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RESEARCH ARTICLE
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Abstract

While much progress has been achieved over the last decades, malaria surveillance and

control remain a challenge in countries with limited health care access and resources. High-

resolution predictions of malaria incidence using routine surveillance data could represent a

powerful tool to health practitioners by targeting malaria control activities where and when

they are most needed. Here, we investigate the predictors of spatio-temporal malaria

dynamics in rural Madagascar, estimated from facility-based passive surveillance data.

Specifically, this study integrates climate, land-use, and representative household survey

data to explain and predict malaria dynamics at a high spatial resolution (i.e., by Fokontany,

a cluster of villages) relevant to health care practitioners. Combining generalized linear

mixed models (GLMM) and path analyses, we found that socio-economic, land use and cli-

matic variables are all important predictors of monthly malaria incidence at fine spatial

scales, via both direct and indirect effects. In addition, out-of-sample predictions from our

model were able to identify 58% of the Fokontany in the top quintile for malaria incidence

and account for 77% of the variation in the Fokontany incidence rank. These results suggest

that it is possible to build a predictive framework using environmental and social predictors

that can be complementary to standard surveillance systems and help inform control strate-

gies by field actors at local scales.
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Introduction

Interventions for malaria control have been highly successful in many countries over the last

few decades, leading to a 47% decrease in mortality rates globally between 2001 and 2013 [1].

However, access to preventative and curative health care remains limited in many rural areas

of low-income countries, where the burden of malaria is concentrated [2]. This problem is

expected to intensify as population growth and climate change are projected to increase the

number of people at risk for malaria in these areas [1]. Ensuring universal access to malaria

diagnostics and treatment thus remains a key goal in the global malaria strategic plan for

2016–2030, which recognizes that improved surveillance is essential to inform those efforts

[1]. However, limited human and financial resources are significant obstacles to reaching this

goal in low-income-countries [3]. Most malaria surveillance occurs passively, only capturing

those cases that reach health facilities, missing the vast majority of infections where access to

health care is low [4–6]. To help overcome these obstacles, improved methods to predict

malaria incidence at local scales could help health care practitioners optimize the distribution

of limited resources when and where they are most needed.

There has been substantial progress on predicting malaria at regional and national scales:

aggregations of data from national Demographic and Health Surveys or from national surveil-

lance systems, in combination with large-scale remotely sensed environmental data available

in public repositories, are able to explain and predict spatial patterns in malaria at the global

and regional scale with relatively good resolution. A leading example is the Malaria Atlas Proj-

ect, which maps malaria incidence and relevant variables across the world [7], but many other

studies are done at these scales [8–12]. While global and regional patterns may be useful for

international organizations or national governments to estimate total malaria burdens and

medical treatment needs [12], they cannot necessarily inform malaria control at the local level

(e.g. within a government district), where most control activities are actually implemented

[13]. Malaria incidence can be highly heterogeneous at small spatial scales [14], so a key need

to improve local strategies to curb malaria transmission is to better understand how disease

risk varies at fine spatial and temporal scales, and whether there are predictable factors (envi-

ronmental, socio-economic, climatic) driving this variability. This could help medical practi-

tioners and local health programs anticipate resource needs or inform the implementation of

targeted control activities. There remain, however, substantial challenges to downscaling

malaria predictions at these scales, especially the resolution and quality of current routine sur-

veillance systems and the lower heterogeneity in environmental and socio-demographic pre-

dictors at small scales.

High quality data on malaria incidence is limited in many countries. Studies attempting to

predict malaria patterns often rely on surveys or active surveillance methods, which have lim-

ited geographic and temporal scope [14–17]. Routine health system data provide a more sus-

tainable data source and are available in most countries, but the spatial resolution of such data

is low when aggregate numbers of cases over a catchment area are reported, as is often the

case, rather than the precise locations of cases [18]. In addition, the quality of health facility-

based data can be highly variable and difficult to assess [19], and there are many geographic

and financial barriers to care, resulting in surveillance data biased towards populations living

close to higher-quality health centers [18]. The health system burden may thus not be an accu-

rate representation of the community burden [19]. As a result, new ways of reporting data and

adjusting it to remove known biases are necessary before one can even attempt to understand

local drivers of malaria, and predict the spatio-temporal variability of incidence.

Many social and environmental factors have been shown to influence exposure and vulner-

ability to malaria infection. Household wealth is generally associated with preventive
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behaviours, while the coverage and use of insecticide-treated bed nets are effective in reducing

malaria transmission [20], both of which can be derived from national surveys. Climatic and

environmental factors such as temperature, precipitation and land use have been shown to

affect mosquito habitat and life history traits [21,22]. The resolution of many of these predic-

tors is constantly improving with the help of remote sensing, as is the resolution of predictions

[23]. At national or regional scales, the heterogeneity (range of variation) of these predictors is

high, making it feasible to detect associations of climatic variables with malaria incidence or

prevalence data [9,17,24]. However, measuring heterogeneity presents a challenge at finer

scales, even with environmental data remotely sensed at higher spatial resolution: a smaller

range of variation in predictors, an increase in spatial auto-correlation, and a greater role of

additional unobservable (stochastic) processes and behavioural factors can make fine scale

projections of spatial variability incredibly challenging. As a result, it is unclear whether more

localized studies, even with the best available data, can find consistent predictors of local dis-

ease dynamics at the finer scales at which health care interventions occur [25].

The aim of this work is to explore whether data gathered from routine surveillance systems

can be used along with ecological, environmental and socioeconomic information to improve

our understanding of spatio-temporal malaria dynamics at fine scales. We built on previous

work where passive surveillance data on malaria incidence from the rural district of Ifanadi-

ana, in south-eastern Madagascar, was adjusted to correct for reporting biases derived from

financial and geographic barriers to health care [18]. The resulting data provide adjusted

monthly malaria incidence per Fokontany (i.e. cluster of villages), improving nearly ten-fold

the spatial resolution of malaria incidence rates as compared with aggregate health facility

reports. We coupled this with satellite information on climate and land-use dynamics, as well

as socio-economic information from a longitudinal cohort study representative of the district

population. We then identified correlates of malaria incidence across time and space with a

mixed-effects generalized linear model and explored causal relationships among these vari-

ables using structural equation modelling. Ifanadiana was an ideal region to explore these

questions, as heterogeneity in climate, land-use, and household wealth is high relative to its

spatial size [25]. Improving predictions of malaria dynamics at a high spatial resolution could

pave the way towards local forecasting and early warning systems with operational applications

for on-the-ground distribution of health care resources.

Results

A total of 326,334 malaria cases were estimated in the adjusted dataset for Ifanadiana from Janu-

ary 2014 to December 2017, equivalent to an average of 1.65 infections per capita over that four-

year period. We observed large variations in infections across space and time. Total infections per

capita over four years ranged from 0 to 6.9 across Fokontany. This corresponds to an average

incidence of 42 cases per thousand people (‰) per month, ranging from 0 to 177 ‰ across

Fokontany (Fig 1A). The discrepancy between the expected total number of infections based on

these averages and the observed total number of infections presented above can be explained by

missing data (each Fokontany was missing 4.7 months of data on average). The adjusted malaria

incidence remained clustered along the main roads and in Fokontany close to health centers

(Fig 1A). Malaria incidence was seasonal, with lower incidence from June to October (7–22 ‰

per month, averaged over all Fokontany and over 4 years) and higher incidence from November

to May (36–92 ‰ per month, averaged over all Fokontany and over 4 years) (S1 Fig). November

to May were also associated with high precipitation and high temperatures (S1 Fig). We focus our

statistical analyses of malaria predictors on the high season to reduce the number of excess zeroes

in our dataset and to increase our ability to capture spatial variation.
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The hottest month of the year was November, with a mean land surface temperature (LST)

across 4 years of 33˚C (S1 Fig). The coldest month of the high season (November to May) was

May, with a mean LST across 4 years of 23˚C. May was also the driest month of the high sea-

son, with an average total precipitation of 65 mm. The wettest months were January and

March, with a mean precipitation over four years of 330 and 384 mm respectively. Land use

varied spatially, with forested areas concentrated in the West and North, and an open land-

scape with residential areas and rice fields in the rest of the district (Fig 1B). Spatial distribu-

tions for all predictor variables are available in S2 Fig.

Socio-economic, land use and climatic variables accurately predicted

spatial and temporal hotspots in GLMMs

The generalized linear mixed model (GLMM) included a zero-inflated negative binomial

structure, fixed effects for socio-economic, land use and climatic variables (Fig 2A), and a Orn-

stein–Uhlenbeck and Matern covariance structure to account for temporal and spatial auto-

correlation respectively (see Methods section). Overall, the conditional part of the model had a

larger influence on the relationship between our predictors and malaria incidence than the

zero-inflated part of the model (S1 Table). The socio-economic variables included in the

GLMM were distance to health centers, wealth score and bed net use. An increase of one stan-

dard deviation (SD) in the log-transformed distance to health centers increased the odds of

seeing a structural zero by 120% and decreased the expected malaria incidence by 19% (95%

CI: 0.73–0.91, Fig 2A). An increase in log-transformed wealth score was associated with a 23%

increase in the expected malaria incidence (95% CI: 1.08–1.40). Bed net use was not associated

with a significant change in malaria incidence (95% CI: 0.83–1.13). Among land use variables,

the log-transformed proportion of residential land use was negatively associated with malaria

incidence, with a 14% decrease in malaria incidence with each SD change (95% CI: 0.78–0.94).

The log-transformed proportion of rice fields was positively associated with malaria incidence,

with a 12% increase in malaria incidence with each SD increase (95% CI:1.00–1.26). Forest

loss over the previous 3 years did not significantly affect malaria incidence (95% CI:0.98–1.13).

With regard to climate, a 1 SD increase in log-transformed total precipitation, lagged by one

month, was associated with a 33% increase in malaria incidence (95% CI:1.26–1.41). Mean

Fig 1. (A) Map of roads (paved and unpaved), health centers and adjusted monthly malaria incidence averaged over

four years in Ifanadiana, and its location in Madagascar (inset map). (B) Broad and detailed view of the land use map

and its five land classes. Both maps were made with QGIS, with boundary data from OCHA (https://data.humdata.org/

dataset/cod-ab-mdg) under a CC BY 4.0 License and land use data available through OpenStreetMap.

https://doi.org/10.1371/journal.pgph.0001607.g001
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land surface temperature (LST) was associated with a 46% decrease in the odds of a structural

zero (95% CI: 0.34–0.86). Finally, mean temperatures closer to the optimal temperature of

25˚C for malaria (i.e., mean LST index) were associated with higher malaria incidence (cond.

factor: 0.97, z.i. factor: 1.31). This resulted in a unimodal relationship between mean LST and

malaria incidence (Fig 2B).

We used a mixed-effect GLM with month and Fokontany ID as random effects to make

predictions that are not dependent on malaria incidence in the prior month (unlike the model

using a temporal covariance structure). Our in-sample model predictions across space and

time had a root mean square error of 52 cases per thousand people, and a high correlation

with observed malaria incidence in log-space (Pearson’s R = 0.73). When averaged over time,

our predictions and observed malaria incidence were strongly correlated (Pearson’s R = 0.997,

Spearman’s ρ = 0.997, Fig 3A and 3B). More specifically, our predictions correctly identified

39 out of 40 (top 20%) fokontany with the highest average malaria incidence from 2014 to

2017. Our model was also able to capture the seasonality of malaria incidence during the high

transmission season, capturing the incidence peak from January–March for all three years

(S3 Fig). When trained on the 2014–2015 and 2015–2016 malaria seasons (November-May)

and tested on the 2016–2017 season, we obtained a RMSE of 56 cases per thousand people. For

comparison, the mean malaria incidence per month during the high season was 60.5, ranging

from 0 to 844 cases per thousand people per month. In addition, the model identified 9 out of

20 (top 10%) and 23 out of 40 (top 20%) Fokontany with the highest average malaria incidence

for the 2017–2018 season, compared to an expected 2 out of 20 and 8 out of 40 if identified at

random. We found a high correlation between our predictions and observed malaria incidence

averaged over time (Pearson’s R = 0.69, Spearman’s ρ = 0.77, Fig 3C). Finally, we evaluated the

performance of our model with fixed effects only. Without random effects, our model

Fig 2. GLMM analysis. (A) Exponential of the coefficient estimates and 95% confidence interval for the conditional part of the GLMM with zero-inflated

negative binomial distribution and spatial and temporal covariance structure. The exponential of the coefficient represents the expected multiplicative change

in malaria incidence for a one-unit change of the predictor variable. Variables were scaled so that a one-unit change represents a change of 1 standard deviation

for all variables. (B) Marginal effect of mean LST and mean LST index (one-month lag, standardized) on malaria incidence, conditioned on both conditional

and zero-inflated parts of the model for a random Fokontany and random time point, with standard error interval.

https://doi.org/10.1371/journal.pgph.0001607.g002
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evaluated across time and space had a RMSE of 67, and we found a Pearson’s correlation coef-

ficient of 0.50 and a Spearman rank correlation coefficient of 0.60 between our predictions

and observed malaria incidence averaged across time. We obtained a RMSE of 59 for out-of-

sample predictions for the 2016–2017 season.

Path analysis provides more insight at the spatial level

We used a path analysis to further investigate the spatial relationship between our predictors

and their effect on malaria incidence (Fig 4). For this, data on both malaria and its predictors

were averaged by Fokontany over the study period.

Many of the relationships that were found to be significant in the path analysis confirmed

our hypotheses (see Methods section). More specifically, we found that distance to the road

was negatively correlated with wealth. Wealth was also associated with a decrease in forest loss,

which was itself a predictor of forest edge. Altitude was associated with lower precipitation and

land surface temperature. Both land surface temperature and precipitation were positively

associated with bed net use. Precipitation also had a positive effect on rice field area. Direct

effects between predictors and malaria incidence were mostly consistent with our GLMM

results, but fewer predictors had a significant relationship with malaria: the effect of bed nets,

temperature, and forest loss on malaria incidence were not significant in the path analysis.

Discussion

Socio-ecological drivers of human malaria have been identified at global, national and subna-

tional spatial scales [26–28], but it is currently unclear whether associations at large spatial

Fig 3. Predictions from GLMM with month and Fokontany ID as random effects. (A) Left: Within-sample predictions for monthly malaria incidence.

Right: Difference between observed and predicted malaria incidence across space. Overpredictions are shown in blue and underpredictions in red. Fokontany

boundary data is available from OCHA (https://data.humdata.org/dataset/cod-ab-mdg) under a CC BY 4.0 License. (B) Scatterplot of ranked within-sample

malaria predictions across ranked observed malaria incidence, for data averaged across space. One point represents one Fokontany. (C) Scatterplot of ranked

out-of-sample malaria predictions across ranked observed malaria incidence, for data averaged across space. One point represents one Fokontany. The model

was trained on the malaria seasons from 2014 to 2016 and tested on the malaria season from November 2016 to May 2017.

https://doi.org/10.1371/journal.pgph.0001607.g003
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scales hold at smaller spatial scales relevant for malaria control efforts by local authorities [14].

Here, we used the rural district of Ifanadiana, in south-eastern Madagascar, to investigate the

relationship between hypothesized social and environmental determinants of malaria and

malaria incidence at a very fine spatial scale. For this, we used a geographically-explicit dataset

of malaria incidence at the Fokontany-level (a village or groups of villages) previously adjusted

for known underreporting drivers in passive surveillance systems, and combined it with field

surveys and remotely-sensed data via two separate statistical frameworks to account for direct

and indirect pathways. We found that widely accepted drivers of malaria, including precipita-

tion and temperature, were still relevant to predict incidence at fine spatial scales in our setting,

in addition to identifying other land cover and socio-economic variables specific to the study

region. Together, these factors allowed us to identify more than half of communities in the top

quintile for malaria transmission for the 2016–2017 malaria season (compared to a 20% accu-

racy by chance), and explain over three quarters of the variation in malaria incidence rank.

Despite the very local scale of our study, large variations in temperature, both across space

and time, occurred in Ifanadiana district. However, we only found an association between

malaria incidence and temperature using a spatio-temporal GLM, and not in a spatial path

analysis where data was averaged over time. This could be explained by the fact that, once aver-

aged over time, mean land surface temperature only ranges between 22 and 28˚C across

Fokontany. In addition, malaria transmission is not only affected by mean temperature, but

also by temperature variation, which could not be captured in the path analysis. Malaria

dynamics have been shown to be strongly associated with temperature, which affects different

stages of the mosquito larval development and mosquito lifespan [29,30]. It has been suggested

that the effect of temperature on malaria is unimodal, with a predicted optimal temperature

Fig 4. Model structure and standardized coefficient estimates for the path analysis. Positive and negative effects are shown with green and red arrows

respectively. Arrow width is also proportional to coefficient estimates. Dashed arrows show non-significant effects.

https://doi.org/10.1371/journal.pgph.0001607.g004
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for malaria transmission of 25˚C for Anopheles mosquito species and Plasmodium falciparum
[22]. Previously, the association between temperature and malaria outcomes has been studied

at relatively large scales, where heterogeneity can be larger [8,31–33]. Our analysis supported a

unimodal relationship between temperature and malaria incidence. In addition, we found that

malaria incidence was more likely to be non-zero when mean temperature was higher, suggest-

ing that malaria transmission may be cold-limited in Ifanadiana district even during the

warm, high transmission season.

The relationship between malaria and precipitation is complex and more context-specific

than with temperature. Precipitation creates breeding grounds for mosquitoes but can also

wash away larvae [34]. Therefore, depending on the local climate and mosquito life cycle stage,

there may exist positive [35], negative, or unimodal relationships [28] between precipitation

and malaria. We found evidence of a positive relationship between precipitation during the

previous month and malaria incidence in our spatiotemporal model, supporting the ‘breeding

grounds’ hypothesis. Unlike temperature, this relationship was also supported by our spatial

SEM, where it had both a direct effect on malaria and an indirect effect via its association with

larger areas of rice fields. This suggests that spatial variation in precipitation was large enough

to affect malaria transmission patterns, by affecting the distribution of mosquito habitats such

as rice fields and smaller pools.

Overall, land use emerged as an important ecological predictor of local malaria transmis-

sion in Ifanadiana. In this analysis, we considered three factors representing land cover at the

Fokontany level: proportion of residential areas, proportion of rice fields and forest loss. We

did not find any relationship between forest loss in the last three years and malaria incidence.

Some studies have found a positive relationship between malaria and deforestation [36,37],

with intact forests supporting non-vector species of mosquitoes while deforested areas provide

vector habitat through agriculture, timber extraction and mining [38]. In south-eastern Mada-

gascar, Anopheles mosquito species have been found to be rare in forested areas, while being

very common in agricultural areas and near livestock pens [21]. Irrigated agriculture, in partic-

ular, has been identified as a strong predictor of Anopheles mosquito habitat across Madagas-

car [39], and the proportion of rice fields was positively associated with malaria in our

spatiotemporal model as well. However, an increase in malaria with deforestation is character-

istic of the frontier stage, when extensive changes in land use are occurring [38,40]. Instead,

the majority of Fokontany in Ifanadiana are characterized by an open fragmented landscape

and limited forested areas (Fig 1B), and would not be considered a frontier environment.

Finally, Fokontany with a larger proportion of residential areas had lower malaria incidence.

These results suggest that malaria transmission is associated with rural areas in the district,

which have higher agriculture and irrigation relative to more urbanized areas (larger towns).

This is consistent with previous findings, with lower malaria prevalence in children in urban

areas than in rural areas, across the sub-Saharan region [41] and Madagascar [39,42].

Ifanadiana is heterogeneous with respect to wealth and access to health care. Despite using

incidence data already adjusted for underreporting due to biases in geographical and financial

access to care, we still found an association with both average household wealth and distance

to primary health centers. Specifically, we found that wealthier fokontany had higher incidence

rates and that fokontany more distant from a primary health center had lower incidence rates.

In Ifanadiana, household wealth is concentrated along major transit axes, and health centers

are located in larger towns but many populations live 2-6h away. Rather than reflecting social

drivers of malaria incidence, these findings are likely the result of differential access to health-

care, a known phenomenon in Ifanadiana [43,44]. This reflects the fact that people who live

further away from a health center and who have less economic resources are less likely to

access health centers and be diagnosed with malaria [45,46].
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Overall, the SEM allowed for a more nuanced understanding of local malaria transmission,

revealing how socio-environmental factors affected malaria via direct and indirect pathways.

For example, we found a negative relationship between the wealth index and forest loss. The

relationship between poverty and deforestation is complex and may vary between regions and

countries [47,48]. Our results suggest that poverty in Ifanadiana may drive people to depend

on logging for income. The link between deforestation and poverty has been previously

explored in other areas. For example, Jones et al. (2020) [49] found that clinic discounts were

associated with a 70% reduction in deforestation in Borneo, as well as increased clinic usage.

We also found higher reported bed net use was not associated with a change in malaria inci-

dence in the spatiotemporal GLM, even though bed net use has generally been found to be an

effective malaria prevention tool, including in Madagascar [45]. Results from the SEM suggest

that bed net use was high in areas where climate was mediating a higher transmission risk

(areas with higher temperature and precipitation), and when that was accounted for, it had a

protective, although non-significant, effect on malaria spatial patterns.

While the primary purpose of this study was to investigate predictors of malaria at small

spatial scales, we also explored the predictive potential of our GLM model. Despite a relatively

high error (RMSE of 50 per thousand per month, compared to an average incidence of 61 per

thousand per month during the high season), our model performed well when predicting the

rank of each fokontany, both for within- and out-of-sample predictions. This difference in

model performance can be explained by the large observed range in malaria incidence from 0

to 844 per thousand per month. The error associated with our model made it difficult to distin-

guish between Fokontany with small or intermediate levels of malaria incidence but allowed

us to identify Fokontany with the highest malaria incidence. More specifically, we correctly

identified 80% of the Fokontany above the median malaria prevalence, based on data from the

two previous seasons. This would be of help to inform local intervention efforts from routine

surveillance data, using relative rather than absolute metrics to identify Fokontany of concern.

It is important to note that the time series used here are too short to allow modelling of longer-

term temporal trends, so that predictions built from our 4-year period could be inadequate for

future years due to anomalies, extreme weather events, or other factors not observed within

our study period. The reliability of forward predictions could be increased as additional

malaria and predictor data become available and longer time series are used. Longer time

series would also allow for more explicit time series analysis. Finally, predictive power could

also be increased in future work by increasing the number of predictors or by using specialized

models that optimize predictive power at the expense of explanatory power, such as Support

Vector Regression, Random Forest regression and other machine learning and deep learning

models [50–52].

While we had access to health system, household survey and land cover data at high spatial

resolution within one rural district, many of the limitations of our models were still due to

either limited resolution in space or time or missing data. For example, the resolution of rain-

fall data was limited spatially while the resolution of detailed land use data was limited tempo-

rally. As a result, any directional relationship between malaria incidence and changes in land

cover (other than deforestation) could not be explored. In addition, collinearity between some

of these land cover variables decreased our ability to discern their respective impact. For this

project, we used a dataset that adjusted from known biases in passive surveillance, which are

difficult to correct completely [18,19]. If there were remaining biases due to factors other than

those we identified and accounted for in our zero-inflated model (wealth, distance to health-

care), this could affect the spatiotemporal structure of malaria incidence and could impact our

conclusions. We corrected for spatial autocorrelation using a Matern covariance structure but

some spatial structure remained in the residuals, suggesting that other unknown variables
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correlated in space might contribute to malaria in this area. Finally, our study was undertaken

in only one district of Madagascar, which limits its generalizability to other settings. Thus,

methods developed here should be replicated elsewhere or expanded to larger areas in order to

explore their wider applicability.

Conclusion

This paper represents one of the first attempts to explain and predict malaria over fine spatial

scales from routine passive surveillance data. We found that climatic, land use and socio-eco-

nomic variables can be significant predictors of malaria incidence even at such fine scales, pro-

viding key insights for a context-specific understanding of local malaria transmission. In

addition, our explanatory model performed well when predicting malaria dynamics, paving

the way for more predictive frameworks that could help inform local health actors with the

implementation of malaria control activities. Future work should focus on improving the spa-

tiotemporal resolution of socio-environmental drivers of malaria and developing automated

data pipelines and predictive frameworks to facilitate the integration of nowcasting or forecast-

ing systems within local program implementation in areas of high malaria transmission.

Materials and methods

Study site

Ifanadiana is a rural district located in southeastern Madagascar, and is home to approximately

200,000 people across 195 Fokontany, the smallest administrative unit comprising a village or

group of villages (average size of 20 km2 in Ifanadiana). The district is characterized by hetero-

geneous socio-economic, land use and climatic conditions, as well as malaria incidence

(Fig 1A), which make it an ideal setting for this study. The dominant land class across the dis-

trict is open or degraded forest (i.e. ‘savannah’), with the exception of Ranomafana National

Park, a heavily forested protected area to the west of the district (Fig 1B). Rice fields and resi-

dential areas are interspersed throughout the district, among the savannah. The district is also

characterized by a strong altitude gradient from east (100m) to west (1100m), which influences

precipitation and temperature patterns (S1 Fig).

The passive malaria surveillance system in Ifanadiana relies on reported cases from primary

health care facilities, each serving a population of about 10,000 people and an average catchment

area of about 200 km2. The populations’ wealth and health care access are influenced by their

proximity to the main paved road crossing the district and to health facilities, which are located in

the larger towns (Figs 1A and S1) [53]. More than 75% of the population in Ifanadiana lives more

than an hour away from a primary health care facility, more than one third lives over two hours

away, and over one in ten people live further than three hours away [54]. Primary care utilization

decreases exponentially with increasing distance and travel time to these health facilities [44]. In

2014, the NGO Pivot partnered with the Ministry of Public Health with the goal of strengthening

the health system at all levels of care and ultimately ensuring universal access to health care,

including malaria diagnosis and treatment. The intervention combines improving health system

readiness (infrastructure, staffing, equipment, and medicine), integrated clinical programs, and

robust data collection systems to inform program implementation. This work was done in the

context of current efforts to improve malaria surveillance and control activities in the district.

Data acquisition and processing

Malaria incidence data. We used a dataset of monthly malaria cases at the Fokontany

level from January 2014 to December 2017, previously adjusted from passive surveillance data
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in Ifanadiana [18]. Methods used to produce this dataset are described in detail by Hyde et al.

[18]. Briefly, de-identified patient-level data were collected from the 19 public health centers

across Ifanadiana (covering 195 Fokontany), including age, Fokontany of residence, and

malaria status, which was determined using rapid diagnostic tests. Use of Ministry of Health

(MoH) data for this study was authorized by the Secretary General of the MoH, by the Medical

Inspector of Ifanadiana district, and by Harvard’s Institutional Review board (IRB). The

IHOPE cohort study was approved by the Madagascar National Ethics Committee and Har-

vard Medical School IRB. Population data was obtained from the Ministry of Public Health to

calculate per-capita incidence estimates. Individual-level data was then aggregated to obtain

monthly malaria incidence per capita at the level of the Fokontany for individuals of all ages,

and for children under five years old. This dataset was finally adjusted for a variety of factors

known to bias passive surveillance data, including distance to healthcare, existence of fee reim-

bursement systems and number of staff. For this, a benchmark multiplier was combined with

a health care utilization index obtained from statistical models of non-malaria patients. Varia-

tions to the multiplier and several strategies for pooling neighboring communities together

were explored to allow for fine-tuning of the final estimates. The resulting dataset was vali-

dated based on the reduction in said biases and through comparisons to areas with optimal

health care access [18]. Here, we focus our analysis on the adjusted malaria incidence rates

during the malaria high transmission season, which occurred from November to May (S1 Fig),

to reduce the effect of missing data and false zeroes.

Climatic variables. We included two climatic variables known to influence malaria

dynamics: temperature and precipitation [8,32,55]. Precipitation is an important driver of sea-

sonal mosquito population dynamics and temperature determines larval mosquito and para-

site development rates [30]. We obtained monthly land surface temperature (LST) by

averaging biweekly data points from January 1st 2014 to December 31st 2017 from the thermal

infrared band (Band 10) of Landsat 8 satellites [56], which has a spatial resolution of 30m

(Table 1). We summed daily precipitation over each month to obtain monthly precipitation

during the same period from the CHIRPS dataset, which provides rainfall estimates at a ~5km

resolution from rain gauges and satellite data [57]. From these raster data and using Fokontany

administrative limits, we calculated for each Fokontany total monthly precipitation, as well as

spatial minimum, maximum and mean monthly LST. We excluded from the analysis anoma-

lous LST (mean and minimum temperatures below 0˚C and -5˚C respectively) and capped

maximum LST at 50˚C. Temperature has been shown to have non-linear effects on malaria:

transmission potential is a unimodal, symmetrical function of temperature with an optimum

around 25˚C and critical thermal thresholds below 17˚C and above 34˚C [22]. We thus defined

a temperature suitability index by taking the squared difference between observed mean tem-

peratures and this optimal temperature of 25˚C.

Land cover variables. We included predictors related to vegetation cover, land use and

land use change which influence the distribution of mosquito breeding habitat, and may influ-

ence human behavior. We used qGIS [58] and ArcGIS [59] to calculate the proportion of each

land cover class in each Fokontany from a land use map (Fig 1B) developed by Ihantamalala

et al. [54]. This dataset was created via semi-supervised classification of Sentinel-2 imagery

with identification of training data via OpenStreetMap, as described in Ihantamalala et al. [54].

Even though these land use features were obtained in 2018, they tend to be relatively stable

over the short term in a rural area such as ours, so they were assumed to be a good representa-

tion of land cover for the period 2014–2017. Water bodies mostly included rivers and were not

included in this analysis as moving water is not suitable mosquito breeding habitat. In addi-

tion, forest habitat was also excluded and replaced with other land cover metrics relevant to

malaria transmission, such as distance from residential areas to forest, and forest edge [60].
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This is because large forested areas are arbitrarily divided between different Fokontany, possi-

bly biasing the analysis. These metrics were calculated using the original map in ArcGis.

We used data from the Global Forest Change dataset to determine the mean forest loss over

the previous 3 and 10 years for each Fokontany and year during our study period [61]. The

Global Forest Change dataset provides a global estimation of forest loss between 2000 and

2020 based on Landsat satellite data, including the year during which a pixel of 30m by 30m

was deforested, if it was. We first used qGIS to visualize this information per year for Ifanadi-

ana district and to calculate the proportion of deforested pixels for each year and for each

Fokontany between 2004 and 2017. Finally, for each year during our study period (2014 to

2017), we estimated the average of that proportion over the last 3 and 10 years.

Socio-demographic variables. We included in our models important social and behav-

ioral attributes of communities that can influence health-seeking behavior. Some of these (e.g.,

distance to health center) were already used in the initial adjustments of the malaria incidence

dataset, but we included them here to account for residual uncorrected biases in malaria

detection.

The distance of each Fokontany population to the nearest health center was obtained from

Ihantamalala et al. [54]. Briefly, the shortest distance between each building in a Fokontany

and the closest health center was calculated using the OSRM software, based on a full mapping

of over 100,000 buildings and 23,000 km of footpaths previously conducted on OpenStreetMap

[54]. Average distance to the nearest road was calculated by taking the average Euclidian dis-

tance to a road for every 100x100m pixel in the Fokontany.

We obtained household wealth and bed net use rates from a district-representative longitu-

dinal cohort, which sampled 1600 households from 80 clusters across Ifanadiana every two

Table 1. Predictor variables.

Predictor Model Spatial scale Temporal scale Source

Detection Wealth score GLM,

SEM

Fokontany Every two years (collected in 2014 2016, 2018) [62]

Distance to health center GLM,

SEM

Fokontany Fixed (collected in 2018) [54]

Distance to road SEM Fokontany Fixed [54]

Behavioural Bed net use (high season) GLM,

SEM

Fokontany Every two years (collected in 2014, 2016, 2018) [62]

Land use Altitude SEM 10x10m Fixed

Residential area GLM,

SEM

10x10m Fixed (collected in 2018) [54]

Rice field area GLM,

SEM

Distance from residential areas to forest SEM

Forest edge SEM

Forest loss Mean loss over last 3 years GLM 30x30m Yearly Global Forest Change

Mean loss over last 10 years SEM

Temperature

(1-month and

2-month lag)

Min GLM 30x30m

(resampled)

Monthly (mean monthly value) USGS Landsat 8,

Band 10

Max GLM

Mean GLM,

SEM

Mean–suitability index GLM

Precipitation Total GLM,

SEM

5566x5566 m Monthly CHIRPS

https://doi.org/10.1371/journal.pgph.0001607.t001
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years (2014, 2016 and 2018), selected through a two-stage cluster sampling scheme [62]. Data

was collected by the Madagascar National Institute of Statistics via household and individual

surveys based on the internationally validated Demographic and Health Surveys (DHS), which

include information on different indicators of health and financial well-being. From this, we

estimated a wealth index using standard DHS methods [63]. Briefly, a principal component

analysis of household durable assets was estimated, which included access to electricity, water

and toilets, material of roofing for houses, number of residents per bedroom and cooking fuel

among others. Averages per cluster were estimated for each of the cohort variables each year,

and these were extrapolated from clusters using inverse distance weights, obtaining a raster for

the whole district. From this interpolated raster, we then averaged them over each Fokontany

and year. Finally, wealth scores were interpolated to obtain monthly estimates from survey

data obtained in 2014, 2016 and 2018 (Table 1).

Data processing. Data processing was performed in R. Residential area, rice field area,

wealth score, distance between residential areas and forest, forest edge, distance to health center,

forest loss and precipitation were log-transformed to correct for large deviations from normal-

ity. All variables were then scaled. Maps of all raw predictor variables are available in S2 Fig.

Mixed-effect GLM

We fit a mixed-effect model with a zero-inflated negative binomial distribution to monthly

malaria incidence at the Fokontany level using the glmmTMB package [64]. We used the AIC

criterion to compare the fit of different distributions. In addition, we used the DHARMa pack-

age to perform residual diagnostics and confirm good model fit of the zero-inflated negative

binomial model (KS test, p = 0.5) [65]. A zero-inflated negative binomial is used to represent

count data that is over dispersed and has excess zeroes, which are assumed to be generated by

two different processes. For example, zeroes in our dataset may be due to true absence of

malaria incidence or to very low access to health care leading to underreporting. A more com-

plete interpretation of the model is provided in the Results and Discussion section. We

included Fokontany and month of the year as crossed random effects to account for repeated

observations across time and space.

Fixed effects were determined using a two-step variable selection process, using AICc as

our measure of fit. In both steps, five variables were always included based on the existing liter-

ature and exploratory analysis: bed net use, wealth score, distance to health center, residential

area and rice field area. During the first step, we evaluated the model for all possible combina-

tions of variables, listed in Table 1. In this step, we constrained models to always include all

temperature and precipitation variables (either 1-month lag or 2-month lag), based on previ-

ous literature [8,22,32,55]. During the second step, we explored the influence of the three tem-

perature variables by fixing all variables from the model with the lowest AICc in the first step

and comparing models that included all possible combinations of minimum, mean, and maxi-

mum temperature. We present the model from the second step with the lowest AICc in the

main manuscript. The steps described above are summarized in S2 Table. The model we pres-

ent here was broadly consistent to the conditional average of the top 10% of all models

explored (as determined by AICc) (S3 Table).

After variable selection, we assessed the spatial and temporal autocorrelation in the model’s

residuals. We tested for temporal autocorrelation using a Durbin-Watson test on residuals

aggregated over space. Spatial autocorrelation was assessed with a Moran’s I test on residuals

aggregated over time and using the latitude and longitude of each Fokontany to make a dis-

tance matrix. We found both temporal (DW = 0.54, p< 0.0001) and spatial autocorrelation

(I = 0.10, p< 0.0001) in the residuals of the model using month and Fokontany as random
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effects. We then updated our model structure to account for temporal autocorrelation by

including a Ornstein–Uhlenbeck (OU) covariance structure, which allows for uneven time

steps (only the high malaria season is used in this model). We fit a OU covariance matrix for

each commune, which was sufficient to remove temporal autocorrelation in the residuals

(DW = 1.8, p = 0.30). We also updated our model structure to use a Matern covariance struc-

ture using latitude and longitude to address spatial autocorrelation. The residuals of the result-

ing model showed reduced but still significant spatial autocorrelation (I = 0.23, p = 0.0002).

We use the full model with OU and Matern covariance structure to obtain the model coeffi-

cients presented in this work and use the model with month and Fokontany as random effects

for model predictions as to not rely on past malaria incidence for predictions and because the

Matern covariance structure does not improve predictions. Coefficients for the model used for

predictions are presented in S4 Table and equations for both model are available in S1 Text.

In our analysis, we first trained the model on the whole set of observations and then obtained

in-sample predictions. For out-of-sample predictions, we trained the model on the 2014–2015

and 2015–2016 malaria seasons and tested it on the 2016–2017 season. Finally, we explored the

contributions from different parts of our model (fixed vs. random, conditional vs. zero-inflated).

We used the package ‘ggeffects’ to explore the marginal effects of our predictors [66]. We also fit

the model with fixed effects only and compared its predictive performance to the full model.

Structural equation modeling (SEM)

We used the piecewiseSEM package in R to explore putative relationships between our predic-

tor variables in mediating malaria incidence, by accounting for indirect pathways and relation-

ships between the explanatory variables [67]. We conducted the SEM analysis using data

aggregated across time by taking the temporal mean for each Fokontany. The set of variables

with a direct path to malaria incidence was chosen a priori based on the results of our GLMM

exercise. Further variables were included to test specific hypotheses, namely:

• Wealth and average distance to health centers are both correlated with average distance to

roads (Figs 1A and S1).

• Forest loss is higher in areas with lower wealth score [47].

• Forest loss is associated with an increase in forest edge [68]. We decided not to include forest

area directly as forest area and forest loss may be related in complex ways (forest loss

decreases forest area, but also can only occur if forest is still present).

• Areas with more rice fields have higher precipitation [69].

• Precipitation and temperature are influenced by altitude [70,71].

• Bed net use is correlated with known malaria risk factors, including higher local precipita-

tion and temperature. We hypothesize that bed net use increases in high-risk areas, because

of intervention policies and behaviour change following high malaria incidence [72].

We chose these hypotheses based on the variables available in our dataset and the causal

relationship we could test considering their temporal resolution. For example, we could not

test causal relationships between land cover classes and deforestation as land cover data were

collected once in time. It is important to note that, although the SEM provides insights that are

complementary to those from the GLM, it was not within the scope of these study to link these

two models explicitly in a unified statistical framework.
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S1 Fig. (A) Distribution of adjusted malaria incidence per Fokontany per month, averaged

over four years. (B) Average precipitation and mean land surface temperature (LST) per

month, averaged across Fokontany. Precipitation is shown with grey bars and mean LST is

shown with a red line.
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S2 Fig. Maps of all unscaled predictor variables considered in the GLMM. The Fokontany

boundary shapefile is available from OCHA (https://data.humdata.org/dataset/cod-ab-mdg)

under a CC BY 4.0 License.
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S3 Fig. Distribution of observed and predicted malaria incidence across Fokontany and

across time for the high malaria season (November-May). Outliers are omitted.
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S1 Table. Exponential of GLM coefficient estimates for model with spatial and temporal

covariance structures.
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S2 Table. Model selection summary. Note that wealth score, distance to health center, bed

net use, residential area and rice field area are always included. Variables that were included as

a set are shown in boxes. Variables always included in the second step are indicated with a F.
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