
HAL Id: hal-04334473
https://hal.science/hal-04334473

Submitted on 11 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spacecraft Autonomous Decision-Planning for Collision
Avoidance : a Reinforcement Learning Approach

Nicolas Bourriez, Adrien Loizeau, Adam Abdin

To cite this version:
Nicolas Bourriez, Adrien Loizeau, Adam Abdin. Spacecraft Autonomous Decision-Planning for Col-
lision Avoidance : a Reinforcement Learning Approach. 74th International Astronautical Congress
(IAC), International Astronautical Federation (IAF), Oct 2023, Baku, Azerbaijan. �hal-04334473�

https://hal.science/hal-04334473
https://hal.archives-ouvertes.fr


PREPRINT ACCEPTED IN THE 74𝑡ℎ INTERNATIONAL ASTRONAUTICAL CONGRESS (IAC) - BAKU, AZERBAIJAN, 2-6 OCTOBER 2023.1

Spacecraft Autonomous Decision-Planning for
Collision Avoidance : a Reinforcement

Learning Approach
Nicolas Bourriez1, Adrien Loizeau1 and Adam F. Abdin2,*
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Abstract

The space environment around the Earth is becoming increasingly populated by both active space-
craft and space debris. To avoid potential collision events, significant improvements in Space Situational
Awareness (SSA) activities and Collision Avoidance (CA) technologies are allowing the tracking and
maneuvering of spacecraft with increasing accuracy and reliability. However, these procedures still
largely involve a high level of human intervention to make the necessary decisions. For an increasingly
complex space environment, this decision-making strategy is not likely to be sustainable. Therefore, it
is important to successfully introduce higher levels of automation for key Space Traffic Management
(STM) processes to ensure the level of reliability needed for navigating a large number of spacecraft.
These processes range from collision risk detection to the identification of the appropriate action to
take and the execution of avoidance maneuvers. This work proposes an implementation of autonomous
CA decision-making capabilities on spacecraft based on Reinforcement Learning (RL) techniques. A
novel methodology based on a Partially Observable Markov Decision Process (POMDP) framework is
developed to train the Artificial Intelligence (AI) system on board the spacecraft, considering epistemic
and aleatory uncertainties. The proposed framework considers imperfect monitoring information about
the status of the debris in orbit and allows the AI system to effectively learn stochastic policies to
perform accurate Collision Avoidance Maneuvers (CAMs). The objective is to successfully delegate
the decision-making process for autonomously implementing a CAM to the spacecraft without human
intervention. This approach would allow for a faster response in the decision-making process and for
highly decentralized operations.

Index Terms

Space Traffic Management; Space Situational Awareness; Collision Avoidance; Artificial Intelli-
gence; Reinforcement Learning

I. Introduction

THE current space environment around the Earth is becoming increasingly populated by both
active spacecraft (satellites and launch vehicles) and space debris. Thousands of pieces of debris,

measuring at least 10cm in diameter, and millions of pieces larger than 1cm, traveling at extremely
high speeds, can significantly damage a spacecraft upon collision (1). Collisions with space debris
can generate more debris, which can then lead to further collisions, creating a chain reaction known



PREPRINT ACCEPTED IN THE 74𝑡ℎ INTERNATIONAL ASTRONAUTICAL CONGRESS (IAC) - BAKU, AZERBAIJAN, 2-6 OCTOBER 2023.2

as the Kessler syndrome (2). This can lead to a severe threat to the long-term sustainability of Earth’s
orbits (3).

To minimize the risk of collisions with active or inactive objects in Earth’s orbit, owners and
operators (O/Os) of satellites must be aware of the collision risk to their assets (4) and need to
implement proper actions to manage these risks. With mega-constellations rising and the significant
increase in spacecraft orbiting the Earth, managing collision risks and developing proper strategies
to improve space situational awareness (SSA) and space traffic management (STM) have become
crucially important. Several challenges remain related to the accurate monitoring and tracking of
space objects and the development of proper decision-support frameworks, leveraging advancements in
Artificial Intelligence (AI) methods to use these data to make informed risk mitigation and operational
management decisions.

As part of improving SSA capabilities, space agencies around the world are developing technologies
for systems that can detect and track space objects and issue an alert when evasive action may be
necessary. The global Space Surveillance Network (SSN) is an example of one such system used to
track objects in Earth’s orbit and monitor their trajectories (5; 6). The SSN is a network of ground-
based radar and optical sensors used to track objects in Earth’s orbit. A physics simulator uses SSN
observations to predict the evolution of the state of objects over time. Each satellite, also known as
a target/protected object, is compared to all other objects in the catalog to detect a conjunction or
a close approach. When a conjunction between the target and another object, usually referred to as
the chaser/debris, is detected, the SSN propagated states become available, and a Conjunction Data
Message (CDM) is produced, containing information about the event. This information includes the
time of closest approach (TCA) and the probability of collision. At the issue of these warnings, the
satellite’s owners and operators have to decide whether to take action to avoid a collision with the
available information one to two days before the TCA. To make this decision, they must assess the
collision risk, including the probability of collision and the potential consequences of the collision,
to plan and implement a collision avoidance maneuver (CAM).

As the space environment becomes increasingly congested, the tasks of detecting, assessing, and
planning maneuvers to avoid collisions become more challenging for manual human responses and
existing decision processes. Traditionally, experts have been responsible for planning and executing
spacecraft CAMs, a process that typically takes days to hours of preparation. However, due to the
growing demands of STM, there is a need for intelligent onboard autonomous systems to handle
spacecraft maneuvering tasks. These autonomous systems can manage tasks such as collision avoidance
and station keeping on a larger scale with faster response times. Automating these processes can
significantly enhance the safety and efficiency of space operations, ultimately contributing to a more
sustainable and secure future in space operations (7). However, developing onboard autonomous
collision avoidance systems is a challenging task. The optimal maneuver must balance multiple factors
such as collision probability, propellant consumption, and mission objectives (8). Moreover, the optimal
decisions may need to take into account the inherent uncertainties in objects’ velocities, location,
and monitoring information, increasing the problem’s complexity (9). In addition, the adoption of
appropriate computational frameworks is crucial for efficiently handling large volumes of data and
improving prediction and decision-making accuracy under uncertainty. Addressing these issues requires
adequate AI-based decision-support models and algorithms capable of evaluating the trade-off between
these different objectives and operational constraints and efficiently finding the optimal solutions.

Recent studies have started to propose optimization and learning algorithms for improving orbital
collision risk predictions and developing collision avoidance planning and execution algorithms. Some
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researchers have used machine learning (ML) to improve the prediction of the probability of collision
using historical conjunction data (10; 11), while others researchers have explored the use of deep
learning to simulate the future states of objects and predict the probability of a collision (12; 13). Other
works have proposed methodologies for automating the CAM execution using polynomial regression
models (14) or robust Bayesian framework (15). In addition, studies developed analytical (16; 17)
and semi-analytical (18) models to calculate expressions for the orbit modification to implement
autonomous CAM, as well as heuristic approaches such as Particle Swarm Optimisation (PSO) for
on-board trajectory generation for STM (19).

While these methods provide a wide variety of tools to develop autonomous CAM frameworks, they
often rely on physics-based models to derive adequate action. These models often require a significant
number of simplifications compared to the actual environment dynamics, making the decision-making
output dependent on the model quality and the assumptions made. More recently, other tools have
been developed based on novel maneuver optimization algorithm that combines domain knowledge
with Reinforcement Learning (RL) algorithms (20). The RL-based approach allows the model to
explore the environment, learning to map states (e.g., collision risks) to optimal actions (e.g., CAMs)
without requiring explicit models of the state transitions (physics-based models) and has recently
shown promising results in spacecraft CAMs planning (21; 22). However, existing RL applications to
spacecraft CAM are based on modeling the decision problem as a Markov Decision Process (MDP),
which assumes that the agent is capable of having perfect access to the state of the environment
(e.g., accurate debris position and velocity). In reality, however, this is not the case since monitoring
data on the state of the environment is imperfect and is characterized by a range of uncertainties.
Monitoring data on the status of satellites’ systems and orbital environments, such as the proximity to
orbital debris and the position and velocity of the debris, are highly uncertain and do not necessarily
represent the actual state of the system (i.e., the system state is not fully observable). Therefore, proper
modeling of the CAM problem requires methods capable of dealing with partial observability of the
status of the systems.

To this end, in this paper, we propose a novel RL-based approach for developing spacecraft
autonomous CAM systems that consider aleatory and epistemic uncertainties and in which the decision-
makers do not have complete knowledge of the status of the environment. We model the AI planning
problem mathematically as a Partially Observable Markov Decision Process (POMDP) to take into
account the problem’s uncertainties and imperfect monitoring of the environment’s status. Moreover,
we propose a novel solution algorithm based on Deep Recurrent Q-Network (DRQN) capable of
solving the proposed POMDP with continuous and infinite state space and discretized action space.
To the best of our knowledge, this is the first implementation of the POMDP formalism to develop
AI algorithms for spacecraft planning tasks.

The rest of the paper is organized as follows. Section (I), presented the problem context, the state-
of-the-art and the paper contributions. In Section (II) we describe the proposed RL planning model for
autonomous CAM planning and execution. The model is mathematically described within a POMDP
formalism capable of realistically representing the uncertainties in the orbital environment. Section (III)
details the DRQN solution algorithm used for training the AI agent. Section (IV) presents the results
and validation of the training model. Finally, Section (V) discusses the conclusions and further research
perspectives.
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II. Reinforcement learning with partial observability for autonomous CAM planning
and execution

We model the AI system with the function of planning and executing CAM decisions onboard the
spacecraft (the agent) as a system that does not have explicit knowledge about the possible states
of the objects in its surroundings (i.e., debris and non-cooperative spacecraft). Instead, The agent
has only imperfect monitoring information from sensory monitoring data and external information
sources. A novel RL approach is used to train the agent to autonomously make optimal CAM decisions
that simultaneously minimize collision risk and fuel expenditure to perform the maneuvers. For this,
we mathematically model the learning process as a Partially Observable Markov Decision Process
(POMDP).

A POMDP is a generalization of Markov Decision Processes (MDPs) to decision-making situations
in which the real system states are not fully observable (i.e., the monitoring data are insufficient to
describe the system’s real state). This realistic extension significantly increases the complexity of the
model and requires advanced RL algorithms capable of finding the optimal solutions and training
the agent in continuous and uncertain observation spaces. To the best of our knowledge, this is
the first implementation of the POMDP formalism to develop AI algorithms for spacecraft planning
tasks. In this section, we describe in detail the methodology developed in our approach for spacecraft
autonomous CAM decision-planning.

A. Partially Observable Markov Decision Process (POMDP) collision avoidance maneuver model

The POMDP is a flexible mathematical framework for representing sequential decision problems
(23; 24). Unlike in MDPs, in POMDP, the autonomous AI agent cannot directly observe the state of
the environment. Instead, the agent only has access to observations that are generated probabilisti-
cally based on previous actions and imperfect data acquired from sensory monitoring. The POMDP
framework, thus, models the inherent uncertainty in the space collision avoidance problem to obtain
optimal decisions under aleatory and epistemic uncertainties.

To model the spacecraft decision-learning process under a POMDP framework, in our work, the
model is defined using the tuple (S, A, T , R, O, Z, 𝛾), where:

• S: represents the state-space of the environment. It is a continuous space that describes the
spacecraft’s and space debris’ position and velocity vectors in three-dimensional space (𝑥, 𝑦, 𝑧,
𝑑𝑥, 𝑑𝑦, 𝑑𝑧).

• A: represents the action space of the spacecraft. In our model, the agent can only modify its
position by applying impulsive thrust to change its velocity. The action space is discrete, with five
possible thrust values, including 0.0, 0.01, 0.05, 0.1, and -0.05, in each of the three dimensions
and at a specific time. As a result, the action space has a size of 54 = 625.

• T : represents the environment’s state transition probability. We consider that transitions within
the model are unknown (i.e., no analytical functions exist to model the state transitions) and that
the agent can only learn through interaction with the environment.

• R: represents the reward (or penalty) received by the agent after taking an action. In our frame-
work, the reward received by the agent is based on three components: collision probability, fuel
consumption, and trajectory deviation. Detailed explanations of these components are provided
below.
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• O: represents the observation space of the environment. Similar to the state space, observations
are continuous and are defined by the position and velocity vectors of the spacecraft and space
debris (𝑥, 𝑦, 𝑧, 𝑑𝑥, 𝑑𝑦, 𝑑𝑧).

• Z: represents the observation model detailed below. The observation model is characterized
by two types of uncertainties: epistemic uncertainties stemming from the SGP4 model and
aleatory uncertainties resulting from the monitoring sensors. In our approach, both uncertainties
are modeled as a Gaussian distribution.

• 𝛾: represents the learning factor of the RL model (∈ [0, 1]) and is set to 0.99 in our problem.

An essential component of the presented model is the observation model denoted Z. Z(𝑜 — 𝑠, 𝑎,
𝑠0) is the probability or probability density of receiving observation 𝑜 about the debris characteristics
in state 𝑠0, given the previous state and action were 𝑠 and 𝑎, respectively. Information about the
state may be inferred from the entire history of previous actions and observations and the initial
information, 𝑏0. Thus, in a POMDP, the agent’s policy is a function mapping each possible history,
ℎ𝑡 = (𝑏0, 𝑎0, 𝑜1, 𝑎1, 𝑜2, . . ., 𝑎𝑡−1, 𝑜𝑡 ), to an action. In some cases, each state’s probability can
be calculated based on the history of observations. This distribution is known as a belief (𝑏), with
𝑏𝑡 (𝑠) denoting the probability of state 𝑠. The belief is a sufficient statistic for optimal decision-making.

There exists a policy, 𝜋, such that when 𝑎𝑡 = 𝜋(bt), the expected cumulative reward is maximized
for the POMDP. Given the POMDP model, each subsequent belief can be calculated using Bayes’ rule.
However, the exact update is computationally intensive, so approximate approaches such as particle
filtering are usually used. For our model, the approach implemented to calculate the belief state is
discussed in Section (III).

A critical precursor to achieving the training objective is the formulation of an appropriate reward
structure. The rewards serve as a critical feedback mechanism for guiding the learning process and
shaping the agent’s behavior. The cumulative sum of rewards obtained by the agent is a fundamental
component of the loss function in our RL training model. This cumulative reward encapsulates the
agent’s performance to achieve optimal CAMs across each episode and serves as a critical signal for
RL, facilitating the optimization of the agent’s policy over time. In our formulation, we utilize a reward
system characterized by predefined thresholds for various components, each of which contributes to
the agent’s cumulative sum reward. The key reward components and their associated thresholds are
summarized in Table I:

TABLE I: Reward Components and Threshold Values

Reward Component Threshold Value
Collision Probability 10−4

Fuel Level 10 units
Trajectory Deviation (a) 100
Trajectory Deviation (e) 0.01
Trajectory Deviation (i) 0.01
Trajectory Deviation (W) 0.01
Trajectory Deviation (w) 0.01

• Collision probability reward: The agent receives negative rewards when the collision probability
exceeds the threshold of 10−4, aligning with NASA’s standards for collision risk mitigation in
satellite operations.
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• Fuel level reward: The fuel level is subject to a threshold of 10 units, imposing a negative reward
for each action that consumes fuel; this ensures efficient fuel management.

• Trajectory deviation reward: Trajectory deviation is evaluated with respect to the differences in
the first five osculating Keplerian elements (a, e, i, W, and w). Thresholds of 100, 0.01, 0.01,
0.01, and 0.01 are applied to each respective element, and the agent receives negative rewards
proportional to its deviation from these desired values.

B. Collision avoidance data generation and simulation model

To ensure proper training of the spacecraft’s autonomous decision-planning model, the quality of
the data used is of significant importance. Particularly data related to conjunction events or near-
conjunction scenarios to which the agent could be trained. Existing CDMs and Two Line Elements
(TLEs) data sets can typically be used as training data. However, historical data on collision events
are limited. Furthermore, collisions are typically catastrophic events that result in the destruction of
the objects involved. This results in a lack of available data on the dynamics of a collision event.
Therefore, available CDMs and TLEs data are not sufficient for training the RL agent to perform
CAM optimally.

Instead, we rely on a custom simulator to generate simulated collision events with a wide range
of customizable parameters and scenarios. This provides a much larger and more diverse dataset to
train the agent, allowing it to generalize better and adapt to new situations. Additionally, the simulator
allows for the collection of detailed data during the simulated collision events, providing a better
understanding of the dynamics involved.

C. Conjunction simulation model

We simulate conjunction events using an adaptation of the simulator developed in (21). This
simulator uses Keplerian elements to instantiate debris objects and generate their positions within
a specific range of the satellite.

1) Instantiating debris positions using Keplerian Elements: To generate collision scenarios be-
tween the protected spacecraft and space debris, the Pykep library (25) was used to instantiate debris
positions relative to the spacecraft. Pykep provides space flight mechanics computations based on
perturbed Keplerian dynamics. The instantiation of the debris position can be defined using Keplerian
elements such as semi-major axis, eccentricity, inclination, right ascension of the ascending node,
argument of periapsis, and true anomaly. The model can, thus, generate debris positions within a
specific range of the satellite, which is essential for creating different instances of trajectory scenarios.

2) Projection with SGP4 at each time step: To accurately simulate the motion of objects in
space, we use the Simplified General Perturbations 4 (SGP4) model, which is widely used for orbit
propagation. SGP4 takes into account the gravitational effects of the Earth, the Moon, and the Sun, as
well as atmospheric drag and solar radiation pressure. Thus, the simulation model projects the debris
trajectory using SGP4 at each time step. This allows us to accurately simulate the objects’ positions
and velocity and predict their future positions, including potential collisions between the objects and
the satellite.
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3) Retrograde collision reconstruction and debris velocity adjustment: In this section, we present
a method for the retrograde reconstruction of collisions, starting from their conjunction points and
backtracking to an initial time step. The methodology involves the instantiation of the environment,
including the protected spacecraft’s parameters and its osculating Keplerian elements. For each in-
stantiated debris, the collision time is stochastically determined, followed by the projection of the
protected object to the collision time using the SGP4 model. Subsequently, the debris’s position is
generated with a controlled proximity based on the projected object’s position. Finally, the debris’s
velocity is adjusted in order to simulate the correct direction of motion leading to a collision based
on a probability distribution.

1) Initialization of the environment: At the start time, we instantiate the protected spacecraft, setting
its characteristics such as radius, gravity (𝜇), fuel level, and Earth’s gravitational parameter
(𝜇central body). Additionally, six osculating Keplerian elements are defined: semi-major axis (𝑎) in
meters; eccentricity (𝑒) ∈ [0, 1); inclination (𝑖) in radians; longitude of the ascending node (𝑊)
in radians; argument of periapses (𝑤) in radians; and mean anomaly (𝑀) in radians.

2) Debris instantiation: for each debris that we choose to instantiate (𝑛debris),
a) The collision time is randomly determined between start time and end time following a

uniform distribution.
b) Once the collision time is established, we project our protected object up to that collision time

using the SGP4 model. This generates a position vector and a velocity vector projected at that
precise collision moment.

c) The debris’s position is instantiated based on the projected object’s position, with a certain
determined proximity. The method to ascertain this collision proximity is as follows: the
generation of the debris’s position follows a normal distribution centered around the projected
object’s position (expressed in meters), with a standard deviation 𝜎 (a hyperparameter).

d) Once the debris’s position at collision instant 𝑐 is established, it is important to calculate
the debris’s velocity as well. However, to update the velocity vector of debris in space, we
simulate the correct direction of motion for our debris, which will collide with the protected
object according to a specific probability distribution.

We generate the debris’s velocity following Eq. (1):

𝑟𝑜𝑡𝑎𝑡𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(vel, pos, 𝜃) =

∥vel∥ ·
(
cos(𝜃)
∥vel∥ · vel + sin(cos(𝜃)

∥𝑤∥ · 𝑤
)

(1)

where:

𝑣𝑒𝑙 = velocity vector

𝑝𝑜𝑠 = position vector

𝜃 = random angle in radians

𝑤 = 𝑝𝑜𝑠 × 𝑣𝑒𝑙

It is important to point out that 𝜃 is randomly chosen between two possible ranges of angles, each
chosen with equal probability 1

2 . These ranges are hyperparameters, acting as the minimum angle
between debris and protected object at collision time (radians) (≤ 𝜋/4 by default). Finally, some noise
is added to the xdebris’ velocity in order to simulate variations or uncertainties in the magnitude of



PREPRINT ACCEPTED IN THE 74𝑡ℎ INTERNATIONAL ASTRONAUTICAL CONGRESS (IAC) - BAKU, AZERBAIJAN, 2-6 OCTOBER 2023.8

the velocity, which can be due to factors such as measurement errors, external influences, or modeling
inaccuracies. This is expressed in the following equation:

vnew = v × N(1, 𝜎vr)

where:
• vnew is the new velocity vector after applying the scaling.
• v is the original velocity vector.
• N(1, 𝜎vr) is a normal distribution with mean 1 and standard deviation 𝜎vr.
• 𝜎vr is the standard deviation controlling the randomness of the scaling.

Finally, in order to comprehensively assess the performance and robustness of the algorithms
developed for collision prediction and avoidance in dynamic environments, a large number of scenarios
are generated through a systematic approach, where the parameters governing the behaviors of debris
and protective systems are drawn from probability distributions. The developed approach involves a
controlled variation of environmental factors that can influence the complexity of collision scenarios.
To effectively simulate a range of plausible conditions, key parameters such as the number of debris
particles, the temporal span of the environment, the debris positional deviations, the velocity ratio
fluctuations, and the minimum angle between debris and protective systems at the point of potential
collision, are stochastically determined.

III. Solution algorithm

Fig. 1: Architecture of the proposed Deep Recurrent Q-Network (DRQN) algorithm

To solve our proposed POMDP-CAM planning and execution model, an appropriate solver should
be implemented. Different RL algorithms can be developed to train the AI system proposed. Given the
problem-specific characteristics, Deep Recurrent Q-Network (DRQN) has been found to be the most
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capable algorithm for training the autonomous CAM system. This section details the DRQN algorithm
and discusses its advantages and limitations for training the agent in the context of our problem.

A. Deep Recurrent Q-Network (DRQN)

The proposed CAM learning model is a continuous model-free POMDP with infinite state space and
discretized action space. Only a few state-of-the-art algorithms exist to solve these types of models
with infinite 𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑆 calls and a non-linear function approximator. Deep Q-Network (DQN) has
shown promising results for solving the more simple MDPs with similar modeling characteristics.
Recent research works have proposed extensions for DQN for solving POMDP problems by adding a
Recurrent Neural Network (RNN) layer to the Q-Network (26). The DRQN can serve as a non-linear
function approximator for our proposed POMDP-CAM planning model since the state space of space
debris is extremely large, and traditional linear approximators cannot capture the complex relationships
between different state variables. DRQNs, on the other hand, can learn and represent these non-linear
relationships effectively.

Furthermore, the RNN layer in the DRQN architecture plays the role of belief updater by keeping
track of the history of past observations and actions. Thus, the latent, hidden state can be considered
equivalent to a classical “belief” in the POMDP model. For instance, if the agent observes a sudden
change in the position of a piece of debris, the RNN layer can consider past observations and update
the agent’s belief on whether this change will likely result in a collision.

1) Solver Architecture: For each conditional environment, a set of stochastic parameters is gener-
ated by the environment generator in order to simulate the debris and the protected object paths from
start time to end time, with a certain probability of collision. For each step in this environment, the
simulator updates its state 𝑠. Gaussian noise is added to simulate the model’s imperfect monitoring
(partially observability), translating it to the observation 𝑜. This observation is passed to the agent,
i.e., the DRQN algorithm, which will take action accordingly.

The implementation of the DRQN consists of two main components (26): an RNN layer (in that case,
a Long Short-Term Networks (LSTM)) and a fully connected layer that approximates the Q-values for
each action, given the current state as seen in Figure (1). The LSTM layer helps the network maintain
a belief of past observations and actions. Furthermore, a ReplayBuffer and a Target Q-Network are
added to enhance the learning process and address some of the DRQN’s limitations. On one side,
the ReplayBuffer is a memory buffer that stores past experiences (i.e., observation, action, reward,
following observation, terminal) and randomly samples a batch of experiences to train the DRQN. This
technique helps de-correlate the data from identical sequences and avoid overfitting when the same
data is used multiple times. By storing past experiences, the ReplayBuffer also allows the DRQN to
learn from experiences that occurred earlier in training, thus increasing the efficiency of the learning
process. On the other side, Target Q-Network is a separate network that is softly updated with the
weights of the DRQN (27). This network aims to provide a more stable and consistent target for the
DRQN to learn from. Without the Target Q Network, the DRQN would be learning from a constantly
changing estimate. By soft updating the Target Q Network, the DRQN can learn from a more stable
and consistent target, which helps accelerate the learning process and improve the final performance.

2) Loss Function: The selection of an appropriate loss function is essential in training deep RL
models, particularly in the presence of outliers. For the proposed DRQN implementation, we employ
the Huber loss function on the cumulative sum of rewards. This choice is driven by the necessity to
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robustly handle outliers, which can significantly impact our learning process. Huber loss, also known
as smooth mean absolute error, offers the advantage of being less sensitive to extreme reward values,
a common occurrence in complex environments featuring rare and substantial rewards or penalties. It
is a combination of mean squared error (MSE) and mean absolute error (MAE), which allows it to be
robust to outliers while maintaining smoothness and differentiability. Mathematically, the Huber loss
function is defined as:

𝐿 𝛿 (𝑎) =


1
2𝑎

2 for |𝑎 | ≤ 𝛿,

𝛿( |𝑎 | − 1
2𝛿) otherwise.

Where:
• 𝑎 is the difference between the predicted and actual values, 𝑎 = 𝑦pred − 𝑦true.
• 𝛿 is a hyperparameter that determines the threshold at which the loss function changes from

quadratic to linear. It should be chosen carefully as it affects the model’s performance.
The Huber loss function behaves like MSE when the difference |𝑎 | is smaller than a threshold 𝛿,

and MAE when the difference |𝑎 | is greater than 𝛿. This allows it to handle outliers more robustly than
MSE, which squares the differences and thus gives more weight to larger differences. Additionally,
the Huber loss function is differentiable at 0, which makes it suitable for optimization algorithms that
require smooth and differentiable functions, such as gradient descent.

3) Constraints: One of the main challenges of using a DRQN is the algorithm’s sensitivity to
hyperparameters, particularly the tau and replay buffer size values. Small changes in the
hyperparameter values could cause the network to diverge, making it difficult to train. Therefore,
we perform a thorough investigation using hyperparameter sweeps to find the best values of these
parameters. The results of hyperparameter tuning are discussed in the next section.

IV. Results and discussion

This section presents the initial results of the study. We first focus on presenting the results related
to the efficacy of the DRQN model in learning optimal CAM policies. Given its inherent complexity,
a central focus of this evaluation section is to elucidate the strategy for attaining solution convergence,
both in a single training environment and across a large number of environments. The aim is to
demonstrate the adaptability and robustness of our DRQN model to learn optimal CAM planning and
execution policies under a variety of circumstances.

A. Hyperparameters tuning

We employ a grid search method for hyperparameter tuning of the model. Grid search operates by
exhaustively evaluating a predefined set of hyperparameter values over a structured grid. Each unique
combination of hyperparameters is systematically assessed, allowing for a comprehensive exploration
of the hyperparameter space. In our problem, grid search enabled us to methodically examine various
hyperparameter configurations, including neural network (NN) architecture specifications (e.g., hidden
size layer), training parameters (e.g., learning rate, batch size), and exploration strategies (e.g., epsilon-
greedy exploration). By systematically evaluating these hyperparameter choices on the average reward
sum, we sought to identify the optimal configuration that would yield improved convergence and
learning performance for our DRQN model. Figures (2a) and (2b) illustrate the grid search made for
both 1 and 200 environments.
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(a) Grid Search over 1 environment (b) Grid Search over 200 environments

Fig. 2: Model hyperparameter tuning.

B. Training of Spacecraft CA agent

The process of hyperparameter optimization allowed the identification of the best parameter con-
figurations. Subsequently, the next step is to select a configuration that would consistently converge
across different stages of training. The hyperparameters selected for both training scenarios (under one
environment and under 200 training environments) can be found in Tables (II) and (III), respectively.

TABLE II: Hyperparameters used for evaluation
on 1 environment

Hyperparameter Value
Batch size 50
Hidden size 128
Learning rate 0.0001
Number of episodes 200
Replay buffer size 1,000
Tau 0.1
Number of environments 1

TABLE III: Hyperparameters used for evaluation
on 200 environments

Hyperparameter Value
Batch size 100
Hidden size 128
Learning rate 0.0001
Number of environments 1
Number of episodes 200
Replay buffer size 1,000
Tau 0.1

To evaluate the performance of the DRQN agent, we compare it to a baseline approach that uses
a simple threshold to trigger a collision avoidance maneuver. Figure 3a illustrates the agent’s loss
trajectory over each training step within a single collision avoidance environment. These results show
that the agent is successfully learning to autonomously conduct CAM maneuvers, as it illustrates the
progressive improvement in maximizing its cumulative reward over the simulations. Furthermore, the
training is extended to encompass a more complex scenario involving 200 distinct environments. The
results show that the agent trained with this configuration attained better training results than those
under a single training environment. Figure 3b shows the loss trajectory and the average cumulative
reward profile of one of the successful agents in this more complex multi-environment setting. These
results show that our proposed approach is capable of training an autonomous CAM system to plan
and execute CAMs effectively, as evident by the significantly decreasing loss funtion. The trained
spacecraft AI system performed well in terms of collision avoidance effectiveness, fuel consumption,
and computational efficiency. In particular, the spacecraft was able to adapt to changing environments
and make more efficient maneuvers in response to the available information. It is worth noting that
the prospect of fine-tuning hyperparameters in future work remains an avenue for further enhancing
the capabilities of our DRQN algorithm.
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(a) Results of training on one environment (b) Results of training on 200 environments

Fig. 3: Loss of an agent (spacecraft autonomous CAM system) trained on different environments:
decreasing loss signifies the agent’s improvement in learning to perform optimal CAM planning and
executions.

V. Conclusions

While significant improvements in Space Situational Awareness (SSA) activities and Collision
Avoidance (CA) technologies are allowing for tracking and maneuvering spacecraft away from potential
debris collision risks with increasing accuracy and reliability, these procedures still primarily involve
a high level of human intervention to make the necessary decisions. This decision-making strategy
will not be sustainable for an increasingly complex space environment. It is, therefore, important to
successfully introduce higher levels of automation for key Space Traffic Management (STM) processes
to ensure the reliability needed for navigating large constellations of spacecraft. These processes
include collision risk detection, the identification of the appropriate action to take, and the execution
of avoidance maneuvers. In this work, we developed an implementation of autonomous CA capabilities
for spacecraft based on Reinforcement Learning (RL) techniques. We propose to model the spacecraft
CA training model using a novel Partially Observable Markov Decision Process (POMDP) solved with
an efficient Deep Recurrent Q-Network (DRQN) algorithm. This allows the proper training of the AI
system onboard the spacecraft as a system with imperfect monitoring information on all the possible
states of the objects in its surroundings. This is particularly relevant to the practical setting of SSA
for managing collision risk considering uncertainties in space debris positions and velocities.

The model proposed takes as input the current state of the environment, which includes the positions
and velocities of the satellite and debris, as well as the CDM information, and outputs an action
corresponding to a maneuver to avoid a potential collision. The agent is trained to maximize the
expected cumulative reward over time. The reward function used includes the distance between the
satellite and the debris, the probability of collision, and the fuel cost of the maneuver. Our results
demonstrate the potential of using deep RL methods, such as DRQN, for developing autonomous CA
systems in space. This approach could help mitigate the increasing risk of collisions with space debris
and ensure the safety of space assets. To the best of our knowledge, this is the first implementation
of the POMDP formalism and the DRQN solution algorithm to develop AI systems for spacecraft
planning tasks.

Finally, several factors should be considered for the applicability and robustness of our approach
in practical implementations. First, it should be noted that our model was trained on synthetic data
generated to approximate realistic assumptions. However, the actual performance of our model in
operational settings may deviate due to variations in the physical characteristics of space debris,
satellite trajectories, and other environmental factors. Consequently, care should be taken to validate
the proposed approach in controlled settings before practical implementations. Second, the precision



PREPRINT ACCEPTED IN THE 74𝑡ℎ INTERNATIONAL ASTRONAUTICAL CONGRESS (IAC) - BAKU, AZERBAIJAN, 2-6 OCTOBER 2023.13

and accuracy of CA estimations hinge on exogenous variables, such as the reliability of satellite position
and velocity predictions delivered by orbital propagators like the Simplified General Perturbations 4
(SGP4) model. Any errors in these models can influence the performance of the collision avoidance
system. Thus, continuous efforts to enhance the precision of these systems remain pivotal to enhancing
the efficacy of our approach.
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