipulator. It may be decreased by testing different initial 
values for the optimization.

This example stresses that the user can combine SoRoSim 
with well-established MATLAB packages, such as the global 

optimization toolbox, to deliver analysis results outside the 
package of the SoRoSim toolbox. The user may also define an 
optimization problem based on a dynamic simulation to esti-
mate the design parameters of a multibody system that opti-
mizes its dynamic performance.

Inverse Dynamic Control
Finally, we use the toolbox to solve two inverse dynamics con-
trol problems. We begin by creating a soft link that is 1 m 
long, consisting of two divisions (0.5 m each). The radius of 
the link varies linearly from 2 to 1 cm from the base to the tip 
[Figure 11(a)]. The material properties are the same as those 
used for the optimization example. For the first division, we 
define a linear bending about the y-axis and the z-axis. In the 
second section, the same deformation modes are defined 
using a constant strain basis. The soft manipulator is actuated 
using six linearly independent cables (Table 1).

The velocity of the manipulator tip is given by ,J q.t th =  
where th  is the tip velocity and Jt  is the Jacobian at the tip. 
Taking a time derivative of the equation and substituting q..  
from (4), we get the dynamics equation of the manipulator 
tip. From this equation, if we solve for the actuator strength, u, 
and apply a proportional derivative (PD) controller [24], we 
get the following task space control law:
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where K p  and Kd  are the proportional and derivative gains, 
th

.
r  is the desired tip acceleration, thr  is the desired tip velocity, 
gt  and gtr  are the actual and desired tip transformation matri-
ces, and log is the logarithmic operator in SE(3). Note that the 
proposed control law may not ensure a full state (q and )q.  
convergence of the manipulator at the steady state for an 
underactuated system [24]. Addressing issues of task space-
based controllers is out of this article’s scope. Here, we dem-
onstrate the toolbox’s ability to incorporate the control law.

The user can define a custom actuator strength by 
enabling the “Custom Actuator Strength” property of the 
SorosimLinkage and by editing the “CustomActuator 
Strength.m” file. Quantities such as Jacobian J, derivatives of 
Jacobian ,J

.
 and generalized mass matrix M are passed as 

inputs into the “CustomActuatorStrength” function. The user 
can directly use these to compute the actuator strength given 
by (8).

Case 1: Tip Pose Trajectory Tracking
Here, we attempt to control the position and orientation of the 
manipulator tip based on those of a reference frame moving in 
a circular trajectory. The circular trajectory we define has a 
radius of 0.22 m, parallel to the yz-plane, and its center is locat-
ed at 0.96 m on the x-axis. Moreover, the reference frame of 
the trajectory is at 35.96º with respect to the x-axis. The angu-
lar velocity of the reference frame is set to 3.75 r/min.  
We run the dynamic simulation for 16 s, using the actuator 
strength computed using (8). Superimposed images of the 
dynamic results, corresponding actuator strengths, and 
errors (inset) are given in Figure 11(b)(1) and (2). The 
dynamics of the system are perfectly cancelled out by the 
controller, and the error between the tip and the reference 
frames converges to zero in fewer than 4 s. The plot in Figure 
11(b)(2) details the process of nullifying the system dynam-
ics at the beginning and the oscillation of the actuator 

strength as time elapses. We use the “lsqlin” function of 
MATLAB to compute the actuator strength given by (8). 
Using this function, we ensure that the cable tension is a pos-
itive value of less than 50 N.

To compare the controller’s performance, we input the 
actuator strength corresponding to the quasi-static solution 
that matches the position and orientation of the manipulator 
tip and the moving frame. The dynamics of the simulation are 
available in Figure 11(b)(3) and (4). In this case, the error 
decreases initially but continues to oscillate indefinitely due to 
the dynamic response of the system.

Case 2: Tip Pose Regulation Under Gravity
For the second control case, we attempt to control the posi-
tion and orientation of the manipulator tip based on a fixed 
reference frame under the influence of gravity (external 
force). The fixed reference frame is the same as the manipula-
tor tip frame at the static equilibrium when the cable tensions 
are 40, 0, 30, 15, 0 , and 0 N, respectively, for each cable.

Using the PD controller given by (8), we get a dynamic 
response, as shown in Figure 11(c)(1) and (2). We can see a 
steady approach to the desired tip position and orientation, 
denoted by the reference frame in the figure. The controller 
overcomes the dynamic response due to gravity and the actu-
ation force, and the error is quickly reduced to zero in fewer 
than 5 s. Over time, the cable tensions converge to constant 
values corresponding to the static equilibrium case. To com-
pare the controller performance, we input cable tensions as 
ramp functions that increase to reach the static equilibrium 
cable tension values at 5 s. This manual actuator strength 
input is unable to quickly cancel the system’s oscillatory 
response [Figure 11(c)(3)]. The error is observed to decrease 
slowly, allowing the tip to approach the desired position and 
orientation.

Discussion and Conclusion
The computational performance of the toolbox depends on 
problem parameters, such as the number of links, the DoF of 
the system, strain order used, number of Gauss quadrature 
points on soft links, number of actuators, values of actuator 
strengths, external forces, material, and geometric properties. 
Here, we report the simulation speed of the current version of 
the SoRoSim toolbox. Table 2 summarizes parameters that 
characterize the computational performance of the toolbox. 
For each analysis discussed in the “Toolbox Validation” and 
“Modeling Applications” sections, the table shows informa-
tion, including the total number of links (N), total DoF 
( ),Ndof  maximum strain order [ ( )],Op  order of the Zannah 
collocation approximation [Z(O)], and total number of points 
at which static or dynamic (4) equations are evaluated ( ) .Neva  
For static analyses (highlighted in gray), the seventh column 
of the table indicates the total static equilibrium simulations 
performed ( ) .Ns  For dynamic simulations, the column shows 
the real-time duration (0 to )tmax  of the dynamics problem.

MATLAB solvers used to solve the static or dynamic equa-
tions are shown in the eighth column. The final column 

Table 1. The cable coordinates (d1 = 1.5 cm and 
d2 = 1 cm).
Cable 
Number

Cable 
Length (m) y Coordinate z Coordinate

1 0.5 d2
1

1 d2
3

1

2 0.5 d1- 0

3 0.5 ( )d X2
1 11 - ( )d X2

3 11- -

4 1 d2 0

5 1 d2
1

2- d2
3

2

6 1 d X
2
1 1 22- -c m d X

2
3 1 22 -c m
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shows the total simulation runtime ( ).ts  We used a PC with 
the following specifications for these analyses: Intel Core 
i7-1065G7 CPU at 1.3 GHz and 1.5 GHz and with 16 GB of 
random-access memory. The MATLAB version used for 
these analyses is R2021a. The comparison of tmax  and ts  indi-
cates that the toolbox performs in real time or faster for most 
of the examples presented in this article. This is the result of 
the geometrically exact formulation, which requires the few-
est DoF to estimate the state of a robot. Fast (2.5× faster than 
real time) computation of actuator strengths could be used for 
model-based inverse dynamic control of real-world soft 
manipulators. We will implement an implicit time integrator 
to speed up the simulation in a future version of the toolbox. 
Further code optimization and implementation of parallel 
computing can also increase the toolbox performance.

It is important to emphasize that, unlike FEM packages, 
the toolbox is suitable only for systems whose soft links can be 
modeled as Cosserat rods. Despite this limitation, the geo-
metrically exact approach used in the toolbox makes it a fast 
(due to a smaller number of DoFs) and accurate tool for sys-
tems involving large deformations, which is the case for the 
majority of soft robotics applications. The toolbox allows the 
modeling and analysis of systems with open-, branched-, and 
closed-chain and interconnected structures. Additionally, the 
toolbox provides the user with plenty of ways to use the out-
put data with existing MATLAB packages and user-written 
MATLAB codes.

In summary, this article presented SoRoSim, an intuitive 
MATLAB toolbox that uses the GVS approach to provide a 
unified framework for the modeling, analysis, and control of 
soft, rigid, and hybrid robots. It provides users with a level of 
freedom that will enable them to tailor and adjust material 
models, external forces, actuation paths, and functions to fit 

their applications and intended systems. We validated the 
toolbox simulation results by comparing the analysis results 
with existing literature and numerical studies. We provided 
four examples to highlight the application of the toolbox in 
soft robotics. SoRoSim successfully bridges the gap between 
soft and traditional robotics modeling and analysis. It is an 
ongoing effort and will be under constant improvement in 
terms of performance, features, and GUI enhancement. We 
hope that the users of SoRoSim find it beneficial and user 
friendly, and we look forward to it being widely used in the 
research and engineering community.
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