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Abstract: Practical optimization problems are often too complex to be formulated exactly. Knowing
multiple good alternatives can help decision-makers easily switch solutions when needed, such as
when faced with unforeseen constraints. A multimodal optimization task aims to find multiple global
optima as well as high-quality local optima of an optimization problem. Evolutionary algorithms
with niching techniques are commonly used for such problems, where a rough estimate of the optima
number is required to determine the population size. In this paper, a partition-based random search
method is proposed, in which the entire feasible domain is partitioned into smaller and smaller
subregions iteratively. Promising regions are partitioned faster than unpromising regions, thus,
promising areas will be exploited earlier than unpromising areas. All promising areas are exploited
in parallel, which allows multiple good solutions to be found in a single run. The proposed method
does not require prior knowledge about the optima number and it is not sensitive to the distance
parameter. By cooperating with local search to refine the obtained solutions, the proposed method
demonstrates good performance in many benchmark functions with multiple global optima. In
addition, in problems with numerous local optima, high-quality local optima are captured earlier
than low-quality local optima.

Keywords: multimodal optimization; multiple optima; partition-based random search; niching

MSC: 90B40; 90-08

1. Introduction

Most optimization algorithms can only provide one of the optimal solutions when it is
applied, even if more than one optimal solution may exist. Nevertheless, in some situations,
finding multiple optimal solutions is desired, for example the following:

• The global optimal solution is not always implementable in real-world problems, due
to some unforeseen physical, financial, or political constraints, such as the availability
of some critical resources in the future and the dynamic environment in path-planning
problems. Knowing multiple good alternatives is helpful for decision-makers to
switch the solutions quickly when needed. For instance, if a machine fails during
production and its repair is time-consuming, the decision-maker can quickly change
the production plans without using the machine during that time.

• It is common in practice that some issues are difficult to formulate into the objective
function or to evaluate exactly, such as the sensitivity of the selected machine parame-
ters, the maintenance policy, and the preferences of decision-makers. In this situation,
having a set of different and good alternatives in advance is often desired for further
analysis.
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• In some cases, it is critical to determine all highly valued areas (or all possibilities),
such as the contaminant source identification in the water distribution network [1].

• In surrogate-based optimization methods [2,3], the promising solution pointed out by
optimizing the constructed surrogate model is simulated iteratively. Finding multiple
promising solutions in one iteration allows the methods to take advantage of parallel
computing to run several time-consuming simulations simultaneously.

• Finding different locations of the peaks of the objective function in the search space
can indicate some structural knowledge of the optimized function and provide some
helpful insights into the properties of the studied system.

Multimodal optimization problem is concerned with locating multiple optima in one
single run [4]. The aim of this paper is to deal with multimodal optimization problems,
seeking multiple global optimal solutions and high-quality local optimal solutions (local
optimal solutions with good objective function values) of the given problem. The benefits
of applying multimodal optimization have been studied in many fields [5], such as seis-
mological problems [6], metabolic network modeling [7], job-shop scheduling [8], virtual
camera configuration problems [9], and feature selection [10].

In order to handle multimodal optimization tasks, classic optimization methods can
be applied in multiple runs hoping to find different optima. Nevertheless, the same
optimal solution may be obtained in different runs. If all m optimal solutions have the
same probability to be found, the expectation of the number of optimization runs required
to locate all optima is m(m−1)/(m − 1)!. This value is usually much larger in practice
since one of the optima may have higher probability to be discovered than others. To
avoid converging to the same solution, a common approach is that if one optimal solution
is determined, the fitness (i.e., the objective function values) in the observed region is
depressed in subsequent runs so that different optimal solutions can be found sequentially,
e.g., [11,12]. Still, at least the same number of optimization runs as the number of the
optimal solutions are required. In addition, if the fitness derating function and the distance
parameter that defines the neighbor range are not carefully selected, it may result in
elimination of other optima that have not been found, or spurious optima caused by the
modified objective function, although the occurrence of spurious optima can be reduced by
incorporating a local search method based on the original objective function, e.g., sequential
niching memetic algorithm (SNMA) [13]. Approaches without the determination of the
neighbor radius can also be found in the literature, but a lot of effort is spent in an additional
sampling of interior points, e.g., [14,15].

Evolutionary algorithms (EAs), e.g., genetic algorithm (GA) [16], particle swarm op-
timization (PSO) [17], and differential evolution (DE) [18], have the ability to preserve
multiple solutions during the optimization process. With the help of niching techniques,
they are capable of capturing multiple optima in a single run. Niching techniques were
originally developed to preserve the population diversity and reduce the impact of the
genetic shift. They are also used in multiobjective optimization problems to search for
the Pareto-optimal set, e.g., nondominated sorting GA II (NSGA-II) [19]. In multimodal
optimization problems, the use of niching techniques promotes population diversity, al-
lowing multiple optima to be found and maintained. Among the niching techniques in
the literature, the clearing procedure [20] eliminates neighbors before the selection until
only a few dominating individuals remain in the clearing radius. Singh and Deb [21]
reallocate the cleared individuals outside the clearing radius, hoping to find other areas of
interest. Fitness sharing methods [22–24] depress the fitness of densely located individuals
according to the population density within the sharing radius. Clustering algorithms, e.g.,
k-means method [25], can be used in fitness sharing methods for the formation of niches
to reduce the computational cost and avoid the determination of sharing radius, e.g., [26].
In crowding approaches [27,28], the new generated individual replaces the most similar
individual to maintain the initial diversity, if better fitness is observed. In restricted tourna-
ment selection [29], the new generated individuals compete with the nearest individuals in
a subpopulation randomly sampled from the population. In species conservation [30,31],
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the species seeds dominating other individuals in the same species are conserved into
the next generation and updated iteratively. Li [32] designed a ring topology [33] on the
particle swarm and used the lbest PSO to create small niches without niching parameters. A
detailed survey on some basic niching techniques in multimodal optimization can be found
in [34]. In addition, several niching mutation operator strategies for DE have been proposed
for multimodal optimization problems recently. For example, local-binary-pattern-based
adaptive DE (LBPADE) [35] uses the local binary pattern operator to identify multiple
regions of interests; distributed individuals DE (DIDE) [36] constructs a virtual population
for each individual so that each individual can search for its own optima; automatic niching
DE (ANDE) [37] locates multiple peaks based on the affinity propagation clustering.

In the aforementioned niching techniques, the entire population evolves together and
genetic operators are designed to preserve the population diversity. In contrast, some nich-
ing algorithms divide the entire population into parallel subpopulations, including forking
GA [38], multinational GA [39], multipopulation GA [40], NichePSO [41], speciation-based
PSO (SPSO) [42], swarms [43,44], culture algorithm with fuzzing cluster [45],
LAM-ACO [46], and dual-strategy DE (DSDE) [47]. Each subpopulation evolves inde-
pendently, searching for its own optimum. Different from classic EAs with multiple runs,
subpopulations will be merged, split, interchanged, or reformed during the search process
according to the positions of the individuals in the entire population. As a consequence,
repeated convergence and inefficiency search are avoided.

Most existing niching techniques are sensitive to the selected parameters, which
are usually application-dependent and may be heterogeneous in the search space, such
as the radius parameters in clearing and fitness sharing, the species distance in species
conservation, the window size in restricted tournament selection, and the number of seeds
in clustering algorithms. Adaptive methods are studied to make the algorithms more robust
to the distance parameters or to let the parameters vary in the search space, e.g., [48–50].
Some approaches are developed to detect whether two individuals belong to the same
peak without the use of distance parameters, such as the hill–valley function [39] and the
recursive middling [51]. Nevertheless, a great amount of additional fitness evaluations are
required, significantly reducing the efficiency of the algorithm. The formation of the niches
is still a challenge in the multimodal optimization community.

Recently, some researchers solved the multimodal optimization problem by converting
it into a multiobjective optimization problem, named multiobjectivization [52]. For instance,
biobjective multipopulation genetic algorithm (BMPGA) [53,54] uses the average absolute
value of the gradient as another ranking criterion, in addition to the original objective
function, for elitism and selection in the GA framework, thus providing a chance for
survival for local optima. Deb and Saha [55,56] created a second objective function (e.g.,
the norm of the gradient or the number of better neighboring solutions) so that all optima
are located in the weak Pareto-optimal set. Then, the modified NSGA-II algorithm [19],
developed for multiobjective optimization problems, was applied to find all the optima in a
single run. Diversity indicators, such as the distance from other individuals and the density
of niches, are also considered as the second objective function to maintain the population
diversity (similar to the niching techniques), e.g., [57,58]. Conflicting objective functions
were also designed to increase the efficiency of the applied multiobjective optimization
algorithm, e.g., multiobjective optimization for multimodal optimization (MOMMOP) [59]
and triobjective differential evolution for multimodal optimization (TriDEMO) [60].

All the multimodal optimization methods mentioned above are developed under the
framework of EAs, in which the population size should be determined based on the number
of desired optima. However, the number of optima is usually unknown before executing
the algorithm, although in some cases it can be estimated from prior knowledge about the
system. Saving the obtained optima in an archive and reinitializing the individuals can
extend the optimal solution set, but it may cause the population to converge to the previous
found solutions.
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Moreover, when dealing with the local optima, the existing multimodal optimization
methods may fall into the following situations:

• Can only find multiple global optimal solutions (e.g., MOMMOP [59] and
TriDEMO [60]), i.e., the local optimal solutions cannot be found.

• Assume that the global optimal solutions and local optimal solutions with different
objective function values have the same importance (e.g., [55,56]).

• Prefer local optimal solutions in sparse areas to local optimal solutions with good
objective function values (e.g., EAs with niching).

• Prior knowledge to determine the threshold (or tolerance) of the objective function
value to decide whether to save a solution or not.

Therefore, when the computational time is limited, these methods cannot meet the
demand of searching only the global optimal solutions and high-quality local optimal
solutions (i.e., local optimal solutions with good objective function values) without prior
knowledge.

A completely different approach, which requires no prior knowledge about number
of optima in the studied problem, is proposed in this paper. In the proposed method, the
feasible domain is partitioned into smaller and smaller subregions iteratively. At each
iteration, solutions from different subregions are sampled and evaluated. Based on the
observed information, different regions are partitioned at different rates. By controlling the
partition rates of different regions, promising areas are exploited and reach the smallest size
(e.g., singleton regions in discrete cases or regions with acceptable precision in continuous
cases) earlier than nonpromising areas. Multiple promising areas can be partitioned in
parallel, allowing multiple optimal solutions to be found in a single run. If the available
budget size (the budget size indicates the number of evaluations of the objective function)
is unlimited, all areas of the feasible domain will eventually be partitioned into subregions
of the smallest size, i.e., all optima (both global and local) will be discovered eventually.

Partition-based random search methods, such as nested partition (NP) [61],
COMPASS [62] and adaptive hyperbox algorithm [63], are efficient in optimization prob-
lems with large search space, i.e., the feasible range of the decision variable is large com-
pared to its desired precision. The entire domain is partitioned into subregions, based on
previous observations, trying to guide the search towards a promising region. However,
in most partition-based methods, only the most promising region can be identified and
stored; thus, only one optimal solution can be found. The probabilistic branch and bound
(PBnB) [64,65] is developed to locate a subset of feasible solutions whose objective function
values reach the given quantile level. Different from our approach, the partition rates are
homogeneous in the search space in the PBnB. All regions are partitioned at the same
rate until they are pruned (statistically, no solutions in this region belong to the subset
of interest) or maintained (statistically, all solutions in this region belong to the desired
subset). The PBnB method may also be extended to find multiple global optimal solutions
by setting an extremely small quantile level. However, this will result in a large budget
spent on estimating quantiles.

The classification of related works and the difference compared to the proposed
algorithm are summarized in Table 1. A previous version of the proposed algorithm was
presented in a conference paper [66], which mainly focused on searching for the global
optimal solution under the interference of a large number of local optimal solutions. The
algorithm is extended in this paper to find and store multiple global optimal solutions
as well as high-quality local optimal solutions, including a scheme to extract the optimal
solutions and a local search to refine the extracted optimal solutions during the optimization
process. The research contributions of this paper are summarized below:

• Estimating the number of optima is not needed before performing the proposed
method (which is required in all EA-based multimodal optimization methods). All
optimal solutions (both global optimal solutions and local optimal solutions) will be
discovered subsequently as the algorithm proceeds.
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• Given a computational time, global optimal solutions and high-quality local opti-
mal solutions are captured with higher probabilities than low-quality local optimal
solutions, and no prior knowledge about the objective function is needed. Current
multimodal optimization methods either cannot find local optimal solutions or treat
all optimal solutions as equally important.

• The proposed method can also handle the cases in which the optimal solutions are
regions rather than single points, i.e., there exists a region in the feasible domain where
all solutions are optimal. The density of the solutions in the region depends on the
user-defined precision level. This is new compared to all multimodal optimization
methods.

The proposed method is tested in benchmark functions. The numerical results show
that the proposed method works as expected and demonstrates good performance com-
pared to other state-of-the-art multimodal optimization methods in the literature.

Table 1. Classification of selected related works.

Related Works Algorithm Framework Multimodal Optimization Single Run

[12] Sequential runs with tricks X
[14] Sequential runs with tricks X
[15] Sequential runs with tricks X
LBPADE [35] EA with niching X X
DIDE [36] EA with niching X X
ANDE [37] EA with niching X X
SPSO [42] EA with subpopulations X X
LAM-ACO [46] EA with subpopulations X X
DSDE [47] EA with subpopulations X X
[55,56] Multiobjectivization (EA) X X
BMPGA [53,54] Multiobjectivization (EA) X X
MOMMOP [59] Multiobjectivization (EA) X X
NP [61] Partition-based random search X
PBnB [65] Partition-based random search X
The proposed method Partition-based random search X X

This paper is organized as follows. Section 2 describes the proposed method in
detail. Section 3 combines the proposed method with a local search method to improve
the efficiency of the algorithm. Numerical results on benchmark functions are discussed
in Section 4. An engineering case showing the application of the proposed method is
presented in Section 5. Finally, conclusions and future developments are presented in
Section 6.

2. Proposed Method

Without loss of generality, a minimization problem is considered: minx f (x). The
objective function is deterministic and the feasible domain is denoted as D, where D ⊂ Rd.

In the proposed method, the entire feasible domain D is iteratively partitioned into
subregions Dk such that ∪kDk = D and ∩kDk = ∅. Each subregion contains a set of
feasible solutions. In most partition-based optimization methods, the extreme value, the
mean, or the quantile of the sampled values, i.e., the objective function values of sampled
solutions, are commonly used to rank the regions. Compared to the extreme value, the
quantile contains more global information about the region so that the influence of outliers
can be mitigated. Compared to the mean, the quantile focuses more on the good part of
solutions in this region, rather than the overall region. Therefore, the quantile is adopted
as the ranking criterion in this paper. The lower the estimated α-quantile, where α < 0.5,
the more promising the region. A promising region is further partitioned into smaller
subregions so that this region can be further exploited. Multiple promising regions can
be partitioned in parallel in order to obtain a set of optimal solutions. More specifically,
different partition rates are adopted for different regions, and promising regions would be
partitioned faster (exploited earlier) than nonpromising regions.
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In this paper, we define the partition rate of a region as the reciprocal of the number
of iterations required for this region to be further partitioned. The idea of controlling
the partition rates for different regions is realized with the help of a budget allocation
strategy [67], which is introduced for the sake of completeness in Section 2.1. The computa-
tional complexity of the proposed method is analyzed in Section 2.3. Section 2.2 describes
the proposed method in detail and a simple example is introduced in Section 2.4 to give
the reader a better understanding of the proposed method.

2.1. Budget Allocation for Quantile Minimization (BAQM)

The BAQM method [67] is proposed to allocate a budget of size N to K groups, i.e.,
sample N values from K groups, aiming to minimize the α-quantile of all the sampled values.
The budget is allocated to each group dynamically, based on the previous observations,
trying to let the sample size in group k be approximately proportional to its posterior
probability of being the best group, i.e., the group having the lowest α-quantile. This
budget allocation method is developed on the assumption that the values sampled from a
group are independently, identically, and normally distributed. Nevertheless, the numerical
results show that it also has good performance, even if the normality assumption is not
satisfied.

Assume that for any group k, n1,k values have been observed and the group sample
mean µ̂k and the group sample variance σ̂2

k are calculated based on the n1,k observations.
According to [67], at each sampling stage, a new budget of size ∆ should be allocated using
the following equations:

nk
nb̂

=
F(Ck,b̂; n1,k − 1, n1,b̂ − 1)

F(Cb̂,k; n1,b̂ − 1, n1,k − 1)
, ∀k 6= b̂, (1)

nb̂ =

(
∆ + ∑

∀k
n1,k

)
/

(
∑
∀k

F(Ck,b̂; n1,k − 1, n1,b̂ − 1)

F(Cb̂,k; n1,b̂ − 1, n1,k − 1)

)
, (2)

where nk denotes the total budget size allocated to group k, b̂ is the current best group
defined as b̂ = arg mink{µ̂k + zασ̂k}, zα is the α-quantile of the standard normal distri-
bution, τ̂ = mink{µ̂k + zασ̂k}, F(·; v1, v2) is the cumulative distribution function of the
F-distribution with degrees of freedom v1 and v2,

Ci,j =

1 + 1
ĉ2

j
− 1

n1,j

1 + 1
ĉ2

i
− 1

n1,i

, ∀i, j (3)

and ĉk = σ̂k
µ̂k−τ̂ , ∀k. Then, additional max(0, [nk] − n1,k) values should be sampled from

group k at this sampling stage, where [·] indicates that the value is rounded to the nearest
integer.

The BAQM method is easy to implement and it links the sample size to the ranking of
groups defined by quantiles. Therefore, it is selected as the budget allocation strategy in
the proposed method.

2.2. Partition-Based Random Search for Multimodal Optimization

Denote by Ds = {Ds
i } the set of stored regions in iteration s. By regarding a region Ds

i
as a group, the BAQM method can be applied to sample solutions from different regions
dynamically. Gradually, the sample sizes in different regions, denoted by ns

i , ∀i, will be
approximately proportional to their posterior probability of being the best region, i.e., the
region having the minimal α-quantile, based on the previous observations. If we set a
threshold nmax, the sample sizes in promising regions will achieve this threshold faster than
that in nonpromising regions because more samples are allocated. Therefore, we further



Mathematics 2023, 11, 17 7 of 30

partition a region when its sample size reaches the threshold. This makes the promising
regions have a higher partition rate than the nonpromising regions.

In the proposed method, the data observed in previous iterations are reused. This
allows the deviations caused by the sampling noise to be transmitted to subsequent itera-
tions. To mitigate the influence of the sampling noise, the BAQM formulas are modified.
Denote by ls

i the partition depth of a region Ds
i . In this paper, the partition depth of a region

refers to the minimum number of partition actions required to obtain this region, which is
often related to the size of the region. The smaller the region size, the larger the partition
depth. The adjusted sample size nadj

i is calculated based on the partition depth as follows:

nadj
i = max

(
2,

[
ls
i

maxj{ls
j }

ns
i

])
, ∀i, (4)

where ns
i is the number of observations in region Ds

i and [·] indicates that the value is
rounded to the nearest integer. This modification aims at forcing the method to also sample
from nonpromising but broad regions. As all regions shrink, i.e., all ls

i increase, and the
influence of Equation (4) will decrease. Then, according to the BAQM formulas, the weight
assigned to region Ds

i is calculated as follows:

wi =
F(Ci,b̂; nadj

i − 1, nadj
b̂
− 1)

F(Cb̂,i; nadj
b̂
− 1, nadj

i − 1)
=

1

1− F(Ci,b̂; nadj
i − 1, nadj

b̂
− 1)

− 1, ∀i, (5)

where

Ci,b̂ =
1 + z2

α − 1/nadj
b̂

1 +
(

µ̂i−τ̂
σ̂i

)2
− 1/nadj

i

, ∀i, (6)

b̂ is the current best region defined as b̂ = arg mink{µ̂k + zασ̂k}, zα is the α-quantile of the
standard normal distribution, and µ̂i and σ̂2

i are the sample mean and sample variance of the
objective function values of solutions sampled from region Ds

i , respectively. τ̂ = µ̂b̂ + zασ̂b̂,
F(·; v1, v2) is the cumulative distribution function of the F-distribution with degrees of
freedom v1 and v2. Given the new budget size ∆, the theoretical total budget sizes in each
region ni can be calculated as follows:

ni =

(
∆ + ∑

i
nadj

i

)
· wi

∑i wi
(7)

The proposed method is very straightforward and easy to implement. The flow chart is
as shown in Figure 1 and the main framework is presented in Algorithm 1. Four algorithm
parameters are required:

α The quantile level in the definition of the best region, 0 < α < 0.5;

n0 The base sample size, n0 ≥ 2;

nmax The sample size threshold to further partition a region, nmax > n0;

∆ The new budget size at each iteration.



Mathematics 2023, 11, 17 8 of 30

input α, n0, nmax, ∆

s = 1,Sopt = ∅, add D to L

traverse regions in L

remove the region from L

partition into new regions

traverse new regions

if partitionable? selected the best solution

dominated by neighbors?

do local search

add the final solution to Sopt

ns
i < n0?

sample n0 − ns
i solutions

traversal finished?

L is empty?

calculate ni, nadj
i using Equations (4)–(7)

traverse regions need sampling

sample ni − nadj
i solutions

ns
i > nmax? add this region to L

all sampling finished?

s = s + 1

meet stopping condition?

return Sopt

Y

Y

Y

Y

N

Y

Y

N

N

N

YN

N

Y

N

N

Algorithm 2

Algorithm 3

Algorithm 4

Figure 1. The flow chart of the proposed algorithm (Algorithm 1).
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Algorithm 1 PAR- MMO.
Input: α, n0, nmax, ∆,P(·),S(·, ·), U(·), Cstop

Output: X,Sopt

1: s← 1
2: Ds ← {Ds

1 = D}, ns
1 ← 0

3: L← {1}
4: while ¬Cstop do
5: Partitioning (Algorithm 2)
6: if Inew = 1 then
7: Updating Sopt (Algorithm 3)
8: Inew ← 0
9: end if

10: Budget Allocation (Algorithm 4)
11: s← s + 1
12: end while

Algorithm 2 Partitioning.

1: for i ∈ L do
2: Dnew ← P(Ds

i )
3: Ds ← Ds \ {Ds

i } ∪D
new

4: for j : Ds
j ∈ Dnew do

5: update ns
j , ls

j
6: if ns

j ≥ nmax & ¬ID∗ (Ds
j ) then

7: L← L∪ {j}
8: else
9: if ns

j < n0 then
10: X← X∪ S(n0 − ns

j ,D
s
j )

11: end if
12: update µ̂j, σ̂2

j
13: if ¬ID∗ (Ds

j ) then

14: nadj
j ← Equation (4)

15: wj ← Equation (5)
16: else
17: nadj

j ← 0
18: wj ← 0
19: Xopt ← Xopt ∪ {xk : xk ∈ Ds

j }
20: Inew

k ← 1
21: end if
22: end if
23: end for
24: end for
25: L← ∅

Algorithm 3 Extracting.

1: i← min{j : Iopt
j = 1}

2: while i 6= ∅ do
3: Iopt

j ← 0, ∀j ∈ {k : xk ∈ U(xi) ∩Xopt; f (xk) > f (xi)}
4: if f (xi) > minj∈{k:xk∈U(xi)∩Xopt} f (xj) then

5: Iopt
i ← 0

6: end if
7: i← min{j : j > i; Iopt

j = 1}
8: end while
9: Sopt ← {xi : Iopt

i = 1}
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Algorithm 4 Budget allocation.

1: Nadj ← ∆ + ∑i nadj
i

2: w = ∑i wi
3: ni ← Nadj · wi/w, ∀i
4: for i : [ni − nadj

i ] > 0 do

5: X← X∪ S([ni − nadj
i ],Ds

i )
6: update ns

i
7: if ns

i ≥ nmax then
8: L← L∪ {i}
9: else

10: update µ̂i, σ̂2
i

11: nadj
i ← Equation (4)

12: wi ← Equation (5)
13: end if
14: end for

P(region), S(sample size, region), U(solution), and Cstop are the user-defined par-
tition strategy, sampling strategy, neighborhood of the selected solution, and stopping
criteria, respectively. The output X is the set of all sampled solutions and Sopt is the set of
obtained optimal solutions. At the beginning of the algorithm, the set of the current regions
Ds and the partition list L is set as the entire feasible domainD. In the subsequent iterations,
partitioning all regions in the partition list using Algorithm 2 and allocating budget to each
region using Algorithm 4 are performed alternatively until the stopping criterion is met,
such as the available budget is exhausted, the desired number of optimal solutions are
obtained, or the number of obtained optimal solutions are not changed in several iterations.
After the partitioning phase, if new potential optimal solutions are generated, i.e., Inew = 1,
the set of optimal solutions Sopt are updated using Algorithm 3. This step can also be
executed only at the end of the whole algorithm to save the computational effort, if Sopt is
not related to the stopping criterion.

Algorithm 2 describes in detail the partitioning phase in Algorithm 1. D∗ denotes the
set of nonpartitionable regions and ID∗(·) is the indicator function. Every region in the
partition list L is partitioned into several new subregions. The new subregions are added
to the partition list if they are partitionable and their sample size ns

j is still larger than or
equal to the threshold nmax. Otherwise, new solutions are sampled so that the sample size
in this new subregion is not less than the base sample size n0. Then, the group sample
mean µ̂j and the group sample variance σ̂2

j are updated. The adjusted sample size nadj
j

is calculated using Equation (4) and the weight for the budget allocation wj is calculated
using Equation (5). After traversing the entire partition list L, L is set to an empty set.

Once a new nonpartitionable region is generated, the weight wj and the adjusted

sample size nadj
j are set to zero, since the solutions within this region are considered not

different; thus, it is not necessary to keep sampling from this region. If the current best
region Ds

b̂
is nonpartitionable, nadj

b̂
is saved for the calculation of Equation (5). All the

samples in the new generated nonpartitionable region are considered as potential optimal
solutions; thus, they are added into the set of optima candidates Xopt, and Inew is set to one
to send the signal to run Algorithm 3.

Remark 1. In Algorithm 2, if the maximal partition depth, i.e., maxi{ls
i }, in Equation (4) is

changed, the adjusted sample size nadj
i of all regions should be recalculated. Thus, all weights wi

also need to be recalculated.

Remark 2. In Algorithm 2, if the current optimal region, i.e., b̂, in Equation (5) is changed, all
weights wi should be recalculated.
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Algorithm 3 presents the detailed procedure to extract the set of the optimal solutions
Sopt from the set of potential optima Xopt. In the algorithm, Iopt

i = 1 indicates that solution
xi is not dominated by the neighboring solutions. The Iopt

i values are set to one for all
solutions newly added into Xopt. Starting from the first solution with Iopt

i = 1, the Iopt
j

values are set to zero for all the solutions xj in the neighborhood whose objective function
value is worse than the objective function value of the selected solution xi. If there exists
a better solution in the neighborhood, the Iopt

i value of the selected solution is also set to
zero. In optimization problems with continuous variables, a commonly used neighborhood
function is U(xi) = {x : ||x− xi||2 ≤ r} ∩ D, where ||x− xi||2 is the Euclidean distance
between x and xi. In this case, Algorithm 3 is not sensitive to the selection of r.

Algorithm 4 describes in detail how to allocate a new budget of size ∆ at each iteration.
The adjusted total budget size Nadj is calculated by summing the adjusted region sample
size nadj

i and ∆. The theoretical total budget size at each region ni is calculated using the

weight wi. Then, max(0, [ni − nadj
i ]) new solutions are sampled from region Ds

i , where [·]
indicates that the value is rounded into the nearest integer. Once the sample size in a region
reaches the threshold nmax, this region is added to the partition list L.

2.3. Computational Complexity

As the total budget size increases, the number of existing regions grows as well, which
will results in raised computational time in later iterations. The computational complexity
of the proposed method is investigated in this section to understand the extent to which
the total budget size affects the computational effort.

In Algorithm 2, the maximal length of the partition list is ∆ in each iteration; thus, the
time complexity of Algorithm 2 is O(∆) in each iteration. The number of total iterations
is less than N/∆, where N is the total budget size allocated. Thus, the time complexity of
Algorithm 2 is O(N) in the entire optimization process.

Similar to Algorithm 2, the time complexity of lines 5–13 in Algorithm 4 is O(∆) in
each iteration and O(N) in the entire optimization process, respectively. As for lines 1–4 in
Algorithm 4, the ni value should be calculated and compared to nadj

i for all existing regions
in each iteration. Thus, the time complexity is O(|Ds|) in iteration s. The number of existing
regions |Ds| is less than (h− 1)∆s, where h indicates the maximal number of subregions
that will be generated after a partition action. Therefore, the time complexity of lines 1–4
becomes O(∆s) in iteration s. In the entire optimization process, the time complexity is
O(∆ ∑N/∆

s=1 s) = O(N + N2/∆), i.e., it is increasing quadratically with respect to the total
budget size N.

Algorithm 3 is only executed when new potential optimal solutions appear. Since
the distance between every two solutions in the set of the potential optimal solutions
Xopt should be calculated to determine the neighboring solutions, the time complexity
of Algorithm 3 is O(|Xopt|2) in the entire optimization process. Usually, the number of
potential optima is much less than the total budget size.

Therefore, the overall time complexity of the proposed method with respect to the
total budget size is O(N2/∆) due to line 3 and line 4 in Algorithm 4.

2.4. An Illustrative Example

Minimizing the Himmelblau’s function is considered in this section as an illustrative
example for the reader to better understand the proposed method. This problem has four
global optimal solutions, and the objective function value varies from 0 to 2186 (the detailed
information can be found in the selected benchmark function F2 in Appendix A Figure A1).
The goal of this problem is to find and store all these four global optimal solutions.

The proposed method is applied with n0 = 4, α = 0.3, nmax = 10, and ∆ = 3. The
regions are evenly partitioned into half from the horizontal and vertical directions iteratively
until all edges of all regions are smaller than 0.05, which are considered as nonpartitionable
regions. Figure 2 presents the partition states on the entire feasible domain as the budget
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size N increases. The sampled solutions are shown by dots, where their colors represent
their objective function values. The darker the color, the lower the objective function value.

Figure 2. The partition states and the sampled solutions as the budget size N increases in the
Himmelblau function minimization problem.

It can be seen that as the budget size increases, regions containing good solutions are
partitioned at higher rates than other regions. The areas around the four global optimal
solutions are exploited in parallel and reach the smallest size earlier than other areas. The
sampling of solutions is guided by the proposed method. At the beginning of the algorithm,
solutions are sampled evenly among the entire domain. As the budget size increases, the
sampling probability of good solutions increases as well.

After about 3000 solutions are evaluated, Algorithm 3 is performed with
U(xi) = {x : ||x− xi||2 ≤ r} ∩ D, where r = 0.0938, i.e., twice the length of the shortest
edge of a nonpartitionable region. Four solutions are contained in Sopt and their objective
function values are all less than 6× 10−3. The distances from the four solutions to their
corresponding real optimal solutions are all less than 0.014. The same results can be ob-
tained with r varying from 0.042 to 3.9, which shows that Algorithm 3 is not sensitive to
the selection of the distance parameter r.

3. Cooperating with Local Search

The proposed partition-based random search method behaves conservatively. It can
maintain a global perspective, thereby reducing the probability of losing some optimal
solutions. It can be found in Section 2.4 that the proposed method detects the four promising
areas fast, but it takes a lot of effort to obtain a precise optimal solution in the detected
promising area. The search is always guided by the thought that there may be multiple local
optima in a region. Thus, it cannot focus on exploitation to improve the accuracy of the
obtained optimum in a detected promising area (also called detected peaks in maximization
problems), especially when the promising area is relatively flat, i.e., the difference between
the regions in the promising area is small.

In contrast, the local search method is efficient in locating the precise local optimal
solution if the starting point is located nearby. The main issue of adopting local search
in a multimodal optimization problem is the number and the locations of the starting
points. If the starting points are not located carefully, it may result in loss of optima
or waste of budget caused by multiple starting points within the same promising area,
whereas the set Sopt extracted from Algorithm 3 contains different good solutions from
different promising areas, which provides multiple good locations for the local search to
start from. Therefore, the proposed partition-based random search can be used to detect
promising areas, from which a local search is utilized to refine the solution in the set of
obtained optimal solutions Sopt to obtain more precise optimal solutions. A similar idea
appears in EMO-MMO [68], in which an algorithm is developed to detect peaks from
solutions sampled by multiobjectivization methods and a swarm-based method is used
within each peak.

Any new solution that appears in Sopt after executing Algorithm 3 is used as the
starting point in a local search method to obtain a more precise optimal solution with
higher accuracy. Algorithm 5 introduces a simple local search method for problems with
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continuous domain. The current solution iteratively moves to the best neighboring solution
with one step difference in one dimension. In the algorithm, ej is a d-dimensional vector
whose j-th element is one and the rest of the elements are all zero. The initial step δ is
set as the distance parameter r in Algorithm 3 and it is shrinking as the search proceeds.
The local search is repeated until the stopping criteria is met, such as when the step δ is
smaller than a threshold δ∗, the desired objective function value is obtained, or the budget
is exhausted. All the new sampled solutions are added into the set of optima candidates
Xopt with Iopt

i = 0, except the local optima whose Iopt
i is assigned to one. Algorithm 5 is an

example of how the accuracy of the obtained optima can be improved. Other optimization
algorithms with strong local search capacity can also be applied according to the features
of the studied problem.

Algorithm 5 Local search.
Input: xi ∈ Sopt, δ∗

Output: x∗i
1: x∗i ← xi
2: δ← r
3: Cstop

2 ← 0
4: while Cstop

2 = 0 do
5: x′ ← x∗i
6: for j = 1, · · · , d do
7: x∗i ← arg min{x∗i −δej ,x∗i ,x∗i +δej} f (x)
8: end for
9: if x′ = x∗i then

10: if δ < δ∗ then
11: Cstop

2 ← 1
12: end if
13: δ← δ/2
14: end if
15: end while
16: Sopt ← Sopt \ {xi} ∪ {x∗i }

4. Numerical Results

The proposed method is applied to minimization problems constructed by several
benchmark functions with different properties extracted from the well-known test problems
of the CEC’2013 competition for multimodal optimization [34,69]. Table 2 shows the
selected objective function, the dimension of the decision variable, the number of global
optima and local optima, the feasible domain, the objective function value range, and the
maximum budget size Max_Fes in different test problems. F1–F3 are simple examples with
multiple global optima. F4 is a volatile function with numerous local optima. The optimal
solutions in F5 are located in different topographies in the feasible domain. F6 contains
multiple global optimal solutions distributed in a grid. F7 is composited by different basic
functions such that the properties of different functions are mixed. F1–F7 contain multiple
global optima, while F8 and F9 have only one global optimum and multiple local optima of
different qualities. In F10, there are several regions in which all points are local optimal
solutions. The detailed information and the surface plots of the benchmark functions can
be found in Appendix A.
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Table 2. The parameters of the tested problems.

Func Dim No.g No.l Domain Value Range Radius Max_Fes

F1 1 5 0 [0, 1] [0, 1] 0.015 5× 104

F2 2 4 0 [−6, 6]2 [0, 2185.8] 0.1 5 × 104

F3 2 2 4 [−1.9, 1.9], [−1.1, 1.1] [−4.1265, 23.4] 0.1 5 × 104

F4(2D) 2 18 >700 [−10, 10]2 [−186.7309, 210.5] 0.01 2 × 105

F4(3D) 3 81 >2000 [−10, 10]3 [−2709.0935, 3053.7] 0.01 4 × 105

F5(2D) 2 36 0 [0.25, 10]2 [0, 2] 0.03 2 × 105

F5(3D) 3 216 0 [0.25, 10]3 [0, 2] 0.03 4 × 105

F6(3,4) 2 12 0 [0, 1]2 [2, 38] 0.01 2 × 105

F6(3,3,3) 3 27 0 [0, 1]3 [3, 57] 0.01 4 × 105

F6(2,··· ,2) 5 32 0 [0, 1]5 [5, 95] 0.02 4 × 105

F7(1-
2D) 2 6 >500 [−5, 5]2 [0, 2204.2] 0.01 2 × 105

F7(2-
2D) 2 8 >600 [−5, 5]2 [0, 2050.2] 0.01 2 × 105

F7(3-
2D) 2 6 >2000 [−5, 5]2 [0, 3701.5] 0.01 2 × 105

F7(3-
3D) 3 6 >2000 [−5, 5]3 [0, 4126.1] 0.01 4 × 105

F8 1 1 4 [0.02, 1] [0, 1] 0.01 5 × 105

F9(2D) 2 1 120 [−5.12, 5.12]2 [0, 80.7] 0.1 3 × 104

F9(3D) 3 1 1330 [−5.12, 5.12]3 [0, 121.1] 0.1 1 × 105

F10 2 1 4 a [−10, 10]2 [0.0097, 0.9975] - -
a The local optima are not single points.

In the following experiments, if the deviation from the objective function value of an
obtained optimal solution to the objective function value of a real optimal solution is below
ε (level of accuracy) and the distance between these two solutions is less than the radius in
Table 2 (level of precision), this real optimal solution is considered as being found. For the
proposed method, a solution is considered as an obtained optimal solution only when it is
stored in Sopt (]the datasets generated during and/or analyzed during the current study
are available from the corresponding author on reasonable request).

For the sake of simplicity, the proposed method, denoted as “PAR-MMO”, is applied
with α = 0.3, n0 = 4, nmax = 10, and ∆ = 3 for all the following experiments, unless
specifically stated. If a budget is allocated to a region, new solutions are sampled from
this region uniformly (the sampling strategy). If the partitioning condition is met, the
region is partitioned evenly into two subregions from the dimension with the largest range
(the partition strategy). The accuracy level of the obtained optima is controlled by the
acceptable precision of the obtained solution, i.e., the size of the nonpartitionable region.
Once a region reaches the smallest size, i.e., it is nonpartitionable, the proposed method
will stop sampling from this region and the accuracy of the obtained optima in this region
will not be further improved. The smaller the region that is considered nonpartitionable,
the more precise the solution obtained, and the larger the budget required. In the following
experiments, the size of a nonpartitionable region is defined specific to the problem in order
to met the required accuracy level ε (as shown in Appendix B). In practice, the size of the
nonpartitionable region can be defined according to the acceptable precision of the solution
obtained. The neighborhood function in Algorithm 3 for extracting optimal solutions from
the sample set is selected as U(xi) = {x : ||x− xi||2 ≤ r} ∩ D, where r is twice the length
of the shortest edge of a nonpartitionable region.

In the case that local search is adopted, denoted as “PARL-MMO”, the size of the
nonpartitionable region can be much larger (as shown in Appendix B), since both the
accuracy level of the obtained optima and the precision of the obtained solution can be
improved through the local search. In the following experiments, the step threshold δ∗ in
Algorithm 5 for local search is selected as the half length of the edge of the nonpartitionable
region defined when the PAR-MMO method is used without local search.

Section 4.1 presents how the selected parameters affect the proposed method. In
Section 4.2, the proposed method is applied to some problems with multiple global optima
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and compared with other approaches in the literature. Section 4.3 shows how the pro-
posed method performs in the problems with multiple local optima of different qualities.
Section 4.4 deals with problems that exist an region in which all solutions are optimal. The
computational time of the proposed method is analyzed in Section 4.5.

4.1. Effect of Algorithm Parameters

This section investigates how the algorithm parameters, i.e., the quantile level α, the
base sample size n0, the partition sample size threshold nmax, and the new budget size ∆,
affect the proposed method. In this section, “PARL-MMO” is applied and the accuracy
level ε is set as ]1E-4. The base sample size n0 is set to avoid the situation where too few
samples remain in a subregion after a partition action. Thus, the n0 is set as dnmax/3e,
where d·emeans that the value is rounded up to the nearest integer.

4.1.1. Main Effect Plot

Figure 3 shows the main effect plot and the table of analysis of variance (ANOVA) after
running a full factorial design in Problem F6(3,3,3) with three factors: α = {0.1, 0.2, 0.3, 0.4},
nmax = {6, 10, 15, 20}, and∆ = {3, 5, 10, 20}. A total of 500 independent replications are
executed and they are divided into 10 batches. The response is the average total budget
size, which is required to obtain all global optima, in a batch. The ANOVA is implemented
after the Box–Cox transformation so that the standardized residuals do not violate the
normality assumption (the p-value equals 0.376 in the Anderson–Darling test) and the equal
variance assumption (the p-value equals 0.983 in the Levene test). All the parameters and
interactions have significant effect on the proposed method with significant level 5%. The
influences of the nmax value and the ∆ value are much larger than that of the α value and the
interactions based on the F-values. Similar conclusions can be drawn in other problems (see
Appendix C), except for Problem F5, where the optima are located in different topographies
in the feasible domain, and Problem F7(2-2D). According to the Tukey pairwise comparison
with confidence level 95%, the optimal combinations of parameters for Problem F6(3,3,3) are
α = {0.2, 0.3, 0.4}, nmax = 10, and ∆ = 3.

Source DF F-Value P-Value

𝛼 3 66.37 0.000

𝑛𝑚𝑎𝑥 3 5999.95 0.000

Δ 3 1674.54 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 9 8.10 0.000

𝛼 ∗ Δ 9 7.90 0.000

𝑛𝑚𝑎𝑥 ∗ Δ 9 30.38 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 ∗ Δ 27 2.08 0.002

Error 576

Total 639

𝛼 𝑛𝑚𝑎𝑥 Δ

Figure 3. The main effect plot and the ANOVA table. A total of 500 replications are executed and
divided into 10 batches. The Box–Cox transformation is performed, and R2

adj = 98.67%.

Figure 4 shows the main effect plot and the ANOVA table for Problem F5(2D). Al-
though the normality hypothesis and the equal variance hypothesis are not met with
confidence level 95%, the F-test is robust since the experiments with all combinations are
performed with the same number of replications. Different from Problem F6(3,3,3), the
parameter α has the highest effect on the algorithm performance. According to the Tukey
pairwise comparison with confidence level 95%, the optimal combinations of the algorithm
parameters for Problem F5(2D) are α = 0.3, nmax = 10, and ∆ = 3.
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Source DF F-Value P-Value

𝛼 3 11598.64 0.000

𝑛𝑚𝑎𝑥 3 3677.19 0.000

Δ 3 47.75 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 9 1719.85 0.000

𝛼 ∗ Δ 9 605.19 0.000

𝑛𝑚𝑎𝑥 ∗ Δ 9 136.74 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 ∗ Δ 27 32.26 0.000

Error 576

Total 639

𝛼 𝑛𝑚𝑎𝑥 Δ

Figure 4. The main effect plot and the ANOVA table for Problem F5(2D). A total of 500 replications are
executed and divided into 10 batches. The Box–Cox transformation is performed, and R2

adj = 99.08%.

4.1.2. Effect of the Partition Sample Size Threshold Nmax

As the nmax value increases, the average total budget size required to obtain all optima
declines first and then rises. This is because when the nmax value is too small, the partition
action is executed based on biased information due to the small sample size. When the
nmax value is too large, the budget that could be used to exploit subregions with good
performance is wasted on exploring the current region. A similar phenomenon can be
observed in different problems, as shown in Figure 5, in which the budget size in the figure
is scaled according to the maximal average budget size in different problems, i.e., the values
in the legend.
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Figure 5. The scaled average budget size required to obtain all global optima in different problems
with varying nmax value. A total of 100 replications are executed.

4.1.3. Effect of the New Budget Size ∆

The results of the ANOVA in Figure 3 show that a small ∆ value is preferred in Problem
F6(3,3,3) in terms of the total budget size, because it allows more budgets to be allocated after
obtaining more information and generating more precise regions. Nevertheless, according
to the discussion in Section 2.3, a small ∆ value may increase the computational time of
the proposed method. In Figure 6, the average total budget sizes and the corresponding
computational times required to obtain all optima in Problem F6(3,3,3) with different ∆
values are presented. The confidence intervals with confidence level 95% are also plotted.
The experiments are executed in Matlab R2020a on a computer (Intel(R) Core(TM) i7-7700U
CPU @ 3.6 GHz and 16 GB of RAM).
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Figure 6. The average total budget size and the average computational time required to obtain all
optima in Problem F6(3,3,3). A total of 100 replications are executed.

In this problem, it is very fast to calculate the objective function. Thus, the compu-
tational time is mainly affected by the computational complexity of the algorithm, i.e.,
O(N2/∆), where N is the total budget size. This is why the total computational time in
Figure 6 decreases as the ∆ value increases. In practice, if the calculation of the objective
function is time-consuming, a small ∆ value can be used to save the expensive budget,
whereas if the calculation of the objective function is not critical, a relatively large ∆ value
can be used to reduce the computational time.

4.1.4. Effect of the Quantile Level α

The definition of promising regions is affected by the selected α value. A low α value
prefers regions with high variability; thus, the proposed method will focus more on explo-
ration to avoid the loss of some promising areas, whereas a high α value prefers regions with
a low sample mean, so that the detected promising area will be firstly exploited. Although
the effect of the α value is less significant than the other two parameters in Problem F6(3,3,3),
it has a great influence in Problem F5(2D), where some optimal solutions are located in flat
areas and others are located in steep areas. A low α value will make promising regions in
flat areas struggle to reach the smallest size due to their small variability; thus, the samples
in these regions are not considered as potential optimal solutions.

Figure 7 presents another influence of the α value in Problem F5(2D). In 100 replications,
the frequencies of the optimal solutions in different locations being captured within a
budget of size 8000 is represented by different colors and shapes. In the studied case, the
size of nonpartitionable regions are the same among the whole domain. A promising region
in flat areas (i.e., large x1 and x2 values) has a small sample mean, while a promising region
of the same size in steep areas (i.e., small x1 and x2 values) has a large sample variance.
When the α value is high (α = 0.3), promising regions in flat areas will be partitioned
earlier, and the global optimal solutions located in these areas can be found with a higher
frequency (larger than 0.8). When the α value is reduced to a lower value (e.g., 0.1 or 0.2),
the influence of the sample variance rises. Therefore, the frequency of finding the optimal
solutions in flat areas decreases, whereas the frequency of finding the optimal solutions in
steep areas increases.
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Figure 7. The frequencies of capturing different optimal solutions among 100 replications with
varying α in Problem F5(2D). The budget size is 8000. As the α value increases, the frequency
of finding optima in steep areas is reduced while the frequency of finding optima in flat areas is
increased.

4.2. Comparison with Other Methods on Multiple Global Optima

The functions F1–F7, which have multiple global optima, are considered in this section.
The proposed method is compared with other multimodal optimization methods developed
from different mechanisms: multiobjectivization, subpopulations, differential evolution
with niching mutation operator, and two-phase method. In addition, they all have good
performance in the selected benchmark functions.

MOMMOP [59] transfers the multimodal optimization problem to a multiobjective opti-
mization problem with 2d conflicting objective functions so that all optima are located
in the Pareto front. Then, differential evolution combined with modified nondom-
inated sorting [19] is used to solve the multiobjective optimization problem. The
MOMMOP method belongs to the category of multiobjectivization and it is superior
to ten state-of-the-art multimodal optimization algorithms in 20 benchmark functions.

LAMS-ACO [46] divides the entire population into subpopulations that evolve separately
through a modified ant colony optimization algorithm ACOR [70]. Random cluster
size is adopted. A local search scheme is applied to refine the obtained solution at
each iteration. The LAMS-ACO method belongs to the category of population-based
niching using subpopulations and demonstrates good performance with respect to
the required total number of evaluations compared to the other twelve multimodal
optimization algorithms.

DIDE [36] constructs a virtual population for each individual so that each individual can
track its own peak. The DIDE method belongs to the category of population-based
method using niching mutation operator, and it has good performance compared to
the other 13 methods in the benchmark functions.

EMO-MMO [68] develops an algorithm to detect the peaks from solutions sampled by a
multiobjectivization method. Then, the competitive swarm optimizer (CSO) [71] is
applied within each peak to refine the obtained optima. The idea of the EMO-MMO
method is very similar to the proposed method; thus, it is also applied for comparison
purposes.

These methods are applied with parameters suggested by the authors.
Three criteria are adopted for the assessment of the applied algorithms [69]. The first

one is the peak ratio (PR), which measures the average percentage of the found global
optima. The second one is the success rate (SR), which is the percentage of runs that find
all the global optima. The third one is the convergence speed (CS), which is the average
budget size, i.e., the average number of evaluations of the objective function, required to
find all the global optima. If not all global optima are found when the budget is exhausted,
the maximum budget size Max_Fes is used in the calculation.

The results of the applied algorithms are presented in Table 3 with the accuracy level
ε varying from 1 × 10−1 to 1 × 10−4. The winners are highlighted in bold and marked
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with dark background color (determined through the Wilcoxon rank sum test with p-
value smaller than 0.0125 for the PR and p-value smaller than 0.0167 for the CS). All the
experiments are repeated 100 times independently. It should be noticed that the EMO-MMO
method uses all the available budget; thus, the CS column is not presented.

Table 3. Comparisons (from top to bottom: ε = 1 × 10−1 , 1 × 10−2, 1 × 10−3, and 1 × 10−4).

PAR-MMO PARL-MMO MOMMOP LAMS-ACO DIDE 1 EMO-MMO
Func PR SR CS PR SR CS PR SR CS PR SR CS PR SR PR SR

F1 1.00 1.00 1.6 × 102 1.00 1.00 1.3 × 102 1.00 1.00 1.4 × 102 1.00 1.00 1.4 × 102 - - 1.00 1.00

1.00 1.00 2.8 × 102 1.00 1.00 1.4 × 102 1.00 1.00 4.2 × 102 1.00 1.00 2.9 × 102 - - 1.00 1.00

1.00 1.00 3.7 × 102 1.00 1.00 1.6 × 102 1.00 1.00 1.2 × 103 1.00 1.00 4.8 × 102 1.00 1.00 1.00 1.00

1.00 1.00 5.5 × 102 1.00 1.00 1.9 × 102 1.00 1.00 3.3 × 103 1.00 1.00 7.6 × 102 1.00 1.00 1.00 1.00

F2 1.00 1.00 2.4 × 103 1.00 1.00 7.0 × 102 1.00 1.00 2.1 × 102 1.00 1.00 1.2 × 103 - - 1.00 1.00

1.00 1.00 3.7 × 103 1.00 1.00 7.6 × 102 1.00 1.00 3.2 × 102 1.00 1.00 2.0 × 103 - - 1.00 1.00

1.00 1.00 7.1 × 103 1.00 1.00 8.0 × 102 1.00 0.99 3.5 × 102 1.00 1.00 2.9 × 103 1.00 1.00 1.00 1.00

1.00 1.00 1.2 × 102 1.00 1.00 8.5 × 102 0.99 0.97 3.7 × 102 1.00 1.00 4.0 × 103 1.00 1.00 1.00 1.00

F3 1.00 1.00 3.4 × 102 1.00 1.00 2.0 × 102 1.00 1.00 1.2 × 103 1.00 1.00 3.6 × 102 - - 1.00 1.00

1.00 1.00 7.5 × 102 1.00 1.00 2.4 × 102 1.00 1.00 9.8 × 103 1.00 1.00 7.7 × 102 - - 1.00 1.00

1.00 1.00 1.2 × 103 1.00 1.00 2.5 × 102 1.00 1.00 1.5 × 102 1.00 1.00 1.4 × 103 1.00 1.00 1.00 1.00

1.00 1.00 2.1 × 103 1.00 1.00 2.9 × 102 1.00 1.00 1.8 × 102 1.00 1.00 1.9 × 103 1.00 1.00 1.00 1.00

F4(2D) 1.00 1.00 2.4 × 102 1.00 1.00 6.6 × 103 1.00 0.99 5.1 × 102 0.99 0.74 1.0 × 105 - - 1.00 1.00

1.00 1.00 3.4 × 102 1.00 1.00 7.1 × 103 0.97 0.95 5.9 × 102 0.98 0.67 1.3 × 105 - - 1.00 1.00

1.00 1.00 5.5 × 102 1.00 1.00 7.6 × 103 0.96 0.95 6.2 × 102 0.98 0.71 1.3 × 105 1.00 1.00 1.00 1.00

1.00 0.97 9.2 × 102 1.00 1.00 8.1 × 103 0.97 0.94 6.5 × 102 0.98 0.65 1.4 × 105 1.00 1.00 1.00 1.00
F4(3D) 0.55 0.00 4.0 × 105 1.00 0.98 2.1 × 105 0.98 0.94 2.3 × 105 0.77 0.00 4.0 × 105 - - 1.00 1.00

0.42 0.00 4.0 × 105 1.00 0.94 2.4 × 105 0.99 0.97 2.5 × 105 0.75 0.00 4.0 × 105 - - 1.00 1.00
0.26 0.00 4.0 × 105 1.00 0.97 2.2 × 105 0.98 0.95 2.8 × 105 0.73 0.00 4.0 × 105 0.69 0.00 1.00 1.00
0.17 0.00 4.0 × 105 1.00 0.96 2.4 × 105 0.98 0.95 3.1 × 105 0.71 0.00 4.0 × 105 0.69 0.00 1.00 0.99

F5(2D) 1.00 0.97 3.7 × 102 1.00 1.00 1.3 × 102 1.00 1.00 4.7 × 102 0.79 0.00 2.0 × 105 - - 1.00 0.98

1.00 1.00 4.9 × 102 1.00 1.00 1.3 × 102 1.00 1.00 5.5 × 102 0.76 0.00 2.0 × 105 - - 1.00 0.98

1.00 0.89 1.1 × 105 1.00 1.00 1.4 × 102 1.00 1.00 6.4 × 102 0.69 0.00 2.0 × 105 0.92 0.04 1.00 0.97

1.00 0.87 1.4 × 105 1.00 1.00 1.4 × 102 1.00 1.00 7.7 × 102 0.64 0.00 2.0 × 105 0.92 0.04 1.00 0.96

F5(3D) 0.61 0.00 4.0 × 105 0.98 0.03 4.0 × 105 1.00 1.00 2.3 × 105 0.31 0.00 4.0 × 105 - - 0.88 0.00

0.46 0.00 4.0 × 105 0.98 0.01 4.0 × 105 1.00 1.00 2.4 × 105 0.31 0.00 4.0 × 105 - - 0.87 0.00

0.21 0.00 4.0 × 105 0.97 0.01 4.0 × 105 1.00 1.00 3.0 × 105 0.28 0.00 4.0 × 105 0.58 0.00 0.88 0.00
0.07 0.00 4.0 × 105 0.97 0.00 4.0 × 105 1.00 0.86 3.7 × 105 0.23 0.00 4.0 × 105 0.57 0.00 0.88 0.00

F6(3,4) 1.00 1.00 3.1 × 103 1.00 1.00 1.5 × 103 1.00 1.00 2.5 × 102 1.00 0.99 5.4 × 103 - - 1.00 1.00

1.00 1.00 6.0 × 103 1.00 1.00 1.6 × 103 1.00 1.00 3.9 × 102 1.00 0.98 1.0 × 102 - - 1.00 1.00

1.00 1.00 1.1 × 102 1.00 1.00 1.8 × 103 1.00 1.00 4.3 × 102 1.00 0.96 2.2 × 102 1.00 1.00 1.00 1.00

1.00 1.00 1.4 × 102 1.00 1.00 1.9 × 103 1.00 1.00 4.4 × 102 0.99 0.90 4.4 × 102 1.00 1.00 1.00 1.00

F6(3,3,3) 1.00 1.00 4.5 × 102 1.00 1.00 1.1 × 102 1.00 1.00 9.1 × 102 0.96 0.27 3.3 × 105 - - 1.00 1.00

1.00 0.99 1.5 × 105 1.00 1.00 1.1 × 102 1.00 1.00 1.1 × 105 0.92 0.06 3.9 × 105 - - 1.00 1.00

0.99 0.83 2.9 × 105 1.00 1.00 1.1 × 102 1.00 1.00 1.1 × 105 0.85 0.00 4.0 × 105 - - 1.00 1.00

0.96 0.37 3.8 × 105 1.00 1.00 1.2 × 102 1.00 1.00 1.1 × 105 0.78 0.00 4.0 × 105 - - 1.00 1.00

F6(2,··· ,2) 0.48 0.00 4.0 × 105 1.00 1.00 4.5 × 102 1.00 1.00 1.3 × 105 0.92 0.05 3.9 × 105 - - 1.00 1.00

0.03 0.00 4.0 × 105 1.00 1.00 4.5 × 102 1.00 1.00 1.6 × 105 0.83 0.00 4.0 × 105 - - 1.00 1.00

0.02 0.00 4.0 × 105 1.00 1.00 4.7 × 102 1.00 1.00 1.6 × 105 0.71 0.00 4.0 × 105 - - 1.00 1.00

0.02 0.00 4.0 × 105 1.00 1.00 4.8 × 102 1.00 1.00 1.7 × 105 0.65 0.00 4.0 × 105 - - 1.00 1.00

F7(1-2D) 0.57 0.00 2.0 × 105 1.00 1.00 2.8 × 103 1.00 0.98 1.0 × 105 0.99 0.94 9.1 × 102 - - 1.00 1.00

0.42 0.00 2.0 × 105 1.00 1.00 2.9 × 103 0.99 0.91 1.2 × 105 0.98 0.85 1.3 × 105 - - 1.00 1.00

0.33 0.00 2.0 × 105 1.00 1.00 3.0 × 103 0.94 0.69 1.7 × 105 0.95 0.67 1.6 × 105 1.00 1.00 1.00 1.00

0.32 0.00 2.0 × 105 1.00 1.00 3.0 × 103 0.72 0.03 2.0 × 105 0.92 0.53 1.7 × 105 1.00 1.00 1.00 1.00

F7(2-2D) 0.60 0.00 2.0 × 105 1.00 1.00 1.4 × 102 0.98 0.86 1.3 × 105 0.97 0.77 9.1 × 102 - - 1.00 1.00

0.31 0.00 2.0 × 105 1.00 1.00 1.6 × 102 0.98 0.84 1.5 × 105 0.95 0.56 1.3 × 105 - - 1.00 1.00

0.25 0.00 2.0 × 105 1.00 1.00 1.7 × 102 0.96 0.66 1.7 × 105 0.96 0.70 1.2 × 105 1.00 1.00 1.00 1.00

0.20 0.00 2.0 × 105 1.00 1.00 1.9 × 102 0.93 0.52 1.9 × 105 0.96 0.67 1.3 × 105 1.00 1.00 1.00 1.00
F7(3-2D) 0.44 0.00 2.0 × 105 0.96 0.77 1.4 × 102 0.96 0.73 1.4 × 105 0.71 0.00 2.0 × 105 - - 0.99 0.95

0.25 0.00 2.0 × 105 0.94 0.65 1.6 × 102 0.91 0.47 1.8 × 105 0.69 0.00 2.0 × 105 - - 1.00 0.97
0.21 0.00 2.0 × 105 0.92 0.56 1.7 × 102 0.65 0.00 2.0 × 105 0.67 0.00 2.0 × 105 0.99 0.92 0.99 0.95
0.20 0.00 2.0 × 105 0.92 0.57 1.9 × 102 0.65 0.00 2.0 × 105 0.67 0.00 2.0 × 105 0.99 0.92 0.99 0.94

F7(3-3D) 0.27 0.00 4.0 × 105 0.68 0.01 4.0 × 105 0.80 0.00 4.0 × 105 0.67 0.00 4.0 × 105 - - 0.75 0.03
0.26 0.00 4.0 × 105 0.68 0.00 4.0 × 105 0.73 0.00 4.0 × 105 0.67 0.00 4.0 × 105 - - 0.73 0.03
0.30 0.00 4.0 × 105 0.67 0.00 4.0 × 105 0.67 0.00 4.0 × 105 0.67 0.00 4.0 × 105 0.78 0.04 0.74 0.02
0.28 0.00 4.0 × 105 0.68 0.00 4.0 × 105 0.67 0.00 4.0 × 105 0.67 0.00 4.0 × 105 0.77 0.02 0.74 0.03

1 The data of DIDE are from [36]. “-” means these data are not presented in the paper.

As discussed in Section 3, if the PAR-MMO method is used alone, as the ε value
decreases, the average number of evaluations required to find all the optima increases a
lot, or the percentage of global optima found reduces rapidly. However, if the PAR-MMO
method is applied to detect the promising areas and local search is applied to improve the
accuracy level of the obtained optima, i.e., the PARL-MMO method, the evaluation budget
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can be saved significantly, especially when the ε value is small. When the PARL-MMO
method is applied, the number of evaluations used in the PAR-MMO method is not much
different, regardless of the ε value, because the definition of the nonpartitionable region is
the same. The required total budget size differs depending on the budget required in the
local search stage, which is less affected by the ε value compared to the PAR-MMO method.

In most cases, the PARL-MMO method behaves better than the three state-of-the-art
methods, except for problems F4(3D), F5(3D), F7(3-2D), and F7(3-3D). In Problem F5(3D),
the MOMMOP method has the best performance. Although the PARL-MMO method does
not have good performance in this problem according to the criterion SR, the PR is still
high (not less than 0.97 for all ε values). For the LAMS-ACO method, a large ant size is
required to generate sufficient subpopulations, especially when the number of optima is
high. For example, poor performance is observed for Problem F5(3D), because an ant size
of 300 is too small for 216 optima. However, a too-large ant size may result in waste of
budget. Prior knowledge about the number of optima is important for methods that divide
the whole population into subpopulations, whereas this knowledge is not needed in the
proposed method.

In Problem F4(3D), the criterion SR of the PARL-MMO method is not as good as that
of the EMO-MMO method, but almost all the global optima are discovered (the PR values
are all close to one). In addition, a lot of local optima are also contained in the Sopt in the
PARL-MMO method. In problems F7(3-2D) and F7(3-3D), there are numerous local optima
that are very close to one of the global optima. For example, in Problem F7(3-2D), the
distance between a global optimum and one of the local optima with objective function
value 0.5761 is 3 × 10−6. In this case, if the size of the nonpartitionable region is not small
enough to separate these optimal solutions, Algorithm 5 may be stuck in one of the local
optima, i.e., the results of PARL-MMO. However, if the size of the nonpartitionable region
is small enough, the maximum budget size is not sufficient to reach the corresponding
nonpartitionable region, i.e., the results of PAR-MMO. In the EMO-MMO method, the CSO
method, which has the ability to escape the local optima, is applied to locally search the
promising areas. Therefore, good performance is observed for the EMO-MMO method in
problems F7(3-2D) and F7(3-3D).

As for the composition functions with more than five dimensions in the CEC’2013
functions, the proposed method does not have good performance, although all multimodal
optimization methods hardly find all global optima in these functions within the given bud-
get. The proposed method has difficulty handling functions with large jumps everywhere.
In this case, an intelligent partitioning strategy developed from the system knowledge
would be required to make the function smoother.

In summary, the PARL-MMO method has good performance in most of the benchmark
functions for capturing multiple global optimal solutions.

4.3. Effect of Local Optima

The PARL-MMO method is applied to functions F8 (one-dimensional increasing
optima) and F9 (Rastrigin function), which have only one global optimum and multiple
local optima with different qualities, i.e., different objective function values. In this section,
the accuracy level ε is set as 1 × 10−4 and 500 replications are executed. Figure 8 shows the
frequencies of different optima being found as the total budget size grows. In the Rastrigin
function, similar performance is observed for optimal solutions having the same objective
function values due to the symmetry property. Thus, to make the figure clear, they are
combined as a single line. In the legend, the number in bold shows the number of optimal
solutions having this objective function value. Many other local optimal solutions of the
Rastrigin function with worse objective function values are not all found due to the budget
limitation. Thus, they are not plotted in Figure 8.
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Figure 8. The frequencies of local optima of different qualities being found as the total budget size
increases. The number in bold shows the number of optima having this objective function value. A
total of 500 replications are executed.

It can be found from Figure 8 that, in the studied cases, the global optimum and the
high-quality local optima have higher frequencies to be found than low-quality local optima
when the available budget size is small. As the total budget size increases, the rest of the local
optima will be found subsequently according to their objective function values. This is one of
the features of the proposed method. Other multimodal optimization methods either cannot
store local optima, e.g., MOMMOP [59], LAM-ACO [46], and EMO-MMO [68], or optima
with different qualities are considered equally important, e.g., [55].

4.4. Schaffer’s Function

In this section, the PARL-MMO method is applied to Problem F10, in which the local
optimal solution is not a single point. There is only one global optima f (0) = 0 and there
are several regions in which all solutions are local optimal solutions with slightly worse
objective function values. The optimal solutions located in the same circle have the same
objective function values, which are 0.0097, 0.0372, 0.0782, and 0.1270 from inner circle to
outer circle, respectively.

Figure 9 shows the partition states and the obtained optima, i.e., the solutions in Sopt,
as the total budget size N increases. Unlike EA-based methods, the number of optimal
solutions contained in the optimal solution set provided by the proposed method can grow
without limit. Multiple local optimal solutions can be captured and the density of the
solutions is affected by the size of the nonpartitionable regions and the distance parameter
r in Algorithm 3. As discussed in the previous section, the inner circles are found earlier
than outer circles.
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Figure 9. The partition states (a square indicates a region) and the obtained optima (the red crosses)
as the total budget size N increases for the Schaffer’s function minimization problem.

It should be noticed that if the optimal area is flat in all the dimensions, the variances
of all regions (broad and partitionable) within this area will be zero. These regions will not
reach the smallest size, since zero weights are assigned according to Equation (5). Thus,
the solutions within these regions are not considered as potential optimal solutions in the
algorithm. In this situation, an archive can be created to store all the partitionable regions
with a good mean and a very low variance.

4.5. Computational Time

In this section, the PAR-MMO method, in which local search is not included, is applied
to Problem F4(2,··· ,2) (five dimensions) with ε = 1 × 10−4. A total of 20 independent
replications are executed in Matlab R2020a on a computer (Intel(R) Core(TM) i7-7700U
CPU @ 3.6 GHz and 16 GB of RAM). Figure 10 shows how the average computational
time changes as the total budget size increases. It can be found that the computational
time increases quadratically as discussed in Section 2.3 (R2 = 100.0% for the quadratic
regression). Although the proposed method will become time-consuming when the total
budget size is very large, it is still efficient in the studied case (on average, 121 s for a
budget of size 1 × 106) and the computational time climbs slowly before the total budget
size reaches one million.

Time = - 6.484E-2

+ 4.639E-5 * Budget

+ 6.925E-11 * Budget ^ 2

R-Sq = 100.0%

R-Sq(adj) = 100.0%

Wen Alpha 0.3, n0 4, nmax 10, delta 3

Figure 10. The average computational time required for the proposed method in Problem F4(2,··· ,2)
as the total budget increases. A total of 20 replications are executed.

5. Application

The optimal control problem of a nonlinear stirred tank reactor [72] is considered in
this section. The chemical process can be modeled by the following differential equations:

ẋ1 = −(2 + u)(x1 + 0.25) + (x2 + 0.5) exp
(

25x1

x1 + 2

)
, (8)
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ẋ2 = 0.5− x2 − (x2 + 0.5) exp
(

25x1

x1 + 2

)
, (9)

ẋ3 = x2
1 + x2

2 + 0.1u2. (10)

where u(t), u(t) ∈ [0.0, 5.0] is the flow rate of the cooling fluid, x1(t) is the dimension-
less steady temperature, x2(t) is the deviation from dimensionless steady concentration,
and the interval of integration is 0 ≤ t ≤ 0.78. The performance index to minimize is
f = x3(0.78), which can be evaluated using ode45 in Matlab, and the initial condition is
x1(0) = 0.09, x2(0) = 0.09, x3(0) = 0. The problem has a global optimum x3(0.78) = 0.13309
and a local optimum x3(0.78) = 0.24442. These two values are directly associated with two
different control trajectories [72].

To solve the problem, the time interval is discretized into 13 time slots in order to
obtain a reasonably good integration accuracy, and constant control is used within a time
slot. Then, u(t) becomes 13 decision variables [u(1), u(2), · · · , u(13)]T . The PARLMMO
method is applied with α = 0.3, n0 = 3, nmax = 8, ∆ = 3. The edge threshold that is
considered as nonpartitionable is set to 0.8 and the stop threshold of the local search is set
as 0.01. The maximum budget size is 1 × 105.

Twenty replications are carried out. The optimum is regarded as found only when
the algorithm recognizes that the point is an optimum and saves it in Sopt. Table 4 shows
the number of the replications that find each optimum, the average budget to find each
optimum, and the average absolute percentage gap of the objective function value com-
pared to the real optimum (0.13309 and 0.24442). It should be noticed that the gap could be
caused by the precision of the captured solution, the calculation of the integration, and the
discretization of u(t).

Table 4. The results of the nonlinear stirred tank reactor control problem (20 replications).

PARL-MMO Successful Replications Average Budget Average Absolute
Percentage Gap

Global optimum 20 34,156 1.8%
Local optimum 3 771 0.5%

MOMMOP Successful Replications Average Budget Average Absolute
Percentage Gap

Global optimum 20 - 1.4%
Local optimum 0 - -

For comparison purpose, the MOMMOP method [59], which outperforms other meth-
ods in the benchmark functions, is also applied with population size 30, mutation factor 0.5,
crossover index 0.7, crowded radius 0.01, and maximum budget size 1 × 105. The optimal
solution is considered as captured if it is contained in the Pareto set.

The first comment is that the global optimum is captured in all replications. In addition,
no points other than these two optimal solutions appear in the final optimization set. This
means that the algorithm will not mislead the users with fake optima.

However, the local optimum is captured only in three replications. This is because
the local optimum is 84% worse than the global optimum. Thus, the area around the local
optimum is not considered as promising by the algorithm, unless other areas with better
objective function values have not been discovered or have been exploited. In this case,
according to the budget size required to find each optimum, the area around the local
optimum is only searched before the area around the global optimum is discovered. This
result is consistent with the feature of the algorithm that focuses on the global optima and
the high-quality local optima. When only good solutions are of interest, the algorithm
would not waste budget to search for optima with poor objective functions. However, this
may become a disadvantage when all optima (no matter if good or poor) are required.

The MOMMOP method is proposed for seeking multiple global optimal solutions.
Thus, all points in the Pareto set are points around the global optimum, and the local
optimum is not identified in any replication. The best solution in the Pareto set is used to
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calculate the average absolute percentage gap. This gap is less than the PARL-MMO. A
possible reason for this is that the function around the global optimum is not smooth due
to the discretization of the integration. Therefore, the local search may be trapped when
refining the found solution in the PARL-MMO method. This may be improved by using
different algorithms, such as EA, in the refining phase.

6. Conclusions

A partition-based random search method is proposed, in which by controlling the
partition rates of different regions, promising areas are exploited probabilistically earlier
than nonpromising areas. Multiple optimal solutions (both global and local) can be found
and stored. It does not require prior knowledge about the number of optima in the studied
problem and it is not sensitive to the distance parameter.

Numerical results show that, by cooperating with local search, the proposed method
has good performance in finding multiple global optimal solutions in 14 benchmark func-
tions compared to four state-of-the-art methods. In problems containing local optima of
different qualities, i.e., different objective function values, high-quality local optima will be
found earlier than low-quality optima. Therefore, it will focus on exploiting global optima
and high-quality local optima when the budget is not quite sufficient. In addition, the
proposed method can also deal with optimization problems that exist in regions where all
solutions are optimal solutions.

One of the limitations of the proposed method is that a large amount of calculation
memory is needed because all existing regions and all sampled solutions are stored. The
increased number of regions also makes the computational time increase quadratically as
the total budget size increases, although it is still efficient when the total budget size is
not extremely large. Therefore, the pruning of the stored regions is one of the directions
of further work. The other limitation is introduced by the property of the partition-based
random search framework. Partition-based methods are efficient for problems in which
each decision variable has a large search space. However, it could be inefficient for high-
dimensional problems if the partition strategy is simply partitioning each dimension into
several ranges. In this case, intelligent partition strategies should be developed based
on the features of the studied problem to improve the efficiency of the algorithm. The
efficiency of the proposed method could be highly affected by selection of the partition
strategy.

The future development includes several directions. The first one is the development of
an algorithm for the deletion of less interesting regions to solve the problem of quadratically
increased computational time. The second one is adopting an adaptive α value in the
proposed method. As discussed in the paper, a low α value focuses more on exploration,
whereas a high α value focuses more on exploitation. Therefore, an increasing α value
may improve the efficiency of the proposed method. The third one is to deal with the
optimization problems with constraints. Although the constraints can be handled by
manipulating the sampling strategy to avoid the sampling of infeasible solutions, this action
may be difficult for some applications. Penalty function is another common way to deal
with constraints, but the regions containing the boundary may have biased performance
estimates, which may affect the proposed method. Therefore, an adaptive penalty function
to deal with the constraints in the proposed method will be an interesting research direction.
The last one is extending the method to optimization problems with stochastic objective
function or constraints.
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Appendix A. Selected Benchmark Functions

The functions considered for numerical experiments are here summarized and show
in Figure A1.
F1: One-dimensional equal optima

f (x) = 1− sin6(5πx), x ∈ [0, 1].

Property: Five global optima evenly distributed: x∗i = 0.2i− 0.1 that f (x∗i ) = 0.

F2: Himmelblau’s function
f (x) = (x2

1 + x2 − 11)2 + (x1 + x2
2 − 7)2, xi ∈ [−6, 6], i = 1, 2.

Property: Four global optima with two closer to each other: x∗1 = (3.0, 2.0), x∗2 =
(−2.805118, 3.131312), x∗3 = (−3.779310,−3.283186) and x∗4 = (3.584428,−1.848126)
that f (x∗i ) = 0.

F3: Six-hump camel back
f (x) = 4((4− 2.1x2

1 + x4
1/3)x2

1 + x1x2 + (4x2
2 − 4)x2

2), x1 ∈ [−1.9, 1.9], x2 ∈ [−1.1, 1.1].

Property: Two global optima: x∗1 = (0.0898,−0.7126) and x∗2 = (−0.0898, 0.7126) that
f (x∗i ) = −4.1265. Four local optima: x∗3 = (1.7035,−0.7961) and x∗4 = (−1.7035, 0.7961)
that f (x∗i ) = −0.8619 and x∗5 = (−1.6071,−0.5687) and x∗6 = (1.6071, 0.5687) that
f (x∗i ) = 8.4170.

F4: Shubert function
f (x) = ∏d

i=1 ∑5
j=1 j cos((j + 1)xi + j), xi ∈ [−10, 10], ∀i.

Property: d · 3d global optima in 3d groups with d optima in each group and many
poor local optima. The global optima are f (x∗i ) = −186.7309 for two dimensions and
f (x∗i ) = −2709.0935 for three dimensions.

F5: Vincent function
f (x) = 1− 1

d ∑d
i=1 sin(10 log(xi)), xi ∈ [0.25, 10], ∀i.

Property: 6d global optima unevenly distributed:
x∗i1,··· ,id =

(
exp

(
(4i1−11)π

20

)
, · · · , exp

(
(4id−11)π

20

))
that f (x∗i ) = 0.

F6: Modified Rastrigin function (k1, · · · , kd)

f (x) = ∑d
i=1(10 + 9 cos(2πkixi)), xi ∈ [0, 1], ∀i.

Property: ∏d
i=1 ki global optima evenly distributed: x∗i1,··· ,id =

(
2i1−1

2k1
, · · · , 2id−1

2kd

)
that

f
(

x∗i1,··· ,id

)
= d.

F7: Composition function
Property: A multimodal function composed of several basic functions; thus, different
functions’ properties are mixed together. More details can be found in [69]. The label
”F7(a-dD)” in the paper indicates the composition function a with d dimension.

F8: One-dimensional increasing optima

f (x) = 1− exp
(
−2 log(2)

( x−0.08
0.854

)2
)

sin6(5π(x3/4 − 0.05)), x ∈ [0.02, 1].

Property: One global optimum and four increasing local optima.

F9: Rastrigin function
f (x) = ∑d

i=1(x2
i − 10 cos(2πxi) + 10), xi ∈ [−5.12, 5.12], ∀i.
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Property: One global optimum: f (0) = 0, and 11d − 1 local optima with different
qualities.

F10: Schaffer’s function

f (x) = 0.5 +
sin2

(√
∑d

i=1 x2
i

)
−0.5

(1+0.001(∑d
i=1 x2

i ))
2 , xi ∈ [−10, 10], ∀i.

Property: One global optimum f (0) = 0 and seven regions where all solutions are
local optimal.

Appendix B. Algorithm Parameter

The regions are considered as nonpartitionable regions when all edges are smaller
than values in Table A1 of Appendix B.

Figure A1. The surface plots of the selected benchmark functions. f4, f5, f6, f7, f9 only show 2D cases.

Table A1. The edge threshold of nonpartitionable regions.

Func \ ε 0.1 0.01 0.001 0.0001 Local Search

F1 2.3 × 10−2 7.5 × 10−3 2.3 × 10−3 7.5 × 10−4 4.0 × 10−2

F2 7.4 × 10−2 2.4 × 10−2 7.4 × 10−3 2.4 × 10−3 4.0 × 10−1

F3 8.5 × 10−2 2.8 × 10−2 8.5 × 10−3 2.8 × 10−3 1.5 × 10−1

F4(2D) 9.6 × 10−3 3.0 × 10−3 9.6 × 10−4 3.0 × 10−4 1.6 × 10−1

F4(3D) 2.0 × 10−3 6.4 × 10−4 2.0 × 10−4 6.4 × 10−5 1.6 × 10−1

F5(2D) 3.0 × 10−2 9.6 × 10−3 3.0 × 10−3 9.6 × 10−4 8.0 × 10−2

F5(3D) 3.0 × 10−2 9.6 × 10−3 3.0 × 10−3 9.6 × 10−4 8.0 × 10−2

F6(3,4) 9.6 × 10−3 3.0 × 10−3 9.6 × 10−4 3.0 × 10−4 4.0 × 10−2

F6(3,3,3) 9.0 × 10−3 3.0 × 10−3 9.0 × 10−4 3.0 × 10−4 4.0 × 10−2

F6(2,··· ,2) 1.1 × 10−2 3.4 × 10−3 1.1 × 10−3 3.4 × 10−4 7.0 × 10−2

F7(1-2D) 5.0 × 10−7 1.6 × 10−8 1.1 × 10−9 3.2 × 10−1 1.6 × 10−1

F7(2-2D) 1.6 × 10−6 5.6 × 10−8 1.8 × 10−9 5.5 × 10−1 1.6 × 10−1

F7(3-2D) 9.5 × 10−8 2.0 × 10−9 1.5 × 10−1 4.3 × 10−1 2.0 × 10−2

F7(3-3D) 9.0 × 10−8 2.5 × 10−9 1.4 × 10−1 3.8 × 10−1 2.0 × 10−2

F8 1.7 × 10−2 5.2 × 10−3 1.7 × 10−3 5.2 × 10−4 2.0 × 10−2

F9(2D) 3.0 × 10−2 1.0 × 10−2 3.0 × 10−3 1.0 × 10−3 1.0 × 10−1

F9(3D) 2.6 × 10−2 8.0 × 10−3 2.6 × 10−3 8.0 × 10−4 1.0 × 10−1

F10 4.0 × 10−1 4.0 × 10−1 2.0 × 10−1 8.0 × 10−2 4.0 × 10−1
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Appendix C. ANOVA

In this Appendix C the main effect plots and the ANOVA tables on functions, where
all the global optima could be found within the maximum budget, are presented (as
shown in Figure A2). The experimental settings are the same as in Section 4.1. A total of
500 replications are executed and divided into ten batches, except for Problem F6(2,··· ,2),
where 20 replications are executed. Similar to Problem F6(3,3,3), almost all factors have
significant effects on the algorithm, except some interactions. The effects of parameter nmax
and parameter ∆ are larger than the effect of parameter α based on the F-values (except
for Problem F7(2-2D)), although the influence of parameter α is comparable to that of
parameter ∆ on Problem F2. For Problem F7(2-2D), the influences of the three parameters
are comparable.

Equal minimal

R_ADJ = 99.68%
NORMAL: 0.248
VARIANCE: 0.011

Source DF F-Value P-Value

𝛼 3 3.56 0.014

𝑛𝑚𝑎𝑥 3 43557.37 0.000

Δ 3 22662.70 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 9 0.72 0.694

𝛼 ∗ Δ 9 0.80 0.618

𝑛𝑚𝑎𝑥 ∗ Δ 9 130.40 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 ∗ Δ 27 0.86 0.676

Error 576

Total 639

𝛼 𝑛𝑚𝑎𝑥 Δ

(a)

Himmelblau

R_ADJ = 94.10%
NORMAL: <0.005
VARIANCE: 0.000

Source DF F-Value P-Value

𝛼 3 410.13 0.000

𝑛𝑚𝑎𝑥 3 2407.77 0.000

Δ 3 373.21 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 9 24.86 0.000

𝛼 ∗ Δ 9 10.83 0.000

𝑛𝑚𝑎𝑥 ∗ Δ 9 35.46 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 ∗ Δ 27 1.58 0.032

Error 576

Total 639

𝛼 𝑛𝑚𝑎𝑥 Δ

(b)

Sixhump

R_ADJ = 97.99%
NORMAL: 0.526
VARIANCE: 0.547

Source DF F-Value P-Value

𝛼 3 310.97 0.000

𝑛𝑚𝑎𝑥 3 8620.25 0.000

Δ 3 1254.66 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 9 33.30 0.000

𝛼 ∗ Δ 9 13.75 0.000

𝑛𝑚𝑎𝑥 ∗ Δ 9 20.19 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 ∗ Δ 27 2.16 0.001

Error 576

Total 639

𝛼 𝑛𝑚𝑎𝑥 Δ

(c)

Shubert

R_ADJ = 98.94%
NORMAL: 0.017
VARIANCE: 0.007

Source DF F-Value P-Value

𝛼 3 132.21 0.000

𝑛𝑚𝑎𝑥 3 14929.26 0.000

Δ 3 4267.01 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 9 4.69 0.000

𝛼 ∗ Δ 9 11.32 0.000

𝑛𝑚𝑎𝑥 ∗ Δ 9 179.84 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 ∗ Δ 27 2.89 0.000

Error 576

Total 639

𝛼 𝑛𝑚𝑎𝑥 Δ

(d)

ModifiedRastrigin(3,4)

R_ADJ = 97.83%
NORMAL: 0.130
VARIANCE: 0.407

Source DF F-Value P-Value

𝛼 3 62.05 0.000

𝑛𝑚𝑎𝑥 3 5539.98 0.000

Δ 3 3849.75 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 9 3.87 0.000

𝛼 ∗ Δ 9 1.21 0.283

𝑛𝑚𝑎𝑥 ∗ Δ 9 54.92 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 ∗ Δ 27 0.95 0.540

Error 576

Total 639

𝛼 𝑛𝑚𝑎𝑥 Δ

(e)

Source DF F-Value P-Value

𝛼 3 3.49 0.015

𝑛𝑚𝑎𝑥 3 2358.98 0.000

Δ 3 57.98 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 9 1.09 0.365

𝛼 ∗ Δ 9 1.24 0.269

𝑛𝑚𝑎𝑥 ∗ Δ 9 1.89 0.051

𝛼 ∗ 𝑛𝑚𝑎𝑥 ∗ Δ 27 0.80 0.754

Error 576

Total 639

𝛼 𝑛𝑚𝑎𝑥 Δ

(f)
Source DF F-Value P-Value

𝛼 3 91.80 0.000

𝑛𝑚𝑎𝑥 3 1260.12 0.000

Δ 3 1269.78 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 9 11.20 0.000

𝛼 ∗ Δ 9 1.81 0.063

𝑛𝑚𝑎𝑥 ∗ Δ 9 49.63 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 ∗ Δ 27 1.53 0.044

Error 576

Total 639

𝛼 𝑛𝑚𝑎𝑥 Δ

(g)

Source DF F-Value P-Value

𝛼 3 310.88 0.000

𝑛𝑚𝑎𝑥 3 355.72 0.000

Δ 3 380.86 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 9 2.68 0.005

𝛼 ∗ Δ 9 8.14 0.000

𝑛𝑚𝑎𝑥 ∗ Δ 9 7.11 0.000

𝛼 ∗ 𝑛𝑚𝑎𝑥 ∗ Δ 27 1.31 0.138

Error 576

Total 639

𝛼 𝑛𝑚𝑎𝑥 Δ

(h)

Figure A2. The main effect plots and the ANOVA tables on different multimodal optimization
benchmark functions. (a) F1: One-dimensional equal optima. (b) F2: Himmelblau’s function. (c)
F3: Six-hump camel back. (d) F4(2D): Shubert function. (e) F6(3,4): Modified Rastrigin function.
(f) F6(2,··· ,2): Modified Rastrigin function. (g) F7(1-2D): Composition function 1. (h) F7(2-2D):
Composition function 2.
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