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Abstract. The existence of a quantum computer is one of the most
significant threats cryptography has ever faced. However, it seems that
real world protocols received little attention so far with respect to their
future security. Indeed merely relying upon post-quantum primitives
may not suffice in order for a security protocol to be resistant in a full
quantum world. In this paper, we consider the fundamental UMTS key
agreement used in 3G but also in 4G (LTE), and in the (recently de-
ployed) 5G technology. We analyze the protocol in a quantum setting,
with quantum communications (allowing superposition queries by the
involved parties), and where quantum computation is granted to the ad-
versary. We prove that, assuming the underlying symmetric-key primi-
tive is quantum-secure, the UMTS key agreement is also quantum-secure.
We also give a quantum security analysis of the underlying primitives,
namely Milenage and TUAK. To the best of our knowledge this paper
provides the first rigorous proof of the UMTS key agreement in a strong
quantum setting. Our result shows that in the quantum world to come,
the UMTS technology remains a valid scheme in order to secure the
communications of billions of users.

Keywords: Quantum cryptography, AKA protocol, 3G/4G/5G, Security proofs

1 Introduction

The UMTS-AKA protocol was specified in 1999 by the 3GPP [2] with a specific
architecture in mind: a client is a subscriber of a telecommunication operator
for mobile services (messages, Internet use, calls, ...) and the service is delivered
through an intermediate local network operator, simply called server. Since then,
this protocol has been, and still is, the foundation of all mobile communications
in the world. Indeed, the 3G standard was replaced in 2010 by the 4G one
(a.k.a. LTE for Long Term Evolution), but only one single bit of the UMTS-
AKA protocol has been added to the previous version, its purpose being for
parties to know whether the session keys must be used to protect the data (3G),
or as input to a subsequent derivation function in order to compute more session
keys (4G). Last year, the 5G specifications were released and, again, the UMTS-
AKA remains the foundation which the 5G-AKA is based on. Some properties



are added (related to the user’s privacy, and the network’s “awareness”) but the
core of the AKA is unchanged. These adaptations are motivated by the need
for new telecommunication services, and not because of some security concerns.
Presently the UMTS-AKA protocol is used all over the world to secure the
communications of any individual using a mobile phone.

Regarding security, the main purpose of such specifications is first for the
client and the operator to authenticate to each other (through the intermediary
of the server), and then to provide integrity and confidentiality of the future
communications (voice and data) between the client and the server. To obtain
such a protocol, the basic idea of the 3GPP is for the operator and the client to
share a common long-term secret key sks. Regarding servers, they are considered
as trusted for delivering services but not for keeping long-term secrets, hence the
idea of designing a three-party authenticated key agreement between the client,
the server and the operator. To add more constraints, the client side is managing
a USIM card, whose computational capabilities are limited, and in particular is
not able to generate good pseudo-random numbers.

More precisely, the main idea of the UMTS-AKA is as follows:

– the operator first generates a set of Authentication Vectors (AV) thanks to
the shared key sks, some randomness R and a counter Sqn synchronized
with the client. Such vectors are then sent to the server;

– using the received AV, the server interacts with the client to (i) permit
the client to authenticate the operator (through an authentication message
denoted Auth), (ii) authenticate the client (using a message authenticated
code denoted Mac), and (iii) generate shared session keys for integrity (key
IK) and confidentiality (key CK);

– those session keys are then used to secure the communication between the
client and the server.

The security of this UMTS-AKA protocol was proved in a classical (i.e., non-
quantum) setting by Alt, Fouque, Macario-Rat, Onete, Richard [6] (only consid-
ering the two first steps, and not treating the security of the subsequent com-
munication). However, if the communication between the operator, the server
and the client is now quantum, superposition queries are allowed, and if the
adversary is granted with quantum computations, then the result given by Alt
et al. no longer holds.

Consequently, in this paper, we treat the following important question: what
is the exact security of the UMTS-AKA protocol in a full quantum world?

1.1 Quantum Threat and Current Research

Indeed, numerous computer scientists and experts consider as imminent the
advent of quantum computers. The possibility that, in a near future, all our
computational capabilities will be replaced by these new computers is today not
so ludicrous, as proved by the recent IBM roadmap4. Hence, quantum superpo-
sition and quantum entanglement will one day be used by any honest computing

4 See https://research.ibm.com/blog/ibm-quantum-roadmap

2



party to execute their part of a protocol, but also by any attacker against such
a protocol. And it is today well-known that such a quantum machine is one of
the most significant threats cryptography has ever faced.

In 2016 the NIST has initiated a process to design, evaluate, and eventually
standardize quantum-resistant public-key algorithms. This initiative was moti-
vated by the well-known quantum insecurity of the most popular asymmetric
schemes still in use today.

Regarding secret-key cryptography, since the seminal works of Kuwakado
and Morii [29,30], and Kaplan, Leurent, Leverrier, and Naya-Plasencia [27], the
analysis of cryptographic primitives in a (post-)quantum setting has produced
an increasing amount of results [7,38,9,17,19,13,14,20,8,24,25]. Several of these
results grant superposition queries to the adversary.

Most work concerning the analysis of (real-world) protocols in a (post-)quan-
tum setting focuses on the performances, and the implementation issues (e.g., [22,35,28,34,36]).
However they do not consider the possibilities provided to an attacker by super-
position queries.

In this regard, Ebrahimi, Chevalier, Kaplan, and Minelli [21] and Music,
Chevalier, and Kashefi [33] stand out by including in their analysis the powers
granted by such quantum queries. They focus their attention respectively on
oblivious transfer and Yao’s protocols [41]. We observe that Music et al. modified
Yao’s protocol so that the attack they present can actually apply. Although
this result demonstrates the separation between adversaries with and without
superposition access, this seems to be based on a rather convoluted example of
such a possibility.

In contrast, our paper focuses on the analysis of a quantum version of the
real-world UMTS authenticated key agreement.

Regarding the quantum threat on the 5G protocol, Mitchell [32] raises two
main issues: the size of the user symmetric key K (128 bits), and the asymmetric
scheme used to encrypt the user permanent identifier. A single run of the 5G
AKA (in fact a few data extracted from such a run) is enough for an attacker
to execute the Grover’s algorithm and retrieve K. Moreover the asymmetric
encryption scheme can be straightforwardly broken with the Shor’s algorithm.
Mitchell recommends to use 256-bit permanent and session keys, and correspond-
ing symmetric-key algorithms. Note that the 4G and 5G key derivation functions
already compute 256-bit session keys, which are then truncated to 128 bits.
Therefore these functions already comply with this change. It remains to define
(in the 4G and 5G specifications) the corresponding symmetric-key functions.
Although this issue must be taken into account, we observe that Grover’s algo-
rithm is not the only threat against symmetric-key functions [30,29,27,9,13,12].
Therefore the alternate algorithms must be chosen with care. Moreover Mitchell
points also out that a quantum attack could target the function (undefined in
the 5G specification) used by an operator to compute the multiple subscriber
keys K. If all these keys derive from a single operator master key, then one at-
tack may endanger a wide set of subscribers. Finally Mitchell recommends to use
a post-quantum asymmetric encryption scheme instead of the current (classic)
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algorithm. Overall, Mitchell focuses on specific cryptographic primitives used in
5G but does not provide an extensive security analysis of the whole protocol in
a quantum setting.

Milenage has already recieved attention in the superposition access model
[39]. However, the attack targets a modified version of Milenage which allows a
128-bit value instead of a 64-bit value. This attack is unapplicable against the
Milenage version used in practice.

1.2 UMTS-AKA in a Full Quantum Setting

As sketched above, we made the choice in our work to study the security of
the UMTS-AKA protocol in the strong full quantum setting (and not only the
primitives it is made of). This means that both honest parties and adversaries
are given quantum capabilities and quantum communications (i.e., superposi-
tion queries). Such a research is still in its infancy, but brings some important
specificities that should be taken into account. While it could be surprising to
put our study in such a strong setting, since this will not emerge overnight, this
is indeed motivating by several arguments that we explain in this section.

On the difficulty and necessary time to design new versions The UMTS-
AKA protocol is used since the beginning of our century. In addition, it is the
basis of the recently published 5G standard that is currently under deployment
for the next decades. Hence, any new result related to the security of the UMTS-
AKA protocol has also an impact on the security of 5G networks. Moreover,
experience shows that technology may have a rather long lifespan. For instance
2G mobile networks are still alive in most parts of Europe, Africa, Central and
South America5 although their first deployments date from the early 90s, and
are now outdated with the 3G and 4G technologies. The cryptographic compo-
nents of the UMTS-AKA technology are allocated among servers, smartphones,
and microchips (USIM) and it well-known that the life-cycle to replace cryp-
tographic schemes takes time from design and security analysis, to (flawless)
implementation and certification. No one can ensure that the 3G/4G technology
will be replaced before quantum machines be fully functional, without speaking
of the retroactive threat posed by a (future quantum) adversary that harvests
data now in order to decrypt later. Additionally, making a new standard in the
telecommunication setting is a very long process. As evidence, the work for next
6G telecommunication network has already started6 while it is planned to be
only deployed in 10 to 15 years. No one could say today whether this generation
will be fully quantum or not. Yet knowing if the UMTS-AKA can be used in
this stronger setting is an important question that should be answered as soon
as possible to be prepared to any choice for such future, and make the right
decision as of today.

5 See https://www.gsma.com/mobileeconomy/
6 See for example https://www.6gworld.com/wp-content/uploads/2021/06/

6G-Vision-Enabling-Technologies-David-Soldani-.pdf.
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Full quantum setting is the practical step regarding security The
most immediate step concerning security is looking at post-quantum security
where legitimate parties use classical computing but adversaries have access to
quantum computing. However the world of security has shown us to look for
stronger security properties than the immediate one due to misuse. Perhaps the
most telling example is that the authenticated encryption with associated data
schemes (AEAD) of the LWC Nist competition are expected to hold key indis-
tinguishability even in the case of nonce misuse i.e., even if the usual security
claims need the nonce to change, these schemes are also evaluated with respect
to an adversary using the same nonce many times. With this in mind, resistance
in the full quantum setting is a desirable quality, especially regarding a possible
future disorganized transition to quantum computing. We stress that our goal
in this paper is not to discuss the feasibility or (ir)relevance of using quantum
communications on the radio interface in mobile telecom networks. We advocate
that considering a security model that enables an adversary to use superposition
queries is a relevant source of information on the (quantum) security of protocols
like the one analysed in this paper.

Strong security implies weak security When analysing symmetric-key func-
tions, superposition queries are granted to the adversary (as recalled in the pre-
vious section). When the symmetric-key functions are incorporated into an in-
teractive protocol this implies quantum communications for both honest parties
and adversaries. Moreover such a security model straightforwardly incorporates
the case when honest messages are classical, which corresponds then to a weaker
security configuration. Therefore, our setting allows us to be as general as pos-
sible, and directly proves the security of the UMTS-AKA protocol against a
quantum-capable adversary, the exchanges between the client, the server and
the operator being either classical or quantum.

One step on the security of a quantum Internet Finally, the simplicity
of the UMTS-AKA protocol and the way it uses symmetric cryptography and
anti-replay techniques (using random queries and synchronized sequences) make
it a good example for how to make a security proof for fully quantum protocols.
Hence, the techniques that we introduce in this paper can be used to prove the
security of the core protocols deployed in the current Internet, such as TLS,
IPSec, SSH, etc. The discussion on the definition of a future quantum Internet
has already begun7 and its security must be based on the fully quantum versions
of all those protocols.

1.3 Our Contribution

In this paper, we first define a security model that does not rely on unconditional
security and allows honest parties and attackers to use superposition messages.

7 See for example https://www.energy.gov/articles/

quantum-internet-future-here.
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In particular, assuming that we are in a quantum world, we provide a discussion
on what can be put into superposition by the client, the server and the operator
during a honest execution of such quantum UMTS-AKA protocol. More precisely,
the quantum version of the UMTS-AKA that we describe assumes quantum
computations as well as quantum communications (i.e., the messages that are
exchanged between parties are in a superposition of quantum states).

We then formally prove that this quantum version of the UMTS-AKA is as
secure in this quantum model as it is in the classical setting [6]. As the quantum
version we built is an extension of the classical one, the attack by Zhang is still
valid [45]. It consists in using the extra authentication vectors of a corrupted
server by the attacker elsewhere to make an unauthorized authentication. As
a supplementary contribution, we also exhibit a new attack against the state
confidentiality of a mobile user. This attack holds in the quantum but also in
the classical setting.

We finally study the security of the underlying primitives that can instantiate
the UMTS-AKA, Milenage and TUAK. We show an attack on Milenage as a
qPRF, however the context of the UMTS-AKA makes this attack unrealistic
and we further prove the security of Milenage based on the security of AES. We
also show a reduction from the security of TUAK to the security of Keccak-f.

We believe that our work will pave the way for the systematic analysis and
the better understanding of the currently deployed real-world protocols with
regard to the quantum threat, and help design secure quantum networks.

2 The AKA Protocol

In this section, we present the standard protocol AKA used in the 3G and 4G
infrastructure, and which is also the basis of the 5G AKA. The we describe a
quantum variant supposed to be run between quantum computers and through
superposition-allowing channels.

2.1 The Classic Version of AKA

The AKA procedure consists of an exchange of Message Authentication Codes
(MAC) and key derivations from a fresh random value, and static secret keys
shared by the client (Mobile Equipment/User Subscriber Identity Module, ME/
USIM) and the operator (Home Location Register, HLR). It is executed as a
challenge-response scheme through a server (Visited Location Register, VLR).

Elements of the protocol The main elements are the following.

Pseudo-random functions The protocol defines seven functions f1, f2, f3, f4,
f5, f

∗
1 , f

∗
5 which take as input the secret keys and the random value R. f1 and

f∗
1 take as additional inputs the sequence number (SqnC or SqnOp,C), and an
Authentication Management Field (AMF ). f1 outputs the MAC tag MacS sent
to the client. f2 outputs the MAC tag MacC sent to the server. f3 and f4 output
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respectively the session keys CK (Confidentiality Key) and IK (Integrity Key).
f5 outputs an Anonymity Key (AK) used to mask Sqn. f∗

1 and f∗
5 intervene

in place of f1 and f5 during the the re-synchronization procedure. In practice,
these functions are instantiated by either Milenage [1] or TUAK [4].

Static secret keys The client key (skC) is known by the client and the operator.
From the latter and the operator key (skOp) an intermediate value (skOp,C) is
derived as skOp,C = KD(skC , skOp).

8 The client stores skOp,C while skOp is
known only to the operator. We note sks = skC ||skOp,C .

By the standard, the skOp are not required to be secret. In that case, we
consider the skOp,C to be random secret values (still obtainable trough skC)
and the mentions of the key-derivation KD can be ignored as its only use in
the security proofs is to make the couples (skC , {skOp,C}Op) look random and
protect skOp when it is secret.

Random value A fresh random value R is generated during each session, and
used as challenge for the client. It aims at protecting the client and the operator
from replay attacks.

Sequence number The client and the operator keep respectively the secret values
SqnC and SqnOp,C , which number the executions of the protocol, and prevent
replay attacks against the client. A re-synchronization procedure may be exe-
cuted in case of discrepancy.

We consider that the values SqnC do not repeat (otherwise the client would
accept values from a previous execution of the protocol). To be sure the operators
do not allow for a repetition of SqnC , we restrict the number of authentication

vector all operators can produce with the same skC to be at most 2|SqnC |

∆ (since a
client uses the same SqnC for every operator), where ∆, chosen by the operator,
defines an acceptance interval.

Description of an Execution The main steps are depicted by Figure 1.

Generation of the challenge First the server requests from the client an UID,
which is an IMSI (International Mobile Subscriber Identify) or a TMSI (Tem-
porary Mobile Subscriber Identity), a value agreed in a previous session. The
server forwards it to the operator. The operator produces n Authentication Vec-
tors (AV ), sends them to the server, and updates SqnOp,C to SqnOp,C +n. Each

8 skOp is denoted as OPC in Milenage and TOPC in TUAK.
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vector AV i, 1 ≤ i ≤ n, is computed from a fresh random value Ri as follows:

Sqni=SqnOp,C + i
MaciS=f1(sks,R

i, Sqni, AMF )
MaciC=f2(sks,R

i)
CKi=f3(sks,R

i)
IKi=f4(sks,R

i)
AKi=f5(sks,R

i)
Authi=Sqni ⊕AKi∥AMF∥MaciS
AV i=(Ri, CKi, IKi, Authi,MaciC)

Challenge-Response The server picks a vector AV i and sends the corresponding
Ri to the client. In turn, the latter computes

AKi=f5(sks,R
i) Sqni=AKi ⊕Authi

1

Mac′iS=f1(sks,R
i, Sqni, AMF ) Mac′iC=f2(sks,R

i)
CKi=f3(sks,R

i) IKi=f4(sks,R
i)

The client verifies thatMac′iS = MaciS , sends an abort message if not, and checks
if the challenge is fresh, i.e., Sqni ∈ [SqnC +1, SqnC +∆]. Next it sets SqnC to
Sqni, and replies to the server with Mac′iC . If this answer is incorrect, the server
sends to the operator a report containing the Ri of the used AV i, the client’s
UID, and a failure code. In such a case the operator updates SqnOp,C to Sqni.

Re-synchronisation If Sqni /∈ [SqnC + 1, SqnC + ∆] the client triggers a re-
synchronization procedure (see Figure 1). First it computes

AK∗=f∗
5 (sks,R

i) Mac∗S=f∗
1 (sks,R

i, SqnC , AMF )
Auts=(SqnC ⊕AK∗)∥Mac∗S

where Ri corresponds to the current challenge. The client sends Auts to the
server which forwards it along with Ri to the operator. Then the operator com-
putes

AK∗=f∗
5 (sks,R

i) SqnC=AK∗ ⊕Auts1
Mac′∗S=f∗

1 (sks,R
i, SqnC , AMF )

and verifies if Mac′∗S = Mac∗S . If so, it updates SqnOp,C to SqnC , otherwise it
aborts the procedure.

2.2 Quantum AKA Protocol

In this section we describe a quantum variant of the AKA protocol. More pre-
cisely, we consider a version within a full quantum world, where both honest and
dishonest parties are given quantum capabilities. Hence, each party is able to
perform quantum computations, and communication allows transferring qubits
in superposition. Since the values can still be computed classically (measure-
ments are still possible), this quantum variant is obviously an extension of the
classical AKA.
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Modelization of Quantum Communications We base our modelization of quan-
tum communications on the work of Yao [42]. For a communication between
Alice and Bob, the total state |a⟩|c⟩|b⟩ is composed of three parts:

– |a⟩ is Alice’s secret part and modifiable only by her;
– |b⟩ is Bob’s secret part and only modifiable by him;
– |c⟩ is the state of the channel, it is modifiable by everyone, or only Alice and

Bob if the channel is secure (like the ones between operators and servers).

Other modelizations Other modelizations of quantum communications exists,
like [18], where communications are made using EPR-pairs, pairs of entangled
qubits shared by Alice and Bob. While this englobes our modelization, it implies
making and storing those pairs. The latter seems highly unpractical.

Superposition or Not We detail below whether the parameters of the protocol
may be used as values in superposition in the quantum variant.

Static secret keys These keys are long-term values whose lifespan depends only on
the time needed by an attacker to find them. Having long-term keys maintained
in superposition seems obviously unpractical. From now on, we consider client
and operator keys (skC , skOp) to be in a classical state. Consequently skOp,C is
also in classical state.

Sequence number We consider sequence numbers to be in classical state.

Random value The random R does not need to be stored from one session to
another. Therefore it is a matter of choice to keep it in classical state or super-
position state. As the latter is a generalization of the former, we allow for the
random values to be used in superposition. The operator can generate authenti-
cation vectors in superposition, and the attacker is allowed to send superposition
queries to client and server parties.

Confidentiality and integrity keys As R is allowed to be in superposition, we
expect the session keys CK and IK to be in superposition too.

Challenge Generator In the classical case [6], R is expected to be an unpre-
dictable value from {0, 1}|R|. In a quantum setting, the states of R are elements of

C2|R| . Therefore our expectations of its randomness are meant to change. While
the pseudo-random functions now has to resist quantum attacks, one could think
the generation of R would face a similar challenge. Yet our security proofs only
involve few properties of such a generator.

10



Expectations We expect the function that generates R =
∑2|R|−1

i=0 ai|i⟩ to have
the following properties:

– a newly generated R is not entangled to any other R;
– for all i ∈ {0, 1, ..., 2|R| − 1}, E[∥ai∥2] = 2−|R|.

We want the random generator to produce independent uncorrelated values
as we want to take care of minimal long-term values (we have the keys for black-
boxing G and Sqn for resistance toward replay attack). We want also the random
generator to have a good distribution to make use of the full space of possible
challenges.

Useful property for security proofs in later sections Then we have the
following property: with n values R1,...,Rn, the probability to measure a collision

among R1,...,Rn is less than n2

2|R|
.

Possible construction Note that R = 1
2|R|/2

∑2|R|−1
i=0 |i⟩ is a possible option of

generation that respects our expectations. While this challenge generation does
not contain any randomness, it still has the properties we need. Indeed, as the
further computations of G entangle R with other elements of the protocol that
are uncomputable by the adversary, the underlying measurement results in the
variability of the protocol.

Description of a Quantum Execution The main steps of the quantum ver-
sion of the protocol are the following (see Figure 2).

Generation of the challenge For 1 ≤ i ≤ n, the operator generates each su-
perposition

∑
Ri aRi |Ri⟩, increments Sqni = SqnOp,C + i, and computes the

parameters entangled with Ri. The operator gets the superposition:∑
Ri

aRi |Ri,MaciS ,MaciC , CKi, IKi, AKi⟩

MaciS=f1(sks,R
i, Sqni, AMF ) MaciC=f2(sks,R

i)
CKi=f3(sks,R

i) IKi=f4(sks,R
i)

AKi=f5(sks,R
i)

Authi=|Sqni ⊕AKi∥AMF∥MaciS⟩
AV i=|Ri, CKi, IKi, Authi,MaciC⟩

and sends the authentication vectors AV i to the server.

Challenge-Response The server picks a vector i and sends the corresponding
challenge to the client. The client computes

AKi=f5(sks,R
i) Sqni=AKi ⊕Authi

1

Mac′iS=f1(sks,R
i, Sqni, AMF ) Mac′iC=f2(sks,R

i)
CKi=f3(sks,R

i) IKi=f4(sks,R
i)
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At this point, several qubits are shared between the operator, the server and the
client. They are entangled, and every state value depends only on the value Ri

it was computed from. The quantum state of the system can be represented as

∑
Ri

aRi| Ri

MaciS
Mac′iS
Mac′iC
CKi

IKi

AKi

SqnOp,C

,

Ri

MaciS
MaciC
CKi

IKi

AKi ⊕ SqnOp,C

,

Ri

MaciS
MaciC
CKi

IKi

AKi
⟩

The first, second and third columns correspond respectively to the client’s,
server’s, and operator’s view.

The end of the protocol goes as follows. The client measures MaciS⊕Mac′iS to
verify that it equals 0, and sends an abort message if not. Then it measures Sqni

and checks if the challenge is fresh, i.e., Sqni ∈ [SqnC + 1, SqnC + ∆]. Finally
the client answers the challenge, and sets SqnC to Sqni. The server checks the
answer by measuring MaciC ⊕Mac′iC , and proceeds as in the classical protocol.

Re-synchronisation. If Sqni /∈ [SqnC + 1, SqnC + ∆], the client triggers a re-
synchronization procedure. First it computes the superposition

∑
Ri aRi |Ri,Mac∗S ,

AK∗⟩ where Ri corresponds to the current challenge and

AK∗=f∗
5 (sks,R

i) Mac∗S=f∗
1 (sks,R

i, SqnC , AMF )

The client generates Auts = |(SqnC ⊕ AK∗)∥Mac∗S⟩ and sends it to the server
which forwards it as

∑
Ri aRi |Ri, Auts⟩ to the operator. Then the operator com-

putes
AK∗=f∗

5 (sks,R
i) SqnC=AK∗ ⊕Auts1

Mac′∗S=f∗
1 (sks,R

i, SqnC , AMF )

and verifies if the measure of Mac′∗S ⊕Mac∗S equals 0. If so, it updates SqnOp,C

to SqnC , otherwise it aborts the procedure.

Notes on the Measurements During the protocol, we measure SqnC as a
value in classical state. We also need to measure MacS ⊕ Mac′S and MacC ⊕
Mac′C as it decides if the protocol continues or is interrupted.

Compared to the classical protocol, allowing for answers in superposition
may mislead us into think that an adversary can have a higher probability to
get an accepting state by entering random values. As seen in the description of
the protocol, every value is determined by Ri. For each Ri, the probability of
acceptance being identical, the same holds regarding the superposition of Ri.

Another way to see this phenomenon is to pass the deciding measurements,
the answer needs to be measured as the expected superposition which is entan-
gled with R.
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3 Adversarial Model and Building Blocks

In this section, we define the quantum adversarial model for a quantum variant
of the UMTS-AKA protocol, and some building blocks we need. We here adapt
the work of Alt, Fouque, Macario, Onete and Richard [6] (done in a classical
context) to our quantum setting.

3.1 Oracles

The adversary interacts with the system by means of the following oracles, in
addition to the functions f1, f2, f3, f4, f5, f

∗
1 , f

∗
5 and KD through their speci-

fications.

– CreateClient(Op) → (skC , IDC , SqnC): this oracle (used by the challenger)
creates a client C with unique identifier IDC , the client’s secret keys skC
and skOp,C = KD(skC , skOp) and the sequence number SqnC . The tuples
(IDC , skC , skOp,C , SqnC) are associated with the client IDC and with the
corresponding operator Op (i.e., each “copy” of Op in each server does this).
The operator sets SqnOp,C := SqnC and then keeps track of SqnOp,C . The
adversary is given IDC .

– CreateOperator() → (skOp, IDOp): this oracle (used by the challenger) cre-
ates an operator Op with unique identifier IDOp, the operator’s secret keys
skOp. The adversary is given IDOp.

– CreateServer(Op) → (IDS): This oracle (used by the challenger) creates an
server S with unique identifier IDS . The challenger makes a secure channel
between the new server and the operator Op. The adversary is given IDS .

– NewInstance(P ) → (Pj ,m): this oracle instantiates the new instance Pj ,
of party P , which is either a client or a server. Furthermore, the oracle also
outputs a message m, which is either the first message in an honest protocol
session (if P is a server) or ⊥ (if P is a client).

– Execute(C, i, S, j) → τ : selects the client C and the server S, creates (fresh)
instances Ci, Sj , allocates the necessary quantummemory for these instances,
then runs the protocol between them using the allocated quantum memory.
The adversary has access to the transcript of the protocol instance τ via the
channel state.
As for the immediate description of the protocol, there is no use of the results
CK, IK, the adversary gets maximum control of the transcript by making
the client uncompute its quantum values of the protocol (except R as it
comes from the challenge sent by the server) and the challenger uncompute
the quantum values of the protocol in the sever and in the operator (except
R, as it links the quantum state of the protocol, and the ones concerned
by a RevealSession or Test query, see below) in the clients, servers and
operators. Then the only remaining value in superposition are the R in the
client and in the operator which are sent to the attacker (it already has
access to it).9

9 This process separates the used memory of previous executions entangled with the
attacker and the memory in new executions of the protocol.
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(One could consider the whole system to be a simulation and then executing
the protocol on superpositions of clients, servers and operators but this is
not our interest here. As such, this oracle takes classical values but returns
a script written on qubits and most often in superposition, as specified in
Section 2.2).

– Send(P, i,m) → m′: simulates sending the message m to the instance Pi

of P . The output is a response message m′ (which is set to ⊥ in case of an
error or an abort). As our protocol is meant to run on superposition allowing
channels, the messages m and m′ use qubits and can be in superposition.

– RevealSession(P, i) → {K,⊥}: this oracle can be used just after an execu-
tion of the protocol. If the party has not terminated in an accepting state,
this oracle outputs ⊥, else it outputs the session keys K = (CK, IK) com-
puted by Pi on the last execution involving Pi (as explained in Section 2.2
the session keys are expected to be a superposition of values).

– CorruptClient(C) → (skC , {skOp,C}): this oracle corrupts C and returns
the long-term client key skC and skOp,C (not in superposition), but not
skOp as the client is not given the operator keys.

– CorruptServer(S): This oracle corrupts the server S and gives the adversary
access to a special oracle OpAccess.

– OpAccess(S,C) → m: for a corrupted server S, this oracle gives the ad-
versary access to the server’s local copy of all the operators, in particular
returning the message that the operator Op would output to this server
for initializing an execution of the protocol with the client C. (We do not
consider superpositions of parties, and the output message can be a super-
position.)

– RevealState(C, i, b) → SqnC : for a client C, if b = 0, then this oracle reveals
the current state of Ci, else, if b = 1, then the oracle returns the state the
operator stores for C (SqnC is not a superposition).

– Test(P, i) → K: this oracle can be used just after an execution of the proto-
col. It is initialized with a secret random bit b and secret random functions
f ′
3 and f ′

4 whose outputs are in the same space as CK and IK respectively.
It returns ⊥ if the instance Pi is not fresh or if it has not terminated in an
accepting state (with a session key CK, IK). If b = 0, then the oracle returns
CK = f3(R), IK = f4(R), else it returns CK ′ = f ′

3(R), IK ′ = f ′
4(R). We

assume that the adversary makes a single Test query.

Partners Two instances Pi and P ′
j are partners if:

– one is from a server and one is from a client;
– both instances are in accepting state;
– they share the same entangled superposition sid = (R,AK⊕SqnC = AK⊕

SqnOp,C).

Note that sid is a superposition included in the challenge transmitted by the
server to the client. sid still contains information corresponding to the operator
and the intended client as it is computed using their keys.
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The sid are entangled values not only in themselves but also between the
partnered instances as seen in the description of the quantum protocol. Then,
deciding whether two instances are partnered can be done by xoring their sid.
The result is 0 if they are effectively partnered and not 0 with overwhelming prob-
ability otherwise (two entities sharing the same sid without partnering would
mean a collision on R, which is the limiting factor for many security properties
we prove in Section 4).

Communications between operators and servers Many elements that could easily
break the security of the authentication are communicated between the operators
and the servers. As such we consider the channels of communications between
the operators and the servers to be secure.

3.2 Pseudo-random Function

As seen in Section 2, the protocol’s security depends on the functions f1, f2,
f3, f4, f5, f∗

1 , f∗
5 implemented with either Milenage or TUAK. We need to

assess how they impact the protocol security. For convenience, we denote G =
(f1, f2, f3, f4, f5, f

∗
1 , f

∗
5 )skOp,C ,skC

.
Following Alagic, Broadbent, Fefferman, Gagliardoni, Schaffner, Jules [5] and
Zhandry [44], we estimate the protocol’s security based on the security of G. As
such, the latter is defined by the ability to distinguish a group of implementations
of G from random functions with the property that only the outputs of f1 and
f∗
1 depend on SqnOp,C and AMF .

Quantum advantage on a group of pseudo-random functions More precisely, we
define the game for the quantum pseudo-randomness of G as follows.

1. The challenger generates random independent classical keys skC,1, . . . , skC,nC

and skOp,C,1,1, . . . , skOp,C,nC ,nOp
to key the pseudo-random functions f1, f2,

f3, f4, f5, f
∗
1 , f

∗
5 , and 7nOpnC random functions.10 The challenger gives

the attacker either the random functions or the pseudo-random ones as a
quantum black box Ofi,skC,j,skOp,C,j,j′

such that Ofi,skC,j,skOp,C,j,j′
(|x⟩|y⟩) =

|x⟩|y ⊕ fi,skC,j ,skOp,C,j,j′ (x)⟩.
2. The attacker can use the given function in quantum circuits.
3. The attacker guesses if the given black box is an implementation of the

pseudo-random functions or random ones, and wins if is is right.

The pseudo-random function is (q, t, nOp, nC , ϵ)-indistinguishable if no at-
tacker A running in time t with q uses of any black box Ofi,skC,j,skOp,C,j,j′

has an advantage Adv(A) = 2(P(A wins) − 1
2 ) more than ϵ. We also define

Adv(G)q,tnOp,nC
= supA{Adv(A)}.

Note that our definition is similar to what is usually depicted as advantage on
a secret-key quantum pseudo-function. The main difference is the reuse of skC

10 This is the amount of generated functions since for each couple (C,Op) there is a
generation of G.
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with different skOp,C . This notion makes related-key attacks happen faster than
the standard case having the full keys being random when the key difference is
on skOp,C .

3.3 Pseudo-random Key-derivation

Through corruption, one can reasonably expect some keys skC and skOp,C to
get leaked. Such an event can occur but should not reveal anything about any
skOp or unleaked skC and skOp,C . As said in Section 2, the skOp,C are obtained
trough a key derivation function KD. We define the advantage on KD against
both of these issues.

Advantage on a pseudo-random key-derivation function We define the game
about the pseudo-randomness of KD as a key-derivation function as follows.

1. The challenger generates random independent classical keys skC,1, . . . , skC,nC

and skOp,1, . . . , skOp,nOp
. The challenger generates the derived keys skOp,C,i,j =

KD(skC,i, skOp,j). The challenger gives the attacker the client keys and ei-
ther the derived keys or random values of the same length.

2. The attacker guesses if the given keys are generated with KD or random
values. The attacker wins if the guess is right.

The pseudo-random key derivation is (t, nOp, nC , ϵ)-indistinguishable if no
attacker A running in time t has an advantage Adv(A) = 2(P(A wins) − 1

2 )
more than ϵ. We also define Adv(KD)tnOp,nC

= supA{Adv(A)}.
Note that guessing a value skOp is an attack. For one operator, this game

can be seen as a known-plaintext game for the pseudo-random function skC 7→
KD(skC , skOp).

4 Quantum Security of the UMTS-AKA Protocol

In this section, we present detailed definitions of the security properties by means
of games executed between a challenger and an attacker. Then, we prove the
adversary’s advantages on those games to be negligible with the use of secure
primitives. In this section, we consider a generic secure pseudo random function
G. As said above, it can be instantiated using either Milenage or TUAK. The
exact quantum security of those two instances are studied in Sections 5 and 6
respectively.

4.1 Session Keys Indistinguishability

Freshness: session keys indistinguishability An instance Pi is fresh if the adver-
sary has not used the oracles CorruptClient, CorruptServer or RevealSession
on Pi or on any of its partners.
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Session Keys Indistinguishability Game We define the session keys indistin-
guishability game as follows.

1. The challenger generates nOp operators, nS servers and nC clients and their
respective keys.

2. The attacker fixes a target (a server or a client) and an operator.
3. The attacker is an active MitM for executions of the protocol whose partic-

ipants are decided by the attacker.
4. The attacker uses the Test query on a fresh instance of the target.
5. The attacker is an active MtiM for executions of the protocol whose partic-

ipants are decided by the attacker (second phase).
6. The attacker guesses the secret bit b of the Test query. The attacker wins if

the guess is right and the target instance is still fresh.

The protocol is (qexec, qres, qOp, t, ϵ)-strongly key-indistinguishable if no at-
tackerA running in time t with qexec executions of the protocol, qres re-synchroniza-
tions and qOp authentication vectors asked by a corrupted server (outside an ex-
ecution of the protocol) has an advantage Adv(A) = P(A wins)− 1

2 more than ϵ.

Theorem 1 (Session Keys Indistinguishability). The advantage on the
session keys indistinguishability game for the UMTS-AKA protocol is bounded
as follows:

Adv(A) ≤ Adv(G)qreq,tnOp,nC
+Adv(KD)tnOp,nC

+
1

2|MacS | +
(qexec + qOp)

2

2|R|

where qreq = 10qexec + 5qOp + 4qres.

Proof. Game G0: This is the game of the definition.

P(A wins Gqexec,qres,qOp,t
0 ) = Adv(A)

Our first step is to replace structural elements with perfect ones.
Game G1: We define the game G1 as the same as G0 but we replace KD

with a perfect key derivation KD′ on which there is no advantage.
Transition G0 → G1: An attacker for G0 either attacks G1 or uses a prop-

erty of KD. To put it in another way, one can use an attack that is successful
against G0 but fails against G1 to distinguish between KD and KD′. More for-
mally, using the best adversary A0 for G0, we can build an adversary AKD for
the game against KD.

AKD will take the given values as keys skC and skOp,C to generate the clients
and operators. Then it will run the adversary A0 with the generated clients and
operators then if A0 is right, AKD will answer “the keys are generated” and if
A0 is wrong, AKD will answer “the keys are random”.

In the case the tuple of keys is the generated one, A0 works normally. If it is
the random one A0 will work as an adversary for the game G1. The probability
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of the described events is reported as follows:

keys
A0 right wrong

generated
P(A wins G

qexec,qres,qOp,t

0 )
2

1−P(A wins G
qexec,qres,qOp,t

0 )
2

random ≤ P(A wins G
qexec,qres,qOp,t

1 )
2 ≥ 1−P(A wins G

qexec,qres,qOp,t

1 )
2

Adv(KD)tnOp,nC
≥ P(A wins Gqexec,qres,qOp,t

0 )− P(A wins Gqexec,qres,qOp,t
1 )

P(A wins Gqexec,qres,qOp,t
0 ) ≤ P(A wins Gqexec,qres,qOp,t

1 ) + Adv(KD)tnOp,nC

Game G2: We define the game G2 as the same as G1 but we replace G with
a perfect pseudo-random function G′ on which there is no advantage.

Transition G1 → G2: An attacker for G1 either attacks G2 or uses a prop-
erty of G. To put it in another way, one can use an attack against G1 but fails
against G2 to distinguish between G and G′. More formally, using the best ad-
versary A1 for G1, we can build a quantum adversary AG for the game against
G with a total of qreq = 10qexec +5qOp +4qres requests11 for keyed G as a black
box.

AG will take the black boxes to generate the clients and operators. Then it
will run the adversaries A1 with the generated clients and operators then if A1

is right, AG will answer “the functions are generated” and if A1 is wrong, AG

will answer “the functions are random”.
In the case the functions are the generated one,A1 works normally. If they are

the random one A1 will work as an adversary for the game G2. The probability
of the described events is reported as follows:

G
A1 right wrong

generated
P(A wins G

qexec,qres,qOp,t

1 )
2

1−P(A wins G
qexec,qres,qOp,t

1 )
2

random ≤ P(A wins G
qexec,qres,qOp,t

2 )
2 ≥ 1−P(A wins G

qexec,qres,qOp,t

2 )
2

Adv(G)qreq,tnOp,nC
≥ P(A wins Gqexec,qres,qOp,t

1 )− P(A wins Gqexec,qres,qOp,t
2 )

P(A wins Gqexec,qres,qOp,t
1 ) ≤ P(A wins Gqexec,qres,qOp,t

2 ) + Adv(G)qreq,tnOp,nC

Our next step is to reduce the configuration to one client, one server and one
operator.

Game G3: We define the game G3 as the same as G2 but there is only one
client and one operator.

11 This is the number of queries needed to simulate the games. During an execution, the
operator and the client each computes f1,f2,f3,f4 and f5. For a re-synchronisation,
the client and the operator each computes f∗

1 and f∗
5 . For a corrupted request, the

operator computes f1,f2,f3,f4 and f5.
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Transition G2 → G3: As G′ and KD′ are perfect, the keyed G′ are uncor-
related. Thus the attacker does not have benefits from having other clients or
operators. An attacker for G3 could simply simulate other uncorrupted clients
by reusing the target client and corrupted clients by generating random keys for
an attacker in G2. As in G0 → G1 or G1 → G2, a difference would mean an
advantage over KD′ or G′.

P(A wins Gqexec,qres,qOp,t
2 ) = P(A wins Gqexec,qres,qOp,t

3 )

Game G4: We define the game G4 as the same as G3 but there is only one
server now.

Transition G3 → G4: As servers are interchangeable in the sense that
the values exchanged do not depend on the server, we essentially make the
attacker unable to corrupt servers. Since corruption of servers only gives access
to authentication vectors which would be given during an execution and reveal,
the queries from a corrupt server are now counted as additional executions of
the protocol: q′exec = qexec + qOp.

P(A wins Gqexec,qres,qOp,t
3 ) = P(A wins Gq′exec,qres,t

4 )

Game G5: We define the game G5 as the same as G4 but the defender now
generates the Ri before the game and measures the property of Ri being all
different.

Transition G4 → G5: With our specifications on the generation of Ri, the

probability of not measuring this property is about
q′2exec

2|R|
.

P(A wins Gq′exec,qres,t
4 ) = P(A wins Gq′exec,qres,t

4 and some Ri are equal)

+ P(A wins Gq′exec,qres,t
4 and the Ri are all differents)

P(A wins Gq′exec,qres,t
4 ) ≤ (q′exec)

2

2|R| + P(A wins Gq′exec,qres,t
5 )

Ending: The attacker has access to a superposition of authentication vectors
such that none of the states contained in the superposition holds any significant
information. It has to distinguish between values generated by a perfect pseudo-
random function from different Ri and true random values. To attack a client,
the attacker can also try to send a different challenge which means guessing the
output MacS of a perfect pseudo-random function with a value SqnC never seen
before.

P(A wins Gq′exec,qres,t
5 ) ≤ 1

2
+

1

2|MacS |

Then by recalling the previous transitions, we get:

Adv(A) ≤ 1

2|MacS | +Adv(G)qreq,tnOp,nC
+Adv(KD)tnOp,nC

+
(qexec + qOp)

2

2|R|
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4.2 Client-impersonation Resistance

Freshness: client-impersonation resistance An instance Pi is considered fresh if
the adversary has not used the oracles CorruptClient or CorruptServer on Pi

or on any of its partners.

Relay: client-impersonation The attacker is considered to be a simple relay dur-
ing an execution of the protocol between a server instance Sj and a client instance
Ci if the following events happened in the following order:

1. use of the oracle Send(S, j,m) wherem is the UID of the client C, initializing
the execution of the protocol;

2. use of the oracle Send(C, i,m′) where m′ is a projection of the output of
Send(S, j,m);

3. use of the oracle Send(S, j,m′′) where m′′ is a projection of the output of
Send(C, i,m′).

Client-impersonation Resistance Game We define the client-impersonation re-
sistance game as follows.

1. The challenger generates nOp operators, nS servers and nC clients and their
respective keys.

2. The attacker fixes a target (a server) and an operator.
3. The attacker is allowed to corrupt any number of clients and servers except

the target.
4. The attacker is an active MitM for executions of the protocol whose partic-

ipants are decided by the attacker.
5. The attacker wins if he successfully breaks the client-impersonation resis-

tance for the target server, i.e., makes the target server instance accept, is
still fresh and either the server instance is not partnered with the intended
client, the server instance is partnered with a non intended client or the
attacker has not been a simple relay.

The protocol is (qexec, qres, qOp, t, ϵ)-strongly client-impersonation resistant
if no attacker A running in time t with qexec executions of the protocol, qres
re-synchronizations and qOp authentication vectors asked by a corrupted server
has an advantage Adv(A) = P(A wins) more than ϵ.

Theorem 2 (Client-impersonation resistance). The advantage on the client-
impersonation resistance game for the UMTS-AKA protocol is bounded as fol-
lows:

Adv(A) ≤ Adv(G)qreq,tnOp,nC
+Adv(KD)tnOp,nC

+
(qexec + qOp)

2

2|R| +
qexec

2|MacC |

where qreq = 10qexec + 5qOp + 4qres.
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Proof.
Game G0: This is the game defined just above.

P(A wins Gqexec,qres,qOp,t
0 ) = Adv(A)

Our first step is to replace structural elements with perfect ones.
Game G1: We define the game G1 as the same as G0 but we replace KD

with a perfect key derivation KD′ and G with a perfect pseudo-function G′ on
which there is no advantage.

Transition G0 → G1: An attacker for G0 either attacks G1 or uses a prop-
erty of KD or G. To put it in another way, one can use an attack against G0

but fails against G1 to distinguish between KD and KD′ or between G and
G′. One can easily use the same argument used in Section 4.1 with qreq =
10qexec + 5qOp + 4qres requests12.

P(A wins Gqexec,qres,qOp,t
0 ) ≤ P(A wins Gqexec,qres,qOp,t

1 )

+ Adv(KD)tnOp,nC
+Adv(G)qreq,tnOp,nC

Our next step is to reduce the configuration to one client, one server and one
operator.

Game G2: We define the game G2 as the same as G1 but there is only one
client and one operator.

Transition G1 → G2: As G
′ and KD′ are perfect, the keyed G′ are uncor-

related. Therefore the attacker does not have benefits from having other clients
or operators. An attacker for G2 could simply simulate other uncorrupted clients
by reusing the target client and corrupted clients by generating random keys for
an attacker in G2. As in G0 → G1, a difference would mean an advantage over
KD′ or G′.

P(A wins Gqexec,qres,qOp,t
1 ) = P(A wins Gqexec,qres,qOp,t

2 )

Game G3: We define the game G3 as the same as G2 but there is only one
server now.

Transition G2 → G3: As servers are interchangeable in the sense that
the values exchanged do not depend on the server, we essentially make the
attacker unable to corrupt servers. Since corruption of servers only gives access
to authentication vectors which would be given during an execution and reveal,
the queries from a corrupt server are now counted as additional executions of the
protocol: q′exec = qexec + qOp. For the next games, those additional executions
will be marked as not valid for wining the game, qvalid = qexec is the number

12 This is the number of queries needed to simulate the games. During an execution, the
operator and the client each computes f1,f2,f3,f4 and f5. For a re-synchronisation,
the client and the operator each computes f∗

1 and f∗
5 . For a corrupted request, the

operator computes f1,f2,f3,f4 and f5.
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of valid executions for wining. The first executions are the marked ones and the
valid ones are last, doing so does not remove generality.

P(A wins Gqexec,qres,qOp,t
2 ) = P(A wins Gq′exec,qres,qvalid,t

3 )

Game G4: We define the game G4 as the same as G3 but the defender now
generates the Ri before the game and measures the property of Ri being all
different.

Transition G3 → G4: With our specifications on the generation of Ri, the

probability of not measuring this property is about
q′2exec

2|R|
.

P(A wins Gq′exec,qres,qvalid,t
3 )

= P(A wins Gq′exec,qres,qvalid,t
3 and some Ri are equal)

+ P(A wins Gq′exec,qres,qvalid,t
3 and the Ri are all differents)

P(A wins Gq′exec,qres,qvalid,t
3 ) ≤ (q′exec)

2

2|R| + P(A wins Gq′exec,qres,qvalid,t
4 )

Ending: The attacker has access to a superposition of authentication vectors
such that none of the states contained in the superposition holds any significant
information. Since the uncorrupted server needs the first and the last message
in that order to be able to accept the execution, the attacker cannot ask the
answer to the client or it will be a simple relay and then has to guess values
MacC generated by a perfect pseudo-random function with a Ri different from
what he has seen.

P(A wins Gq′exec,qres,qvalid,t
4 ) =

qvalid
2|MacC |

Then by recalling the previous transitions, we get:

Adv(A) ≤ (qexec + qOp)
2

2|R| +Adv(G)qreq,tnOp,nC
+Adv(KD)tnOp,nC

+
qexec

2|MacC |

4.3 Weak Server-impersonation Resistance

Freshness: server-impersonation resistance An instance Pi is considered fresh if
the adversary has not used the oracles CorruptClient or CorruptServer on Pi

or on any of its partners.

Relay: server-impersonation The attacker is considered to be a simple relay
during an execution of the protocol between a server instance Sj and a client
instance Ci if the following events happened in the following order:

1. use of the oracle Send(S, j,m) wherem is the UID of the client C, initializing
the execution of the protocol;

2. use of the oracle Send(C, i,m′) where m′ is a projection of the output of
Send(S, j,m).13

13 We do not consider the last message of the protocol in the client-impersonation game
as it does not interfere with the client acceptance.
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Weak Server-impersonation Resistance Game We define the weak server-impersonation
resistance game as follows.

1. The challenger generates nOp operators, nS servers and nC clients and their
respective keys.

2. The attacker fixes a target (a client) and an operator.
3. The attacker is allowed to corrupt any number of clients except the target.
4. The attacker is an active MitM for executions of the protocol whose partic-

ipants are decided by the attacker.
5. The attacker wins if he successfully breaks the server-impersonation resis-

tance for the target client, i.e.s makes the target client instance accept, is
still fresh and either the client instance is not partnered with the intended
server, or is partnered with an other server, or the attacker has not been a
simple relay.

The protocol is (qexec, qres, t, ϵ)-weakly server-impersonation resistant if no
attacker A running in time t with qexec executions of the protocol and qres re-
synchronizations has an advantage Adv(A) = P(A wins) more than ϵ.

Theorem 3 (Weak server-impersonation resistance). The advantage on
the server-impersonation resistance game for the UMTS-AKA protocol is bounded
as follows:

Adv(A) ≤ Adv(G)qreq,tnOp,nC
+Adv(KD)tnOp,nC

+
qexec

2|MacS | +
q2exec
2|R|

where qreq = 10qexec + 4qres.

Proof.
Game G0: This is the game defined just above.

P(A wins Gqexec,qres,t
0 ) = Adv(A)

Our first step is to replace structural elements with perfect ones.
Game G1: We define the game G1 as the same as G0 but we replace KD

with a perfect key derivation KD′ and G with a perfect pseudo-function G′ on
which there is no advantage.

Transition G0 → G1: An attacker for G0 either attacks G1 or uses a prop-
erty of KD or G. To put it in another way, one can use an attack against G0 but
fails against G1 to distinguish between KD and KD′ or between G and G′. One
can easily use the same argument used in Section 4.1 with qreq = 10qexec+4qres
requests 14.

P(A wins Gqexec,qres,qOp,t
0 ) ≤ P(A wins Gqexec,qres,qOp,t

1 )

+ Adv(KD)tnOp,nC
+Adv(G)qreq,tnOp,nC

14 This is the number of queries needed to simulate the games. During an execution, the
operator and the client each computes f1,f2,f3,f4 and f5. For a re-synchronisation,
the client and the operator each computes f∗

1 and f∗
5 . There is no server corruption

(i.e. qOp = 0).
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Our next step is to reduce the configuration to one client, one server and one
operator.

Game G2: We define the game G2 as the same as G1 but there is only one
client and one operator.

Transition G1 → G2: As G
′ and KD′ are perfect, the keyed G′ are uncor-

related. Therefore the attacker does not have benefits from having other clients
or operators. An attacker for G2 could simply simulate other uncorrupted clients
by reusing the target client and corrupted clients by generating random keys for
an attacker in G2. As in G0 → G1, a difference would mean an advantage over
KD′ or G′.

P(A wins Gqexec,qres,qOp,t
1 ) = P(A wins Gqexec,qres,qOp,t

2 )

Game G3: We define the game G3 as the same as G2 but the defender now
generates the Ri before the game and measures the property of Ri being all
different.

Transition G2 → G3: With our specifications on the generation of Ri, the

probability of not measuring this property is about
q2exec

2|R|
.

P(A wins Gqexec,qres,t
3 ) = P(A wins Gqexec,qres,t

3 and some Ri are equal)

+P(A wins Gqexec,qres,t
3 and the Ri are all differents)

P(A wins Gqexec,qres,t
3 ) ≤ (qexec)

2

2|R| + P(A wins Gqexec,qres,t
4 )

Game G4: We define the game G4 as the same as G3 but there is only one
server.

Transition G3 → G4: As servers are incorruptible, they can only partner
with a client that shares the same R they got from an operator. Then, as the R
are all differents, an unintended server will not partner.

P(A wins Gqexec,qres,t
3 ) = P(A wins Gqexec,qres,t

4 )

Ending: The attacker has access to a superposition of authentication vectors
such that none of the states contained in the superposition holds any significant
information. Since the uncorrupted client needs the second message to accept,
the attacker cannot ask the answer to the server or it will be a simple relay and
then has to guess values MacS generated by a perfect pseudo-random function
with a SqnC different from what he has seen.

P(A wins Gqexec,qres,qG
4 ) =

qexec
2|MacS |

Then by recalling the previous transitions, we get:

Adv(A) ≤ qexec
2|MacS | +

q2exec
2|R| +Adv(G)qreq,tnOp,nC

+Adv(KD)tnOp,nC
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4.4 Soundness

Soundness Game We define the soundness game as follows.

1. The challenger generates nC clients and nOp operators and their respective
keys. Then the defender generates qOp authentication vectors and reveal
them to the attacker.

2. The attacker is the server for executions of the protocol with the clients
decided by the attacker.

3. The attacker wins if he makes qOp + 1 executions of the protocol accept.

The protocol is (qexec, qres, qOp, t, ϵ)-server-sound if no attacker A running in
time t with qexec executions of the protocol and qres re-synchronizations has an
advantage Adv(A) = P(A wins) more than ϵ.

Theorem 4 (Soundness). The advantage on the soundness game for the UMTS-
AKA protocol is bounded as follows:

Adv(A) ≤ Adv(G)qreq,tnOp,nC
+Adv(KD)tnOp,nC

+
qexec + qOp

2|MacS |

where qreq = 10qexec + 5qOp + 4qres.

Proof.
Game G0: This is the game defined just above.

P(A wins Gqexec,qres,qOp,t
0 ) = Adv(A)

Our first step is to replace structural elements with perfect ones.
Game G1: We define the game G1 as the same as G0 but we replace KD

with a perfect key derivation KD′ and G with a perfect pseudo-function G′ on
which there is no advantage.

Transition G0 → G1: An attacker for G0 either attacks G1 or uses a prop-
erty of KD or G. To put it in another way, one can use an attack against G0

but fails against G1 to distinguish between KD and KD′ or between G and
G′. One can easily use the same argument used in Section 4.1 with qreq =
10qexec + 5qOp + 4qres requests 15.

P(A wins Gqexec,qres,qOp,t
0 ) ≤ P(A wins Gqexec,qres,qOp,t

1 )

+ Adv(KD)tnOp,nC
+Adv(G)qreq,tnOp,nC

Our next step is to reduce the configuration to one client and one operator.
Game G2: We define the game G2 as the same as G1 but there is only one

client and one operator.

15 This is the number of queries needed to simulate the games. During an execution, the
operator and the client each computes f1,f2,f3,f4 and f5. For a re-synchronisation,
the client and the operator each computes f∗

1 and f∗
5 . For a corrupted request, the

operator computes f1,f2,f3,f4 and f5.
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Transition G1 → G2: As G′ and KD′ are perfect, the keyed G′ are uncor-
related. Therefore the attacker does not have benefits from having other clients
or operators. An attacker for G2 could simply simulate other uncorrupted clients
by reusing the target client and corrupted clients by generating random keys for
an attacker in G2. As in G0 → G1, a difference would mean a advantage over
KD′ or G′.

P(A wins Gqexec,qres,qOp,t
1 ) = P(A wins Gqexec,qres,qOp,t

2 )

Ending: Then the attacker has to guess values MacS generated by a perfect
pseudo-random function with a SqnC different from what he has seen.

P(A wins Gqexec,qres,qOp,t
2 ) ≤ qexec + qOp

2|MacS |

Then by recalling the previous transitions, we get:

Adv(A) ≤ qexec + qOp

2|MacS | +Adv(G)qreq,tnOp,nC
+Adv(KD)tnOp,nC

4.5 State Confidentiality

Freshness: state confidentiality An entity P is fresh if the adversary has not used
the oracles CorruptClient or RevealState on any instance of P .

State Confidentiality Game We define the state confidentiality game as follows.

1. The challenger generates nOp operators, nS servers and nC clients and their
respective keys.

2. The attacker fixes a target (a client) and an operator.
3. The attacker corrupts any number of clients except the target.
4. The attacker is the server for executions of the protocol with the clients

decided by the attacker.
5. The attacker sends a tuple (skC , skOp,C , skOp, n, SqnC,n), wins if he guesses

right any of the values skC , skOp,C , skOp or SqnC,t which is the value SqnC

at the end of the execution n of the target client, and the client is still fresh.

The protocol is (qexec, qres, qOp, t, ϵ)-state-confidential if no attacker A run-
ning in time t with qexec executions of the protocol, qres re-synchronizations
and qOp authentication vectors asked by a corrupted server has an advantage
Adv(A) = P(A wins) more than ϵ.

Theorem 5 (State-Confidentiality). The advantage on the state confiden-
tiality game for the UMTS-AKA protocol is bounded as follows:

Adv(A) ≤ Adv(G)qreq,tnOp,nC
+Adv(KD)tnOp,nC

+
8∆qexec
2|SqnC | +

1

2|skC | +
1

2|skOp,C | +
1

2|skOp|

where qreq = 10qexec + 5qOp + 4qres.
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Proof.
Game G0: This is the game defined just above.

P(A wins Gqexec,qres,qOp,t
0 ) = Adv(A)

Our first step is to replace structural elements with perfect ones.
Game G1: We define the game G1 as the same as G0 but we replace KD

with a perfect key derivation KD′ and G with a perfect pseudo-function G′ on
which there is no advantage.

Transition G0 → G1: An attacker for G0 either attacks G1 or uses a prop-
erty of KD or G. To put it in another way, one can use an attack against G0

but fails against G1 to distinguish between KD and KD′ or between G and
G′. One can easily use the same argument used in Section 4.1 with qreq =
10qexec + 5qOp + 4qres requests16.

P(A wins Gqexec,qres,qOp,t
0 ) ≤ P(A wins Gqexec,qres,qOp,t

1 )

+ Adv(KD)tnOp,nC
+Adv(G)qreq,tnOp,nC

Our next step is to reduce the configuration to one client and one operator.
Game G2: We define the game G2 as the same as G1 but there is only one

client and one operator.
Transition G1 → G2: As G

′ and KD′ are perfect, the keyed G′ are uncor-
related. Therefore the attacker does not have benefits from having other clients
or operators. An attacker for G2 could simply simulate other uncorrupted clients
by reusing the target client and corrupted clients by generating random keys for
an attacker in G2. As in G0 → G1, a difference would mean a advantage over
KD′ or G′.

P(A wins Gqexec,qres,qOp,t
1 ) = P(A wins Gqexec,qres,qOp,t

2 )

Ending: The attacker can only win by sending the correct value for skC , skOp,C

or skOp or getting a right couple (n, SqnC,n).
For obtaining the secret keys, since G′ and KD′ are perfect, the attacker can

only guess them.
Since the attacker is the server, it controls and knows the differences SqnC,n+1−

SqnC,n of the value SqnC at times n and n′ (which by design is between 1 and
∆).

From executions and resynchronisations, the attacker only gets SqnOp,C,n ⊕
AKn and SqnC,n ⊕AK∗n. Since G′ and KD′ are perfect, the attacker can only

learn SqnC,n ⊕ SqnC,n′ when Rn is the same as Rn′ (which can happen since
the attacker can use an old authentication vector and get the result from the
resynchronisation procedure).

16 This is the number of queries needed to simulate the games. During an execution, the
operator and the client each computes f1,f2,f3,f4 and f5. For a re-synchronisation,
the client and the operator each computes f∗

1 and f∗
5 . For a corrupted request, the

operator computes f1,f2,f3,f4 and f5.
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The attacker then can learn the value of all the bits of SqnC,n that changes
through the game. For example, SqnC ⊕ (SqnC + 1) is of the form 0 . . . 01 . . . 1
where the number of 1 is one more than the 2-adic valuation of SqnC + 1 (the
details of this property change with the value of the difference between the
successive values but the principle remains the same). As we expect around
log(∆qexec) + 3 bits to be affected, the probability for the attacker of guessing a
good couple (n, SqnC) is at most 8∆qexec

2|SqnC |
.

P(A wins Gqexec,qres,qOp,t
2 ) ≤ 8∆qexec

2|SqnC | +
1

2|skC | +
1

2|skOp,C | +
1

2|skOp|

Then by recalling the previous transitions, we get:

Adv(A) ≤ Adv(G)qreq,tnOp,nC
+Adv(KD)tnOp,nC

+
8∆qexec
2|SqnC | +

1

2|skC | +
1

2|skOp,C | +
1

2|skOp|

5 Quantum Security of Milenage

In this section we discuss the quantum security of Milenage.

5.1 Description of Milenage

Milenage is a construction based on a block cipher noted E that acts on 128-bit
messages (KASUMI for 3G and AES for 4G/5G).

Key Derivation The keys skOp,C are computed as skOp,C = EskC
(skOp)⊕ skOp.

Functions f1, f2, f3, f4, f5, f∗
1 , f∗

5 From the input R, Sqn, AMF , inter-
mediate values T and I are computed as T = EskC

(R ⊕ skOp,C) and I =
Sqn∥AMF∥Sqn∥AMF .

Then five values are computed as follows:

– out1 = EskC
(T ⊕ rot64(I ⊕ skOp,C))⊕ skOp,C

– out2 = EskC
(c2 ⊕ rot0(T ⊕ skOp,C))⊕ skOp,C

– out3 = EskC
(c3 ⊕ rot32(T ⊕ skOp,C))⊕ skOp,C

– out4 = EskC
(c4 ⊕ rot64(T ⊕ skOp,C))⊕ skOp,C

– out5 = EskC
(c5 ⊕ rot96(T ⊕ skOp,C))⊕ skOp,C

– f1 outputs the first 64 bits of out1
– f∗

1 outputs the last 64 bits of out1
– f2 outputs the last 64 bits of out2
– f3 outputs out3
– f4 outputs out4
– f5 outputs the first 48 bits of out2
– f∗

5 outputs the first 48 bits of out5
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5.2 Attack on Milenage as a Pseudo-random Function

We present a quantum attack against Milenage as a pseudo-random function in
complexity 240.3. It is based on the Grover-meets-Simon algorithm [31,11].

The previous cryptanalysis [39] ignored the pre-proccessing of Milenage, con-
sidering that the attacker could input anything for I instead of the doubled input
SQN∥AMF∥SQN∥AMF .

We present the main algorithmic components before the complete attack,
Grover’s search [23] and Simon’s algorithm [37].

Theorem 6 (Theorem 2 in [15]). Let A be a quantum algorithm that uses no
measurements, let f : X → {0, 1} be a boolean function that tests if an output
of A is “good”. Let a be the success probability of A. Let O0 be the “inversion
around zero” operator that does: O0|x⟩ = (−1)x ̸=0|x⟩ and Of a quantum oracle

for f : Of |x⟩ = (−1)f(x)|x⟩. Let θa = arcsin
√
a and 0 < θa ≤ π

2 . Let t =
⌊

π
4θa

⌋
).

Then by measuring (AO0A†Of )
tA|0⟩, we obtain a “good” result with success

probability greater than max(1− a, a).

Theorem 7 (Theorem 2 in [31]). Suppose that f : {0, 1}n → X has a period
s, i.e. f(x⊕ s) = f(x) for all x ∈ {0, 1}n and satisfies

max
t/∈{0,s}

P(f(x⊕ s) = f(x)) ≤ 1

2

When we apply Simon’s algorithm to f , it returns s with a probability at least
1− 2n · (3/4)cn. It is running in cn queries to f and time cn2.

Simon’s algorithm can be used without measurements and can answer whether
s exists or not by making the classical post-processing of the Simon’s algorithm
into quantum. This procedure (Grover-meets-Simon) has been widely described
in [31,11]. For our use, c = 5 will ensure a failing probability lower than 2−n,
which makes this algorithm look exact up to 2n uses. The final algorithm has a
time complexity of 5n3 binary operations and 5n queries to f (the bigger factor
in our case).

Idea of the Attack The attack relies on the following property of Milenage.
For any value R0 and R1 for R, let us consider E(R0 ⊕ skOp,C) = A∥B,

E(R1 ⊕ skOp,C) = C∥D, if A⊕ B = C ⊕D (probability 2−64 to happen), then
for x = SQN∥AMF and b ∈ {0, 1}, F : b∥x 7→ f1(Rb, Sqn,AMF ) had a period
1∥(A⊕ C). (This should not happen for a random function.)

We will fix R0 and search for a R1 such that F has a period.
(Then querying F on 0∥x will give the value of F on 1∥(x ⊕ A ⊕ C), which

also breaks the security of f1 as a MAC function.)
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Algorithm of the Attack We present a quantum attack on Milenage that uses 240.3

Milenage computations. Classical cryptanalysis [3] uses 264 classical Milenage
computations which can be accelerated to 242.7 quantum Milenage computations
with quantum collision search [16].

Algorithm 1 Quantum attack on Milenage

Input: superposition oracle access to G, or a random function
Output: “Milenage” or “Random”

1: Fix a value R0

2: Apply Grover’s search with π
4
264/2 repetitions on R1

3: Apply Simon’s algorithm on the function F : b∥x 7→ f1(Rb, Sqn,AMF )
▷ costs 5× 64 = 28.3 Milenage computations per use

4: If F is found to be periodic then
5: the state (R1) is “good” Else the state (R1) is “bad”
6: EndGrover
7: Measure and check if a solution was found
8: If it was found return “Milenage” Else return “Random”

5.3 Security Proof of Milenage in AKA

The attack we showed has some extensive use of adaptive superposition queries
on Milenage. However, the AKA protocol severely limits the possibilities for such
queries. Thus, the above attack can be seen as only theoretical since hard to be
put in practice in UMTS-AKA. Considering that, we below define a new game
for the security of the primitive that reflects those constraints. We then prove
that Milenage is quantum secure using that “practical in-AKA” game.

In-AKA-distinguishing Game We define the G-in-AKA-distinguishing game:

1. The challenger generates random independent keys in pure states skC,1,...,
skC,nC

and skOp,C,1,1, ..., skOp,C,nC ,nOp
for the studied

pseudo-random functions f1, f2, f3, f4, f5, f∗
1 , f∗

5 and 7nOpnC random
functions17. The challenger will use either the random functions or the
pseudo-random ones as a quantum black box Ofi,skC,j,skOp,C,j,j′

such that

Ofi,skC,j,skOp,C,j,j′
(|x⟩|y⟩) = |x⟩|y ⊕ fi,skC,j ,skOp,C,j,j′ (x)⟩.

2. The challenger now simulates the AKA protocol with the chosen oracles.
3. The attacker can ask for executions of the protocol where he is a Man-In-

the-Middle and has access to corrupted servers.
4. The attacker guesses whether the protocol is using G or random functions

and wins if the guess is right.

17 This is the number of generated functions since for each couple (C,Op) there is a
generation of G.
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A pseudo-random function is (qexec, qres, qOp, t, ϵ)−strongly in AKA-indistinguishable
if no attacker A running in time t with qexec instances of the protocol, qres
re-synchronizations and qOp authentication vectors asked by a corrupted server
(outside an execution of the protocol) has an advantage Adv(A) = P(A wins)− 1

2
more than ϵ.

Note that in the In-AKA-distinguishing game, the pseudo-random function is
still queried in superposition like in the AKA protocol and that the superposition
is fixed by the challenger and not the attacker.

We now show that Milenage is G-in-AKA indistinguishable by proving the
following theorem.

Theorem 8 (G-in-AKA indistinguishability). The advantage on the G-in-
AKA indistinguishability game for Milenage is bounded as follows:

Adv(A) ≤ 24(qexec + qOp)(qexec + qres)

2|R| +
50(qexec + qOp)

2

2|R| +
qexec + qres
|MacS |

+Adv(E)qreq,tnOp,nC
+Adv(KD)tnOp,nC

where qreq = 6qOp + 8qexec + 2qres.

The rest of this section is dedicated to proving this theorem.

Note on AES AES has been studied in the classical case for over 20 years. While
the same cannot be said for the quantum case, the work of Bonnetain, Naya-
Plasencia and Schrottenloher [14] seems convincing that AES can be considered
quantum-safe for now.

Security of the Key Derivation As stated in 3.3, the model for evaluating the
key derivation is a known-plaintext model on AES. It can be considered safe.

Note on the advantage on E The use of fixed superposition may mislead us to
think only the classical security of E is needed. However, an example for a quan-
tum attack happening is the one-time pad distinguisher from [10] (Proposition
7.1). This distinguisher happens with only one query on H|0⟩ against a one-time
pad (where a classical distinguisher would need at least two queries) as G is a
kind of one-time pad when E is a one-time pad.

Rewriting of the Game From the structure of UMTS-AKA, an execution of the
protocol uses G only twice: once for generating the authentication vectors and
once to verify them. Note that in order to get an interesting answer from the
client, the attacker needs to pass through the client verification with a different
element. The verification of the server is not an oracle since it exclusively uses
the authentication vector it is given, which the attacker has also access to). For
simplicity, we give the attacker the values out1,out2,out3,out4,out5 instead of f1,
f2, f3, f4, f5, f

∗
1 , f

∗
5 with no loss of generality (we actually give more to the
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attacker this way). We recall that Sqn and AMF are classical values. Then we
can replace the previous game with the following (named G0) which is obviously
exactly equivalent to the one above. There is no difference in winning one or the
other game.

1. The challenger generates random independents keys in pure states skC,1,...,
skC,nC

and skOp,C,1,1, ..., skOp,C,nC ,nOp
for the studied

pseudo-random functions out1,out2,out3,out4,out5 and 5nOpnC random func-
tions. The challenger will use either the random functions or the pseudo-
random ones as a quantum black boxOfi,skC,j,skOp,C,j,j′

such thatOfi,skC,j,skOp,C,j,j′
(|x⟩|y⟩) =

|x⟩|y ⊕ outi,skC,j ,skOp,C,j,j′ (x)⟩.
2. The challenger now gives the attacker authentication vectors and the as-

sociated answers (i.e., elements
∑

R aR|R, out1, out2, out3, out4, out5⟩) and
access to black-box verification functions F1 and F ∗

1 that take quantum su-
perpositions of states |x, y⟩ and measures whether y = f1(x, Sqn,AMF ) and
y = f∗

1 (x, Sqn,AMF ) respectively and give the result on a classic bit.
3. The attacker is free to interact with those elements.
4. The attacker guesses whether the challenger is using G or random functions

and wins if the guess is right.

The number of given authentication vectors is bounded by qvect = qexec + qOp,
the number of calls to F1 is bounded by qF1

= qexec and, the number of calls to
F ∗
1 is bounded by qF∗1 = qres.

Use of E We define the game G1 as the same as G0 except in Milenage we use
a perfect quantum pseudo-random permutation E′ instead of E and a perfect
key derivation KD′ instead of KD.

Lemma 1

P(A wins G
qvect,qF1

,qF∗1
,t

0 ) ≤ P(A wins G
qvect,qF1

,qF∗1
,t

1 )

+Adv(E)qreq,tnOp,nC
+Adv(KD)tnOp,nC

The attacker either uses a property of E with at most qreq = 6qvect +2qF1
+

2qF∗1 queries or it attacks G1.

Proof. The passage from G0 to G1 can be seen as an attack against E. More
formally, using the best adversary A0 for G0, we can build a quantum adversary
AE for the game against E with a total of qreq = 6qvect + 2qF1

+ 2qF∗1 requests
for keyed E as a black box.

AE takes the black boxes to generate the clients and operators. Then it runs
the adversaries A0 with the generated clients and AE answers “the functions are
generated” operators if A0 is right, and AE answers “the functions are random”
if A0 is wrong.

32



In the case the functions are the generated ones, A0 works normally. If they
are the random ones, A0 works as an adversary for the game G1. The probability
of the described events is reported as follows.

functions
A0 right wrong

generated
P(A wins G

qvect,qF1
,qF∗1

,t

0 )
2

1−P(A wins G
qvect,qF1

,qF∗1
,t

0 )
2

random ≤ P(A wins G
qvect,qF1

,qF∗1
,t

1 )
2 ≥ 1−P(A wins G

qvect,qF1
,qF∗1

,t

1 )
2

Adv(E)qreq,tnOp,nC
≥ P(A wins G

qvect,qF1
,qF∗1

,t

0 )− P(A wins G
qvect,qF1

,qF∗1
,t

1 )

P(A wins G
qvect,qF1

,qF∗1
,t

0 ) ≤ P(A wins G
qvect,qF1

,qF∗1
,t

1 ) + Adv(E)qreq,tnOp,nC
⊓⊔

Use of multiple clients As we now deal with a perfect block cipher, the different
elements obtained through the different clients are unrelated. The total advan-
tage is the sum of the advantages against each client. We show that for one

client, the advantage is less than
24qvect(qF1

+qF∗1
)

2|R|
+

50q2vect

2|R|
+

qF1
+qF∗1

|MacS | . The re-

sources of the attacker (access to authentication vectors, calls to F1 and F ∗
1 ) are

spread between the clients (qvect =
∑

clients qvect,client, qF1
=

∑
clients qF1,client

and, qF∗1 =
∑

clients qF∗1 ,client).
Then the total advantage is less than∑

clients

24qvect,client(qF1,client+qF∗1 ,client)

2|R|
+

50q2vect,client

2|R|
+

qF1,client+qF∗1 ,client

|MacS | , which

is still less than
24qvect(qF1

+qF∗1
)

2|R|
+

50q2vect

2|R|
+

qF1
+qF∗1

|MacS | . We only consider the case

of one client for the rest of the proof.

Use of verification functions We define an intermediate gameG2 as the following:

1. The challenger generates random independent keys in pure states skC,1,...,
skC,nC

and skOp,C,1,1, ..., skOp,C,nC ,nOp
for the studied pseudo-random func-

tions out1,out2,out3,out4,out5 and 5nOpnC random functions. The challenger
will use the pseudo-random ones as a quantum black box Ofi,skC,j,skOp,C,j,j′

such that Ofi,skC,j,skOp,C,j,j′
(|x⟩|y⟩) = |x⟩|y ⊕ outi,skC,j ,skOp,C,j,j′ (x)⟩.

2. The challenger now gives the attacker authentication vectors and the as-
sociated answers (i.e., elements

∑
R aR|R, out1, out2, out3, out4, out5⟩) and

access to black-box verification functions F1 and F ∗
1 that take quantum su-

perpositions of states |x, y⟩ and measures whether y = f1(x, Sqn,AMF ) and
y = f∗

1 (x, Sqn,AMF ) respectively and gives the result on a classical bit.
3. The challenger gives the attacker a value

∑
R′,h aR′,h|R

′, h⟩ such that R′ is

measured to never be equal to a previous Ri.
4. The attacker is free to interact with those elements.
5. The attacker guesses the value of any part of G(R′, Sqn,AMF )

(f1, f
∗
1 , out2, out3, out4, out5) and wins if the guess is right.
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Lemma 2

P(A wins G
qvect,qF1

,qF∗1
,t

2 ) ≤
24qvect(qF1

+ qF∗1 )

2|R| +
qF1

+ qF∗1
|MacS |

Proof. As we want to consider all possible R′, the attacker uses F1 or F ∗
1 either

on an R′ or on a previous Ri. However, the attacker gains nothing by querying
F1 or F ∗

1 on a previous Ri (the result is already known). Then we consider the
attacker to only query F1 or F

∗
1 on a R′. Then on an R′, either the result is “true”

and we can declare the attacker to win, or the result is false and it continues.
Either way, the measurement can be done at the end of the game with the final
guess. Then having qF1

access to F1 and qF∗1 access to F ∗
1 only multiplies the

probability of success.

P(A wins G
qvect,qF1

,qF∗1
,t

2 ) ≤ qF1P(A wins Gqvect,1,0,t
2 )

+ qF∗1 P(A wins Gqvect,0,1,t
2 )

There are two cases, either one of the internal value of the computation matches
one that appeared for one of the previous Ri, which happen with probability less
than 12qvect

2|R|
, 18 or there is no collision and the attacker has to guess a random

value such that there is no internal collision between R′ and any Ri.

Note that there is no gain to take more R′ or a smaller part. In the first case,
the attacker would have to spread the calls to F1 or F ∗

1 between the different
values R′ to attack. In the second case, F1 and F ∗

1 would only give a partial
answer and the advantage of the attacker compared to a perfect G would not
grow.

Randomness of the initial vectors We showed that vectors outside the initial ones
cannot be used efficiently. We now focus on the initial vectors. The verification
function are trivial on those ones, and we can then dispose of them. We define
the game G3 as distinguishing the authentication vectors given to the attacker
from vectors generated by a perfect pseudo-random function.

Lemma 3

P(A wins Gqvect,t
3 ) ≤ 1

2
+

50q2vect
2|R|

Proof. There are two cases, either one of the internal value of the computation
matches one that appeared for one of the previous Ri or there is no collision.

The first one happens with probability less than
25q2vect

2|R|
. The second one means

the attacker has only the fact that there is no internal collision between the
computations of out1, out2, out3, out4, out5 (which gives the same advantage).

18 There is two values for R′ as only Out1 is computed
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6 Quantum Security of TUAK

In this section we discuss the security of TUAK.

6.1 Description of TUAK

TUAK is based on a permutation noted P (in practice, it is Keccak-f[1600] [4]).
The following description concerns the highest size of elements (keys and MACs
are 256-bit long). The lower sizes only have some tweaks on the INSTANCE
value and only output a subset of their higher size counterparts. We note rev(M)
the message M reversed, a ∗ M to be the message M repeated a times and
ALGONAME to be the 56-bit value of the ASCII representation of “TUAK1.0”.

Key derivation INSTANCE is set to 00000001,
IN is rev(skOp)∥rev(INSTANCE)∥rev(ALGONAME)∥192∗(0)∥rev(skC)∥5∗
(1)
∥314 ∗ (0)∥(1)∥512 ∗ (0),
skOp,C is defined as the reverse of the first reversed 256 bits of P (IN).

Functions f1, f2, f3, f4, f5, f
∗
1 , f

∗
5 For f1, INSTANCE is 00100001,

IN is rev(skOp)∥rev(INSTANCE)∥rev(ALGONAME)∥rev(R)∥rev(AMF )∥
rev(Sqn)∥rev(skC)∥5 ∗ (1)∥314 ∗ (0)∥(1)∥512 ∗ (0),
f1 outputs the reverse of the first reversed 256 bits of P (IN).

For f∗
1 , INSTANCE is 10100001,

IN is rev(skOp)∥rev(INSTANCE)∥rev(ALGONAME)∥rev(R)∥rev(AMF )∥
rev(Sqn)∥rev(skC)∥5 ∗ (1)∥314 ∗ (0)∥(1)∥512 ∗ (0),
f∗
1 outputs the reverse of the first reversed 256 bits of P (IN).

For f2, f3, f4, f5, INSTANCE is set to 01100111,
IN is rev(skOp)∥rev(INSTANCE)∥rev(ALGONAME)∥rev(R)∥
64 ∗ (0)∥rev(skC)∥5 ∗ (1)∥314 ∗ (0)∥(1)∥512 ∗ (0),
f2 outputs the reverse of the first 256 bits of P (IN),
f3 outputs the reverse of the bits 256 to 511 of P (IN),
f4 outputs the reverse of the bits 512 to 767 of P (IN),
f5 outputs the reverse of the bits 768 to 815 of P (IN).

For f∗
5 , INSTANCE is set to 11000001,

IN is rev(skOp)∥rev(INSTANCE)∥rev(ALGONAME)∥rev(R)∥
64 ∗ (0)∥rev(skC)∥5 ∗ (1)∥314 ∗ (0)∥(1)∥512 ∗ (0),
f∗
5 outputs the reverse of the bits 768 to 815 of P (IN).

6.2 Security Proof of TUAK

From a security perspective, we look at P as a pseudo-random function taking
on input the key skOp,C on positions 0 to 255 and the key skC on position 512 to
767. Any attack on P would be considered as an attack against the permutation.

With this mindset, we can obviously reduce the security of TUAK to the one
of P with at most 4q queries.
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Note on Keccak-f We now have to give some evidence that the underlying per-
mutation, namely Keccak-f, can be considered as quantum secure. As Keccak is
a permutation on 1600 bits, it means that the best general attack as a qPRF is
to try and fail at finding a collision which takes at least 2533 computations to
do [43] compared to the 2256 computations to brute-force the keys. Keccak-f has
been studied in the classical case since the NIST SHA-3 competition in 2008.
While the same cannot be said for the quantum case, the fact that no practical
classical attack breaks more than 8 rounds out of 24 [46,26] (the best classical
attack on the full permutation to our knowledge uses 21573 computations [40])
seems convincing that Keccak-f can be considered quantum-safe for now.

7 Conclusion

The UMTS-AKA protocol was designed in 1999 and intended to a classical
world. With the advent of quantum computers, that multiple experts consider
as imminent, it is necessary to take a new look at such protocols deployed in real
life, which are used to protect the communication of billions of users. Assessing
their security anew is therefore implied by the coming quantum era.

In this paper we have focused our attention on the UMTS authenticated key
agreement, designed for the 3G telecommunication technology, and still at the
basis of both 4G and 5G standards. This protocol is used every day by numerous
users to protect their voice and data mobile communications.

We have defined a quantum version of the genuine AKA protocol. Starting
from the work of Alt et al. we have derived a stronger quantum model which
grants the adversary quantum computations as well as superposition queries.
Then we have provided detailed security proofs of the quantum UMTS-AKA,
showing that the quantum security of the protocol relies upon that of the un-
derlying pseudo-random functions (f1, . . . , f

∗
5 ). Therefore, under the assumption

that they are quantum-secure, the UMTA-AKA remains a secure scheme to pro-
tect users’ communications. To the best of our knowledge this paper provides
the first rigorous proof of the UMTS-AKA in a strong quantum setting.

As supplementary contributions, we also exhibit a new attack against the
state confidentiality of a mobile user. This attack holds in the quantum as well
as in the classical setting. We also describe a quantum existential forgery at-
tack against the standalone f1 function when instantiated with Milenage. We
analyzed the quantum security of the underlying primitives of UMTS-AKA,
Milenage and TUAK, and conclude that, if keyed with a 256-bit key, they are
quantum secure as core functions of the UMTS-AKA protocol.

As a next work we aim at studying in a quantum setting the new properties
of user’s privacy and network’s “awareness” that are provided in the 5G tech-
nology. With the threat posed by quantum computing in mind, the goal of the
NIST’s post-quantum competition is to motivate the design of quantum-secure
asymmetric schemes. Likewise we hope that our work will contribute to the sys-
tematic analysis of the currently deployed protocols with regard to the quantum
threat they will soon face, and help design secure quantum networks.
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