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Applying a zero‑corrected, gravity 
model estimator reduces bias due 
to heterogeneity in healthcare 
utilization in community‑scale, 
passive surveillance datasets 
of endemic diseases
Michelle V. Evans 1,2,3*, Felana A. Ihantamalala 2,3, Mauricianot Randriamihaja 1,2, 
Andritiana Tsirinomen’ny Aina 2, Matthew H. Bonds 2,3, Karen E. Finnegan 2,3, 
Rado J. L. Rakotonanahary 2,3, Mbolatiana Raza‑Fanomezanjanahary 2, 
Bénédicte Razafinjato 2, Oméga Raobela 4, Sahondraritera Herimamy Raholiarimanana 4, 
Tiana Harimisa Randrianavalona 4 & Andres Garchitorena 1,2

Data on population health are vital to evidence‑based decision making but are rarely adequately 
localized or updated in continuous time. They also suffer from low ascertainment rates, particularly 
in rural areas where barriers to healthcare can cause infrequent touch points with the health system. 
Here, we demonstrate a novel statistical method to estimate the incidence of endemic diseases at 
the community level from passive surveillance data collected at primary health centers. The zero‑
corrected, gravity‑model (ZERO‑G) estimator explicitly models sampling intensity as a function of 
health facility characteristics and statistically accounts for extremely low rates of ascertainment. 
The result is a standardized, real‑time estimate of disease incidence at a spatial resolution nearly ten 
times finer than typically reported by facility‑based passive surveillance systems. We assessed the 
robustness of this method by applying it to a case study of field‑collected malaria incidence rates from 
a rural health district in southeastern Madagascar. The ZERO‑G estimator decreased geographic and 
financial bias in the dataset by over 90% and doubled the agreement rate between spatial patterns in 
malaria incidence and incidence estimates derived from prevalence surveys. The ZERO‑G estimator is 
a promising method for adjusting passive surveillance data of common, endemic diseases, increasing 
the availability of continuously updated, high quality surveillance datasets at the community scale.

Health metrics are vital to public health efforts, allowing decision makers to better understand the state of 
population health and evaluate the impact of health  interventions1,2. Many of these metrics are based on routine 
passive disease surveillance from facility-based health management information systems (HMIS), which record 
the number of disease cases received at each facility at a regular frequency. Health records are then aggregated, 
digitized, and transferred to the district and, eventually, national health  offices3. While the exact structure differs 
by country, the scale of spatial aggregation of the data in an HMIS corresponds to the specific level of the health 
system and its corresponding health infrastructure. For example, national-level data are used by international 
organizations to monitor long-term, multi-country trends and inform policy; regional- and district-level surveil-
lance data may be used by national public health offices to allocate resources within the country; and individual 
health facility information is used by district health offices for program management.
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Missing from most HMIS are routine surveillance data at the scale of individual communities or villages. 
These data are needed for spatially targeted interventions for disease control in collaboration with community 
health programs, which primarily serve rural communities and play an integral role in achieving universal health 
 coverage4,5. While rural primary care facilities typically serve over ten thousand people spread along hundreds 
of square kilometers, community health workers (CHWs) serve between several hundred to a few thousand 
individuals and their catchment is generally no bigger than 10  km2. Due to geographic barriers in particular, 
systemic lack of access to health facilities for large portions of the population has resulted in community health 
becoming a central pillar of national health strategies  globally6. The lack of long-term, continuously updated 
surveillance datasets at the community level impedes our ability to monitor changes in disease burdens over 
time, locally target or evaluate the impact of community-health interventions, create outbreak detection and 
forecasting systems at these levels, and generally incorporate health data into decision-making processes. Given 
the increasing role of community programs in providing primary health care and supporting disease control 
efforts, the lack of routine surveillance data at this level must be remedied.

There are several barriers to the creation of a routine surveillance system at the community level. First, CHWs 
often only diagnose and treat common illnesses for children under 5 years  old7, representing only a subset of 
the population. Second, though officially part of national health systems, community health programs are often 
inadequately funded, supported, and  integrated8,9, with negative consequences for data completeness and quality. 
For example, a case study in Malawi found that over 40% of community health reports contained errors when 
aggregation was conducted by CHWs due to lack of training and time available for  reporting10. Third, the existing 
structure of health system reporting often means that paper reports from the community level are submitted to 
district officials and integrated into the electronic HMIS system with significant delays, which limits their use for 
disease surveillance. An alternative is the use of health facility data disaggregated at the community level, which 
is becoming increasingly available with the development of new technologies such as eHealth systems. However, 
even when data remain disaggregated, there are issues of completeness and geographic bias due to heterogeneous 
access to  care11–13. These problems are exacerbated at fine spatial scales. For example, communities in rural areas 
with low access to care may be missed by routine health facility  systems14, significantly under-estimating disease 
burdens in these already vulnerable communities. Given the current lack of high-quality data at the community 
level, methods are needed to account for biases in these data while retaining their spatial disaggregation.

At the scale of the government health district and higher, several methods have been developed to address 
these issues, particularly under-ascertainment of cases (Table 1). However, none of these adjustment methods 
result in estimates of disease incidence that are available at the spatial scale of individual communities or at a 
temporal frequency that allows for rapid response. Existing methods are limited primarily by the frequency and 
spatial resolution of external data sources, such as large-scale surveys of disease prevalence or health-seeking 
behaviors. For example, information on healthcare utilization rates, such as that collected via Demographic and 
Health Surveys, is often collected nationally at the level of the district or region, and is inappropriate for use 
within smaller administrative zones. Prevalence surveys offer only a snapshot of disease burden in time, and 

Table 1.  Comparing the ZERO-G method to available methods for adjusting passive surveillance data. 
All methods require basic administrative data, such as geographic boundaries of administrative zones and 
population, which are not mentioned here.

Input data Output estimates

Advantages DisadvantagesData source Frequency Spatial scale
Temporal 
resolution Spatial resolution

Standard indirect 
estimators (e.g. 
WHO malaria 
report)

Passive surveillance 
data for focal disease Annual Subnational 

(Regional)

Annual Regional

· Straightforward 
adjustment method
· Directly accounts 
for health-seeking 
behaviors

· Only available at 
regional or national 
scales
· Requires adequate 
coverage of DHS 
surveys
· Limited to annual 
estimates
· Not appropriate for 
rare diseases

Survey data of 
health-seeking 
behavior (e.g. DHS)

Multi-annual Subnational 
(Regional)

Ecological 
 downscaling45

Prevalence survey Once or Multi-
Annual

Subnational (Point 
data)

Annual 5 × 5 km · Avoids bias in pas-
sive surveillance data

· Requires environ-
mental and socio-
economic variables
· Requires prevalence 
data with adequate 
spatial coverage

Environmental Vari-
ables (e.g. Bioclim)

Annual to Long-
term Average 5 × 5 km

Socio-economic 
variables

Multi-annual to 
annual Regional

ZERO-G estimator

Passive surveillance 
data for focal disease Monthly Community

Monthly Community

· Relies solely on 
health system data 
commonly avail-
able to Ministries of 
Health
· Provides continu-
ous, real-time esti-
mates of incidence
· Corrects for miss-
ing data due to data 
quality issues

· Requires passive 
surveillance data at 
the community level
· Only appropriate 
for diseases with 
regular incidence and 
reporting

All-cause consulta-
tion rates Monthly Community

Health facility char-
acteristics Monthly to annual Subnational 

(Facility·level)
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their inferences, while available at finer spatial scales, often only apply to annual estimates. In addition, both 
forms of survey data are resource-intensive and are rarely available at spatial or temporal scales relevant to com-
munity health  programs15.

Here, we introduce the zero-corrected, floating catchment gravity model estimator (ZERO-G). This method 
accounts for under-ascertainment of cases by public health facilities, resulting in a long-term dataset of disease 
incidence at the scale of individual communities or villages for common diseases that are regularly reported to 
the health system. Compared to existing methods, the ZERO-G estimator offers several distinct advantages for 
use in community health surveillance programs (Table 1). Because the main input data (notification reports and 
all-cause consultations) are released continuously on a set frequency, ZERO-G is able to produce estimates of 
disease incidence that are updated in real-time and available on a time scale relevant for decision makers. Unlike 
existing methods, ZERO-G relies solely on data available to local stakeholders: all-cause consultation rates, the 
focal disease incidence, and health facility characteristics. In addition, ZERO-G explicitly accounts for extremely 
low ascertainment rates and shock events that result in zero cases per month, a common occurrence in rural com-
munity health catchments. Finally, it does not rely on spatial aggregation or interpolation to combine estimates of 
healthcare utilization rates with disease incidence data, allowing it to retain a community-level spatial resolution.

Building on work by Hyde et al.16, the method first calculates a sampling intensity derived from healthcare 
utilization data (i.e. consultation rates) using a floating catchment area  model17. It then uses spatio-temporal 
imputation to infer numbers of undetected cases due to low healthcare access and reporting errors. This zero-
adjusted data and the sampling intensity estimates are finally used to create an estimate of disease incidence 
that is adjusted for spatio-temporal heterogeneity in access to healthcare. The target diseases for this method are 
common, endemic diseases that are regularly reported to health systems in areas of high healthcare access (e.g. 
malaria, pneumonia, diarrheal disease). ZERO-G is not appropriate for rare diseases or those where only severe 
cases are reported. We demonstrate the method on simulations of an endemic disease and on a case-study of a 
field-derived passive surveillance dataset of malaria in a rural health district in southeastern Madagascar. The case 
study is used to further validate the ZERO-G method by comparing the estimated sampling intensity and malaria 
incidence rates to health-care seeking behavior and malaria prevalence from a district-representative cohort.

The ZERO‑G estimator
Indirect estimation methods estimate the “true” rate of disease incidence or prevalence from case data with 
low or uneven ascertainment rates by including information on the sampling intensity (e.g. healthcare use) in 
each administrative  region18. ZERO-G specifically combines information on the number of cases recorded by 
the health system with information on the proportion of cases that are expected to be observed. In addition, 
it includes imputation methods for adjusting for extremely low ascertainment rates or stochasticity that result 
in zero cases reported. The final result is an estimation of the disease incidence rates that would be observed if 
access to healthcare was identical across space and time.

The ZERO-G estimation method can be summarized in a pseudo-statistical framework consisting of three 
main steps (Fig. 1): (1) the estimation of healthcare access via a gravity model, (2) the estimation of undetected 
cases via spatio-temporal imputation, and (3) the conversion of healthcare access to sampling intensity via multi-
objective optimization. The estimates of sampling intensity and zero-adjusted data are then used to estimate an 
adjusted incidence rate ( Nit) for each administrative zone i and time period t  , accounting for imperfect detection 
due to differing healthcare access via an Inverse Binomial distribution (Eq. 1).

The full ZERO-G estimator can be stratified across demographic classes (e.g. age, sex, etc.) to account for 
demographically-dependent health-seeking behaviors. However, we limit our notation here to one class to 
improve readability. Parameters and variables representing data are further described in Table 2.

Estimating healthcare access (A) via a gravity model
Healthcare access ( Ait ) is estimated from monthly healthcare utilization rates (i.e. consultation rates with the 
focal disease removed, hit) and the population of a zone ( nit) (Eq. 2).

The relationship between the monthly number of consultations and the estimated healthcare access is defined 
via a temporally-explicit floating catchment area (FCA) model of healthcare  access19. Based on gravity models, 
FCA models consider both the quantity and spatial accessibility of services at a health center for a given popula-
tion by weighting the distance to care by the availability of services provided at each health center. Specifically, we 
use the modified two-step floating catchment area formulation of this metric, which allows for sub-optimal allo-
cation of health resources via the inclusion of distance-weighted competition for each health center’s  resources20. 
Healthcare access in each zone is modeled via an “attractive force” to each health center and total access to care 
is the sum of these forces across all health centers for a given zone (Eq. 3):

This represents the sum of all healthcare services provided by each health center j at time t  ( Sjt, Eq. 4), medi-
ated by the distance between each zone i and the health center j ( dij, Eq. 5), and competition for serves at each 

(1)Nit ∼ InvBin
(

r∗it , SIit
)

(2)hit ∼ Binomial(nit ,Ait)

(3)Ait = g(t)
∑

j

Sjt f
(

dij
)2

Cjt
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Figure 1.  Workflow for adjusting incidence data using the floating catchment, zero-corrected (ZERO-G) 
estimator. Panel 1: A depiction of the gravity-model used in the floating catchment area model. A single zone i is 
represented surrounded by multiple clinics j with differing amount of services offered, with the distance between 
the zone and the clinic represented by dij. Panel 2: An example of the zero-adjustment step for one zone. Top row 
of Panel 2: All zeroes are identified in the dataset, represented by an X. Middle row of Panel 2: The probability of 
a zero is estimated via a logistic regression and those samples with a probability below 0.5 are identified. Bottom 
row of Panel 3: Those zeros that occur during a month with less than 0.5 probability of a zero are replaced 
via an imputation step. Panel 3: Hyperparameters are tuned via multi-objective optimization across a hyper-
dimensional space, resulting in a Pareto front of non-dominated parameter values.

Table 2.  Description of variables and parameters in ZERO-G method. Parameters estimated via the ZERO-G 
method have the corresponding equations listed as their source. Note Subscript i refers to zone i and subscript 
t  refers to month t .

Variable Description Source

rit The reported incidence in zone i at time t Data

Zit Binomial variable representing if there was zero reported incidence Data

hit Number of non-focal disease consultations Data

nit Population count of zone Data

Xi Longitude of zone i Data

Yi Latitude of zone i Data

dij Distance between zone i and health facility j. Can be calculated using Euclidean distance or based on actual routing Data

νjst Value of health service s provided at health facility j at time t Data

mt Month of year (e.g. Jan-Dec) at time t Data

Nit The ZERO-G estimated incidence after correcting for under-ascertainment Equation (1)

Ait FCA-based healthcare access Equation (2, 3)

Sjt Services provided by health facility j at time t Equation (4)

βs Coefficient for health service s Equation (4)

� Distance decay coefficient Equation (5)

Cjt Competition at health facility j at time t Equation (6)

βc Scaling coefficient for competition at health facilities Equation (6)

g(t) Function describing temporal trend in . Specific function can be adjusted based on need Equation (7)

ψit Probability of zero reported incidence Equation (8, 9)

βz1...z3 Coefficients used to estimate probability of zero reported incidence Equation (9)

r∗it Zero-adjusted reported incidence Equation (10)

RF(X) Function describing random forest algorithm used in data imputation Equation (10)

SIit The sampling intensity in zone i at time t Equation (11)

x1, x2 Scaling coefficients for SI Equation (12)



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21288  | https://doi.org/10.1038/s41598-023-48390-0

www.nature.com/scientificreports/

health center j by the total population across all zones ( Cjt, Eq. 6). We also include a term ( g(t) ) to account for 
temporal trends in access (Eq. 7).

Services provided by each health center represent the “mass” of the gravity model (Eq. 4):

where each health center’s mass at time t  ( Sjt ) is equal to the sum of the characteristics relevant to health services 
at that clinic ( νsjt ), each weighted by unique parameters βs that are estimated through the model fitting process. 
These characteristics will vary by health system, but should generally describe the quantity and quality of services 
available at the health center.

The effect of distance on healthcare access is described by a function f
(

dij
)

 that assumes exponential distance-
decay, with the specific shape of the decay defined by parameter � , estimated via the model fitting procedure 
(Eq. 5):

where dij is the distance between zone i and health center j.
Competition for services at each health center is defined as the sum of the population-weighted distance 

between all zones and the health center, scaled by βc , estimated via model fitting (Eq. 6):

where nkt is the population of zone k in month t  and the distance-decay function between zone k and health 
center j follows Eq. (5).

We include a term g(t) to account for temporal trends in healthcare access, specifically due to seasonal and 
linear trends, following Garchitorena et al.11 (Eq. 7):

where the parameter βg1 represents the linear trend and the parameters βg2 and φ describe a sinusoidal annual 
seasonality. All three parameters are estimated via model fitting.

Zero‑adjustment framework
In certain instances, undetected cases due to reporting errors can result in a value of zero reported cases in zone 
i during month t  (e.g. rit = 0 ). The Inverse Binomial distribution models the probability of having Nit cases to 
get exactly rit reported cases, given a reporting probability equal to SIit . When the number of reported cases is 
zero, the MLE of Nit will always be zero, regardless of SIit . It is therefore necessary to replace undetected cases 
resulting in an rit of zero due to reporting errors. Erroneous zeroes are identified by fitting a logistic regression 
to the binomial variable of whether zone i reported zero incidence at time t  (Zit, Eq. 8), resulting in estimates 
of the probability of a zero ( ψit). The logistic regression’s explanatory variables include the month of the year of 
time t  (mt), estimated healthcare access for zone i at time t  (Ait), and the interaction between the two (Eq. 9). 
All main terms have an associated coefficient βz that is estimated via model fitting. This logistic regression is fit 
to the reported case data to estimate ψit.

If zero cases are reported in a month for a zone and ψit is less than 0.5, this zero is assumed to be due to 
reporting error (not seasonality or low access) and is defined as erroneous to be replaced (Eq. 10). Erroneous 
zeros are replaced via a spatio-temporal imputation process that incorporates seasonal and spatial patterns in 
incidence. Imputation is performed via 100 boosted regression tree models that estimate monthly incidence as 
a function of each zone’s longitude ( Xi ), latitude ( Yi ), and specific month of the zero-incidence occurrence ( mt ), 
leveraging observed incidence rates in proximal months and zones (Eq. 10):

The median of 100 imputations is taken as the final imputed value, r∗it . Imputation is performed via the 
micemd package v 1.9.0 in  R21.

Rescaling healthcare access to sampling intensity (SI) via multi‑objective optimization
The sampling intensity ( SI ) is calculated from healthcare access Ait via a constrained multi-objective optimiza-
tion routine that minimizes four objective functions (Eqs. 11, 12).

(4)Sjt =
∑

s
βsνsjt

(5)f
(

dij
)

= e−�dij

(6)Cjt = βc
∑

k
nkt f

(

dkj
)

(7)g(t) = eβg2t+βg2
sin(2π(t+φ)/12)

2

(8)Zit ∼ Bernoulli(ψit)

(9)logit(ψit) = βz0 + βz1mt + βz2Ait + βz3mtAit

(10)r∗it =

{

RF(Xi ,Yi ,mt), if rit = 0 andψit < 0

rit , else

(11)SIit =

(

(1− x1) ∗ (Ait − x1)

max(A)−min(A)+ x1

)x2
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The objective functions f1...4(x) correspond to: (1) the Spearman correlation coefficient between a zone’s 
distance to a health center and its average annual incidence rate (geographic bias), (2) the ratio of incidence rates 
in zones with reimbursement policies to those without (financial bias), (3) the number of zones with annual inci-
dence rates over 1000 cases per 1000 population (over-correction bias), and (4) the covariance of all three biases, 
to reduce over-correcting one value at the expense of the others. This creates a Pareto front of non-dominated 
values across the four objectives. From this subset, a constraint is used to limit the over-estimation of cases by 
constraining the results to parameters that result in monthly incidence values where the 99% percentile falls 
below a threshold equal to 1.5 times the original maximum monthly incidence value. The optimization routine 
is solved using the NSGA-II genetic algorithm via the mco package in  R22. The optimal values of x1 and x2 are 
then used to rescale Ait between x1 and 1 to calculate SIit (Eq. 11).

Case study: malaria incidence in Ifanadiana, Madagascar
We applied the ZERO-G estimator to malaria incidence in Ifanadiana District, Madagascar to demonstrate its 
utility in regions with highly heterogeneous rates of under-ascertainment. Ifanadiana is a district in the Vatovavy 
region of southeastern Madagascar. It has an estimated population of 183,000 people spread across 195 fokontany 
(smallest administrative unit comprising about 1000 people) within 15 communes. Each commune contains 
one primary health center level 2 (PHC2), and six of the larger communes also contain a primary health center 
level 1 (PHC1), which provides more basic care, for a total of 21 PHCs within the district. Beginning in 2014, 
the Madagascar Ministry of Public Health (MMoPH) and the non-governmental organization Pivot began a 
partnership to strengthen the health system, establishing Ifanadiana as a model health district. This intervention 
works across all levels of the health system, from community health at the household level to tertiary care at the 
regional hospital. At the level of the PHCs, in addition to the removal of user fees, the intervention includes a 
range of activities to increase PHC readiness (e.g. infrastructure, equipment, supplies and personnel), support 
clinical programs (e.g. maternal and child health, infectious diseases), and improve data systems. As of Janu-
ary 2023, a minimum package of support has been provided to all 15 PHC2s of all 15 communes, and will be 
expanded to a complete package at all levels of PHCs by the end of 2024. Because the progress of these health 
system strengthening interventions in Ifanadiana and elsewhere typically differ across PHCs and time, this 
requires an adjustment method that considers spatio-temporal differences in healthcare policies and interven-
tions, such as the ZERO-G estimator.

As is common in sub-Saharan  Africa23, the primary barriers to healthcare at PHCs in Ifanadiana are geo-
graphical and financial. The majority of the district is rural and the transportation network is primarily non-
motorized; over 70% of the population lives further than an hour travel time from a  PHC24. As such, geographical 
access to care at PHCs is highly unequal, and exhibits strong distance-decay from PHC  locations11. Regarding 
financial barriers, 34% of the public health expenditure in Madagascar is out-of-pocket  spending25, with user 
fees the most cited barrier to healthcare seeking across the  district26. Given these known barriers, we aimed to 
reduce the impact of geographic and financial bias in malaria incidence rates by adjusting the data using ZERO-G.

Data collection
Monthly consultation data were collected at each PHC for the district of Ifanadiana from January 2016 to Decem-
ber 2021. Photos were taken of handwritten registries at each PHC, and patients’ residences were manually geolo-
cated to the precision of the fokontany. The number of all-cause consultations were reported by fokontany, as well 
as the number of malaria cases, as confirmed by rapid detection test (RDT). Because patient ages were provided 
in these registries, we were able to divide the number of consultations and malaria cases into three age groups 
for analysis: children under 5 years old, juveniles aged 5–14, and adults aged 15 and over. Ifanadiana suffers from 
shortages of diagnostic materials, specifically  RDTs27, leading to unconfirmed cases of malaria. We accounted 
for this reduced diagnostic capacity by scaling the confirmed malaria cases by the proportion of feverish patients 
who were tested via an RDT at each PHC during each month (n = 536). Information on the characteristics of each 
clinic by month was provided by Pivot’s Monitoring and Evaluation for Research and Learning team.

Population data came from two sources. For the 80 fokontany that receive community health program sup-
port from Pivot, we used population estimates from a Pivot-led census conducted in 2021. For the remaining 
115 fokontany, population estimates came from a national census conducted in 2018 by the Madagascar National 
Institute of Statistics. By interpolating population values between the 2018 census and the previous 1993 census, 
we estimated an average annual population growth rate of 2.0%. We applied this population growth rate to both 
datasets to obtain each fokontany’s population by year. For both datasets, we assumed 18% of the population to 
be under 5 years old, 28.6% of the population to be aged 5–14 and the remainder to be 15 years old or above, 
based on the average age structure of the 80 fokontany that were censused in 2021.

Distances between residential areas and PHCs were calculated on a high-resolution transport network cre-
ated via crowd-sourced mapping through a collaboration with Humanitarian OpenStreetMap. Over 20,000 km 
of footpaths and 100,000 buildings within the district were mapped through a two-step validation  process24, 
resulting in an open-source dataset on OpenStreetMap. Using this dataset, we estimated the distance between 
each household and each PHC within the district, and aggregated this to the scale of the fokontany to result in 
an average distance to each PHC for each fokontany. Three fokontany lacked accurate routing information and 
so were excluded from the analysis.

We evaluated our estimates of the SI and adjusted malaria incidence rates using external data from a longitu-
dinal cohort survey conducted in the district of Ifanadiana (IHOPE cohort). The IHOPE cohort has conducted 
population-representative surveys approximately every two years from 2014 to 2021 using a two-stage cluster 

(12)min
x∈X

(

f1(x), f2(x), f3(x), f4(x)
)

,X ⊆ R



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21288  | https://doi.org/10.1038/s41598-023-48390-0

www.nature.com/scientificreports/

sampling scheme involving 80 spatial clusters, each containing 20  households28. We include data from 2016, 2018, 
and 2021 in this analysis. The IHOPE cohort is based on the internationally validated Demographic and Health 
Surveys and is implemented by the Madagascar National Institute of Statistics. See Miller et al.28 for further details 
on participant recruitment and study design. As part of the survey questionnaire, participants were asked if they 
were ill in the past four weeks and, if so, if they sought care at a public PHC. This data represented self-reported 
healthcare seeking behavior, comparable to ZERO-G estimates of sampling intensity. Malaria prevalence data 
was collected via RDTs conducted as part of the IHOPE survey in 2021. Briefly, children under 15 years old 
who consented to the study were tested for active malaria infection using SD One Step Malaria HRP-II(P.f) and 
pLDH(Pan) Antigen Rapid Tests. Those who tested positive were provided with a standard treatment of artesu-
nate amodiaquine and paracetamol, with duration and dosage in accordance with national guidelines. In total, 
this resulted in 3774 samples across 80 clusters and 109 fokontany.

Applying the ZERO‑G estimator
Estimating healthcare access (A)
We estimated the healthcare access for each fokontany and month combination in our dataset following the 
methods described above for each age class (children, juveniles, and adults) using non-malarial consultations at 
PHCs. We included five traits of the health center in our calculation of Sj:

1. Whether the PHC fell within the initial Pivot service catchment,
2. If point-of-care user fees (consultation costs and medications) had been removed at that time,
3. The number of staff at the PHC during each month,
4. Level of health clinic (PHC1 or PHC2, with PHC2 providing more services),
5. Distance from the PHC to the District office, which provides supplies, medications, and supervision.

In addition, two new PHC2 were opened in the district during the study period, one in Ampasinambo in 
November 2016 and one in Ambiabe in April 2018, which we accounted for in our calculation of SI . Notably, 
ZERO-G allows for health center traits that change over time, which we used to include monthly staffing changes, 
the construction of new health centers, and user fee removal interventions that were implemented over the study 
period.

To reduce computational time, we set a maximum limit on the distance between a community and the PHC 
( dij ) at 25 km, slightly above the maximum distance of a fokontany to the nearest PHC in Ifanadiana (22.1 km). 
We also included an additional parameter in our estimation of f

(

dij
)

 to allow the shape of this relationship to 
differ for those fokontany within the Pivot zone of intervention and those outside the zone of intervention, fol-
lowing Garchitorena et al.11.

We estimated the number of non-malarial consultations hit as a random variable with a binomial distribution 
with the probability equal to the healthcare access ( Ait ) and size nit equal to the population size of the fokontany 
(Eq. 2). Some fokontany had extremely low consultation rates and reported zero consultations for over 50% of 
the study period. We excluded these fokontany (n = 43) from the model fitting exercise estimating the parameters 
for Ait , but did estimate their healthcare access from the fit model. To ensure our estimate represented the global 
maximum likelihood estimate (MLE), and not a local maximum, we used a two-step MLE estimation process. 
First, we performed a grid search via a latin hypercube sample of 1000 samples of coarse parameter space to 
identify the ten parameter sets with the lowest negative log-likelihood. We then performed a second MLE step 
using the BFGS algorithm via the optim function in the stats package in  R29, using the parameter sets identified in 
the first step as the starting parameters. We assessed each of these ten iterations for convergence and selected the 
parameter set with the lowest negative log-likelihood as the optimal fit. A total of 11 parameters were estimated 
for each age class (Table S2.1). From the optimal parameter sets, we estimated Ait for each fokontany-month 
combination for each age-class via Eq. (3).

Imputing erroneous zeroes
Nearly all fokontany (n = 189) reported zero malaria cases across all ages at least once during the study period, 
totaling 3468 (28.4%) of fokontany-month samples. On average, fokontany reported zero malaria cases for 
18.1 months out of the 66 month period, with a range of 0–53 months reporting zeros. The ZERO-G method 
imputed between 6.08 and 10.00% of fokontany-month incidence values for each age class, an average of 
4.75 months per fokontany (range: 0–22).

Rescaling healthcare access to sampling intensity
We manually set the sampling intensity ( SI ) to 1 for those fokontany which had an average annual healthcare 
utilization rate over 1 consultation per capita-year, defined as “high access fokontany” (n = 19). The remaining 
fokontany’s healthcare access values were rescaled following Eqs. (11), (12) using multi-objective optimization 
to calculate their monthly SI values.

Evaluating adjusted datasets
We evaluated our estimates of SI and adjusted malaria incidence rates using external data from the IHOPE cohort. 
Self-reported healthcare seeking behavior was paired spatially to SI estimates by assigning a value to a fokontany 
if a village from the cluster was in that fokontany. The data were paired temporally by taking the average of the SI 
during the 6 month period containing the months when the IHOPE survey was conducted in each year (January 
through June for 2016 and 2021 and July through December for 2018), to reduce the impact of month outliers in 
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healthcare utilization data on SI estimates. We assessed the agreement between the two datasets by calculating 
the correlation between estimated SI and the proportion of residents reporting illness who attended PHCs using 
Clifford’s modified t-test, which controls for spatial  autocorrelation30. We assessed the correlation separately for 
each year (2016, 2018, 2021), including 109 fokontany per year.

We evaluated the ability of ZERO-G adjusted incidence rates to accurately represent malaria burdens by 
comparing adjusted incidence rates to malaria prevalence data collected via the IHOPE cohort in 2021. The 
two datasets were paired spatially by assigning a value to a fokontany if a village from the cluster was in that 
fokontany and were paired overtime by matching the month of the IHOPE survey to the month of the incidence 
rates. Because the relationship between prevalence and incidence is non-linear, we transformed cluster-level 
prevalence rates into incidence rates following a previously published  model31 to allow us to compare incidence 
rates from both datasets. However, there remain important differences between this measure of incidence and that 
derived from case notifications. Prevalence data may under-estimate malaria incidence as the conversion results 
only in symptomatic cases of malaria while case notifications may include a higher proportion of asymptomatic 
cases due to co-infection with a second febrile-inducing  pathogen32. We compared adjusted incidence rates for 
children under 15 years old to prevalence rates of children under 15 years old from the IHOPE cohort for all 
fokontany with information in both datasets (n = 109) via Clifford’s modified t-test. We also assessed the ability 
of the adjusted incidence data to correctly identify hot spots of malaria, defined as the quartile of fokontany with 
the highest prevalence-derived incidence rates.

Applying ZERO‑G to a simulated disease
To demonstrate its generalization, we used the ZERO-G estimator to adjust for under-ascertainment of cases of a 
simulated endemic, seasonal disease. We simulated a model health district containing 100 administrative zones 
and 8 health clinics that differed in the number of staff, whether they offered advanced services, and whether 
health care was subsidized. We then simulated disease dynamics for a constant background disease rate and for 
two additional diseases that exhibited annual seasonality for each administrative zone at a monthly frequency for 
five years. We modeled an individual’s probability of seeking care as a random variable with probability equal to 
that zone’s reporting rate, itself a function of its distance to a clinic and the services available at that clinic, plus 
a random error term (Eq. S2). To represent realistic issues in data quality, we also simulated months reporting 
zero cases as a function of low reporting rates, low disease incidence and due to randomness. This resulted in 
a time series of “true” disease incidence and reported disease incidence for each zone over a five year period 
(Fig. S1.3). Further details on the creation of the simulated datasets are reported in the Supplemental Materials. 
We repeated this simulation exercise 99 times.

The performance of the ZERO-G method on the simulated datasets was evaluated by comparing the abil-
ity of the ZERO-G estimator to reproduce the original simulated “true” data compared to the unadjusted data. 
We calculated the normalized root mean squared error (NRMSE) and correlation coefficient between the true 
incidence and adjusted incidence rates across patches and seasons. We compared these values to the unadjusted 
incidence rates to assess the improvement provided by the ZERO-G method. We also compared the relative 
reduction in geographic and financial bias in the unadjusted and ZERO-G adjusted datasets.

Ethics statement
Use of aggregate monthly healthcare utilization data from PHCs in Ifanadiana District for this study was author-
ized by the Medical Inspector of Ifanadiana. The IHOPE longitudinal survey implemented informed consent 
procedures approved by the Madagascar National Ethics Committee and the Madagascar Institute of Statistics. 
This included obtaining informed consent from all subjects or their legal guardians. All methods were performed 
following the guidelines and regulations established by these institutions. Household-level de-identified data from 
the IHOPE survey were provided to the authors for the current study. We recognize that all research is conducted 
within the surrounding socio-political context and risks reproducing existing inequalities within the research 
team and across research partners. We’ve chosen to explicitly reflect on power dynamics and equitable authorship 
within the context of this research project in an accompanying reflexivity statement (Supplemental Materials).

Results
Case study: malaria in Ifanadiana, Madagascar
We estimated the SI by fitting a floating catchment area model to healthcare utilization data from January 
2016–December 2021 and rescaling it via multi-objective optimization. The resulting model performed well at 
reproducing the healthcare utilization data (under-5: Spearman’s ρ = 0.619, p value < 0.001; juvenile: Spearman’s 
ρ = 0.608, p value < 0.001; adult: Spearman’s ρ = 0.702, p value < 0.001). When averaged over all fokontany per 
month, it accurately represented the temporal trends in the healthcare utilization data, although this perfor-
mance was dependent on age-class (under-5: Spearman’s ρ = 0.384, p value < 0.01; juvenile: Spearman’s ρ = 0.517, 
p value < 0.001; adult: Spearman’s ρ = 0.578, p value < 0.001). When averaged across time to result in one average 
SI per fokontany, it also was able to capture spatial and fokontany-specific differences in healthcare utilization 
rates (under-5: Spearman’s ρ = 0.829, p value < 0.001; juvenile: Spearman’s ρ = 0.806, p value < 0.001; adult: Spear-
man’s ρ = 0.844, p value < 0.001).

The spatial patterns in the estimated SI mirrored spatial patterns in self-reported healthcare seeking behavior 
from the IHOPE longitudinal survey (Fig. 2). The estimated and self-reported healthcare seeking rates were 
significantly correlated across all years (Clifford’s t-test; 2016: ρ = 0.502 (p < 0.01), 2018: ρ = 0.644 (p < 0.01), 
2021: ρ = 0.564 (p < 0.01), Fig. S2.1). Both data sources estimate higher healthcare access at fokontany nearer 
the national transportation network, specifically the paved road that runs east–west through the district, and 
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in close proximity to PHCs. In addition, the two datasets were in agreement that the majority of the district has 
low access to healthcare.

Reduction of bias in malaria incidence due to geographic and financial barriers to care
The unadjusted dataset showed evidence of geographic bias; average annual incidence of malaria in a fokontany 
was negatively correlated with the distance from that fokontany to the nearest PHC (Spearman’s ρ = − 0.617, p 
value < 0.001, Fig. 3), showing an exponential distance decay. The adjusted dataset, by comparison, demonstrated 
no relationship between average annual incidence and distance to the nearest PHC (Spearman’s ρ = − 0.060, 
p value = 0.409, Fig. 3). Fokontany whose populations attended PHCs where fees were removed for the user 
(PHCs were reimbursed by Pivot) reported 2.48 times higher incidence than those that did not benefit from 
the reimbursement policy in the unadjusted dataset (Fig. 3). Applying the ZERO-G method drastically reduced 
this bias; the average annual incidence in these fokontany was 0.95 times the incidence in fokontany with cost-
of-care-reimbursement (Fig. 3). However, this reduction in bias differed across years. Specifically, zones with 
reimbursement policies retained a much higher incidence rate in 2018. This difference was driven primarily by 
high monthly incidence (> 500 cases per thousand individuals) in the unadjusted data due to a malaria outbreak 
in the north of the district in a commune benefiting from fee-reimbursement. Because it does not aggregate 
or smooth incidence data, ZERO-G retained this anomaly in incidence rates even after adjustment. This is an 
advantage of ZERO-G, as it allows for the identification of epidemics or unexpected trends in the data.

Comparing unadjusted and adjusted datasets
Comparing the unadjusted and adjusted datasets, we estimated that unadjusted case notifications are capturing 
on average 26.5% of symptomatic malaria cases in the district. This differed by year, with the lowest percentage 
of 24.2% in 2016 and the highest of 31.6% in 2017. The level of under-ascertainment also varied across fokontany. 
On average, the adjusted annual incidence in a fokontany was 9.15 (range: 1–451) times the unadjusted annual 
incidence rate. However, when this was calculated omitting fokontany and year combinations that reported zero 
malaria cases in a year (26 out of 944), this ratio was reduced to 8.42 (range: 1–76.5).

Figure 2.  The sampling intensity estimated via the gravity model and multi-objective optimization (bottom 
row) closely approximates self-reported healthcare seeking rates from the IHOPE cohort (top row). Shading 
represents rates grouped into quartiles, with Q1 corresponding to the lowest healthcare utilization rate and Q4 
to the highest. Diamond points show the location of level-2 PHCs. Top row: Cluster-level healthcare seeking 
rates are illustrated for each village in a cluster across the three survey years. Bottom row: The scaled sampling 
intensity estimated via ZERO-G. Scatter plots of this data are shown in Fig S2.1.
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Validation with prevalence data
We validated ZERO-G by comparing ZERO-G estimated incidence rates with incidence rates derived from the 
IHOPE prevalence survey in children under 15 years old (Fig. 4). Unadjusted incidence rates were negatively 
correlated with IHOPE incidence rates based on prevalence, but this correlation was not significant (Spearman’s 
ρ = − 0.141, p value = 0.2). The unadjusted incidence rates had no correlation with the calculated incidence of 
symptomatic individuals in the IHOPE survey (Spearman’s ρ = − 0.050, p value = 0.6). After adjusting the data, we 
found a positive correlation between ZERO-G and IHOPE incidence rates (Spearman’s ρ = 0.316, p value = 0.001). 
While the estimated correlation coefficient between incidence rates and the proportion of symptomatic and 
RDT positive children was positive in the adjusted dataset, it remained insignificant (Spearman’s ρ = 0.188, p 
value = 0.06). The adjusted dataset also doubled the number of correctly-ranked fokontany into quantiles that 
matched those from the prevalence data (Fig. 4). The adjusted dataset correctly ranked 43 of 104 fokontany, 
compared to 18 in the unadjusted dataset.

Simulated endemic disease data
The ZERO-G estimator reproduced simulated true incidence data when applied to simulated reported incidence 
datasets that contained reporting biases due to healthcare access. The ZERO-G adjusted datasets improved the 
fit to the true data by over 30%, with a median NRMSE of 0.778 compared to 1.140 with the unadjusted datasets 
(Fig. S1.4, Table 3). They were also more strongly correlated with the true incidence rates (median Spearman’s 
ρ = 0.657), compared to the unadjusted datasets (median Spearman’s ρ = 0.426) (Fig. S1.5, Table 3). In addition, 
the ZERO-G adjusted datasets reduced biases due to geographic distance and fee reimbursement policies seen in 
the unadjusted datasets (Figs. S1.6, S1.7, Table 3). The unadjusted incidence datasets exhibited strongly negative 
correlations with increasing distance to the nearest health clinic (Spearman’s ρ = − 0.836), which was reduced by 
over 40% in the ZERO-G adjusted datasets. The ratio of incidence in zones served by health clinics offering fee 
reimbursement to incidence in zones without this policy had a median value of 1.156 in the ZERO-G adjusted 
datasets, compared to 1.557 in the reported datasets, an improvement of over 65% (Table 3).

Figure 3.  The ZERO-G adjustment method greatly reduces geographical and financial bias in malaria incidence 
rates. Left: Each point represents the average annual malaria incidence rates for a fokontany over the period 
of 2016–2020, with the x-axis showing the distance to the nearest PHC. The smoothed line is the exponential 
(unadjusted) or linear (adjusted) fit between average annual incidence and distance to PHC. One outlier point is 
removed to aid with visualization. Right: The median monthly malaria incidence rates across fokontany whose 
closest PHC does or does not offer fee reimbursement. Fee reimbursement began in January 2017. The error 
ribbon represents a 90% CI. The y-axis is limited between values of 0–200 to aid with visualization.
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Figure 4.  The adjustment method results in monthly malaria incidence rates in 2021 that more closely 
correspond to measures of malaria prevalence in children under 15 years old. Left: Malaria incidence derived 
from prevalence as measured by rapid-detection tests (RDT) in children under 15 years old from the IHOPE 
cohort survey. Colors represent quartiles from Q1 (lowest incidence) to Q4 (highest incidence). The scatter plot 
illustrates the non-linear relationship between prevalence and incidence. Middle: Monthly malaria incidence in 
the unadjusted dataset. Quartiles that match those in the prevalence data are highlighted in black. The scatter 
plot illustrates the relationship between unadjusted incidence and IHOPE incidence. Right: Monthly malaria 
incidence in the ZERO-G adjusted dataset. Quartiles that match those in the prevalence data are highlighted in 
black. The scatter plot illustrates the relationship between ZERO-G incidence and IHOPE incidence. Monthly 
incidence has been chosen to correspond to the month in which the IHOPE survey was conducted for that 
fokontany.

Table 3.  Performance of ZERO-G Estimator on 99 simulated datasets. Geographic bias is the absolute 
correlation between dij and the incidence rates, relative to the bias observed in the true data (0 signifies no 
bias). Financial bias is the ratio of incidence rates in zones receiving fee reimbursement to incidence rates in 
zones not benefiting from fee reimbursement, relative to the ratio observed in the true data (0 signifies no 
bias). Median values are reported with IQR in parentheses.

Reported incidence ZERO-G estimated incidence % improvement

NRMSE 1.14 (1.032–1.216) 0.778 (0.621–1.02) 31.1% (16.1–36.8%)

Correlation with true incidence rates (Spearman’s ρ) 0.426 (0.35–0.488) 0.657 (0.448–0.746) 44.2% (29.1–54%)

Geographic Bias 0.863 (0.774–0.931) 0.512 (0.315–0.671) 40.5% (23.5–58.2%)

Financial Bias 0.557 (0.237–2.336) 0.156 (0.056–781) 66.8% (33.4–84.6%)
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Discussion
There is a critical need for routine surveillance systems to produce estimates at the spatial scale of individual 
communities so that control interventions can be targeted in collaboration with community health programs. 
However, HMIS data are rarely kept disaggregated at this scale and, when they are, they suffer from under-
estimation of incidence that varies across space and time, preventing their usefulness for decision making. We 
developed an adjustment method that combines a gravity-model of healthcare access with an indirect estimator 
to create long-term routine surveillance data at the community-scale, adjusted for under-ascertainment due to 
uneven health care access. We demonstrated this method by applying it to field-collected malaria case notifica-
tion data from 192 communities over 5 years of surveillance in a rural District of Madagascar. This method 
reduced geographical and financial bias in field-collected malaria incidence rates by 91% and 96%, respectively. 
In addition, we validated this method with two external, population-representative datasets and found strong 
agreement with self-reported healthcare access and malaria prevalence rates. We further assessed the generaliz-
ability of the ZERO-G estimator on simulated datasets and found it nearly doubled the ability to reproduce true 
incidence rates. The ZERO-G estimator can obtain estimates that approximate long-term active surveillance 
data of common, endemic diseases at fine-spatial scales using only data commonly available to health systems.

ZERO-G greatly reduced bias in malaria incidence rates from a passive surveillance dataset in our case study. 
In Ifanadiana district, per capita health system utilization rates are twice as high for fokontany within 5 km of 
a health center than those further  away11, and we found similar trends in the unadjusted malaria data (Fig. 3). 
Geographic bias in the malaria data was therefore primarily reduced by accounting for low sampling intensity 
at those fokontany further than 5 km from a PHC (Fig. 2). Financial costs represent a significant barrier to 
healthcare seeking, particularly for low-income communities, and differential user fee policies over time (e.g. 
implementation of universal health coverage) can result in healthcare access patterns changing as a function of 
 this33,34. In Ifanadiana, the removal of user fees to patients (via reimbursement policies to PHCs) in part of the 
district led to a sudden and sustained 65% increase in utilization  rates26. ZERO-G removed this bias, resulting 
in similar incidence rates regardless of when and where reimbursement policies were in place. ZERO-G also 
resulted in data that more accurately identified malaria prevalence hotspots and coldspots than the unadjusted 
data, performing twice as well. However, the adjusted dataset only correctly categorized 38% of fokontany into 
ranked quantiles, illustrating the difficulty in matching incidence data to prevalence data. While we accounted 
for the non-linear relationship between malaria incidence and prevalence in our evaluation of ZERO-G, we did 
not account for age-specific differences in symptomatic rates between children and  juveniles35, which may have 
further skewed this comparison. Further, we only had access to one study of malaria prevalence at a spatial-scale 
finer than 5 × 5 km. Therefore, we were only able to assess our method’s ability to reproduce spatial patterns 
in malaria burden, and not temporal patterns. However, our model results agree with national-level trends in 
malaria, which witnessed over a 40% increase in confirmed malaria cases in  202036, suggesting we are capturing 
temporal trends as well.

Unlike other methods, which rely on external datasets describing sampling intensity that are collected at 
coarse spatial resolutions and infrequently (e.g. DHS, MICS, or other survey data), ZERO-G uses data that match 
the spatial and temporal resolution of the case notification data. This allows it to retain the original spatial and 
temporal scales at which the data was collected while relying solely on public health and demographic data that 
is easily accessible to public health actors. Population data can be sourced at fine-scale administrative levels via 
national census data or via open-source datasets such as  PopGrid37. As with all estimates of population-level 
indicators, the lack of high-quality population estimates (the “denominator problem”38) is an obstacle to estimat-
ing incidence rates and may lead to biased estimates. Information on PHC locations and services are collected by 
Ministries of Health or available via regional, open-source datasets (e.g.39). These data may not always be available 
on a monthly basis, particularly staffing data. In these cases, annual or static data may be substituted for monthly 
data, as demonstrated in the Madagascar case study. In the context of health interventions, however, the ability 
to track monthly changes to policies or health infrastructure due to an external intervention is a benefit of the 
ZERO-G estimator over existing methods. We used a field-verified transport network created via OpenStreet-
Map to estimate the distance between a population and a PHC, which accurately represents patients’ distance to 
 PHCs24; however, these transportation networks are not globally available. When transportation networks are 
not available, open-source databases of populations’ distances to PHCs and other services could serve as suitable 
substitutes (e.g.40,41). Finally, consultation rates are commonly tracked by health systems and are increasingly 
recorded via electronic health management information  systems42,43, facilitating their use in these estimates.

ZERO-G differs from existing adjustment methods in several ways. First, it uses monthly estimates of sam-
pling intensity in the estimation step rather than data from annual or inter-annual population surveys. Most 
adjustment methods do not account for changes in healthcare seeking behavior due to seasonality or temporal 
shifts to the health system (e.g. climate-driven changes in access, changes in PHC staffing rates, clinic-level 
interventions), and are therefore limited to inference at an annual  frequency44. This functionality of the ZERO-
G method is particularly beneficial in the context of partial health system interventions, such as the adoption of 
new policies or technologies. Second, the resulting dataset is available at the same spatial scale at which it is col-
lected, rather than spatially interpolated between points or aggregated to coarser resolutions. We build on work 
by Hyde et al.16, which proposed a similar indirect estimation adjustment method for malaria data that featured 
a monthly frequency at the scale of the community, but dealt with extreme low incidence values by spatially 
smoothing estimates between neighboring communities, introducing spatial structure into the adjusted dataset 
and removing existing natural variation. Because ZERO-G estimates are available at the community level at a 
monthly frequency, they can be used to inform community health programs and spatially targeted interventions 
at the village level in real-time, capabilities that are lacking in other adjustment methods. In addition, ZERO-G 
explicitly models the sampling intensity as a function of geographic and health-system characteristics in all the 
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facilities surrounding a community via a gravity model instead of using information from the closest facility in 
a linear model, as in Hyde et al.16. Because of this, changes in the health system, such as the closing of a facility 
due to a natural disaster or a policy change, can be directly incorporated into calculations of sampling intensity in 
near real-time. It also allows for estimation of sampling intensity in unsampled communities or months through 
these modeled processes, rather than relying on interpolation.

There are several limitations that should be taken into consideration when implementing ZERO-G. First, the 
adjustment of zero-incidence samples due to extremely low ascertainment introduces a further source of uncer-
tainty. However, the identification of which samples to impute is data-driven, and, as demonstrated when applied 
to both the simulated and field-derived datasets, replaces only a small fraction of the overall data. Secondly, the 
ZERO-G estimator does not include a step to disaggregate consultation rates to a finer spatial scale than that 
reported by the PHC, often a major limiting step to accessing disease incidence data at a fine spatial scale. In 
Ifanadiana, the standard reporting system aggregates consultations at the level of the health facility catchment. 
We manually digitized health registers to obtain community-level data, a time- and resource-intensive process. 
However, the increased availability of electronic systems at the level of primary and community health care 
represents an opportunity to apply this method directly and in real time to data at fine spatial scales. Finally, the 
ZERO-G method is not appropriate for all passive case notification datasets. It is best suited for routine passive 
surveillance of common, endemic diseases, which possess the historical datasets needed to impute low-incidence 
values. The ZERO-G method is inappropriate for adjusting case notifications of novel diseases because behavioral 
and health-system responses to a rapidly-evolving epidemic will violate the assumption that the relationship 
between healthcare access and sampling intensity of the disease is constant.

In conclusion, ZERO-G represents a promising new method for adjusting passive surveillance data of endemic 
diseases for under-ascertainment bias in regions with low and heterogeneous healthcare seeking rates, devel-
oped specifically for use at the community level. Unlike other methods, it is applicable in regions with ongoing 
heterogeneous public health interventions, allowing it to be used to adjust case notifications used in monitoring 
and evaluation efforts in addition to routine monitoring of diseases. This method can serve as part of a wider 
toolkit of statistical techniques used to improve targeted health system responses. In a case study in a rural health 
district in Madagascar, it was able to reduce geographic and financial bias in malaria incidence and the resulting 
dataset more closely approximated spatial trends in malaria prevalence. It is particularly suited to rural areas, 
where geographic isolation strongly influences healthcare  access40. As spatially-explicit health metrics become 
an increasingly important tool for precision public health interventions, there is an urgent need to obtain and 
use quality data sources at the community scale. Statistical methods such as ZERO-G can be an important tool 
to support the role of community health programs in the local targeting of interventions for disease control.

Data availability
All code and data needed to reproduce this study are available in a figshare repository (https:// doi. org/ 10. 6084/ 
m9. figsh are. 22154 492).
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