
HAL Id: hal-04334359
https://hal.science/hal-04334359

Preprint submitted on 10 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Know your audience: Communication model and
computability in anonymous networks
Bernadette Charron-Bost, Patrick Lambein-Monette

To cite this version:
Bernadette Charron-Bost, Patrick Lambein-Monette. Know your audience: Communication model
and computability in anonymous networks. 2023. �hal-04334359�

https://hal.science/hal-04334359
https://hal.archives-ouvertes.fr

Know your audience
Communication model and computability in anonymous networks

BERNADETTE CHARRON-BOST, CNRS, DI ENS École Normale Supérieure, France

PATRICK LAMBEIN-MONETTE, Unaffiliated, France

Distributed function computation is the problem, for a networked system of 𝑛 autonomous agents, to collectively compute the

value 𝑓 (𝜔1, . . . , 𝜔𝑛) of some input values 𝜔1, . . . , 𝜔𝑛 , each initially private to one agent in the network. As is commonplace in the

field of distributed computing, the question of which functions 𝑓 are computable is exquisitely sensitive to minute model assumptions.

Here, we study and organize results pertaining to distributed function computation in anonymous
1
networks, both for the static and

the dynamic case, under a communication model of directed and synchronous message exchanges, but with varying assumptions in

the degree of awareness or control that a single agent has over its outneighbors, i.e., the set of agents hearing from it in a given round.

Our main argument is three-fold. First, in the “blind broadcast” model, where in each round an agent merely casts out a unique mes-

sage without any knowledge or control over its addressees, the computable functions are those that only depend on the set {𝜔1, . . . , 𝜔𝑛 }
of the input values, but not on their multiplicities or relative frequencies in the input. Second, in contrast, when we assume either that

a) in each round, the agents know how many outneighbors they have; b) all communications links in the network are bidirectional; or

c) the agents may address each of their outneighbors individually, then the set of computable functions grows to contain all functions

that depend on the relative frequencies of each value in the input – such as the average 𝜔1+···+𝜔𝑛
𝑛

– but not on their multiplicities

– thus, not the sum 𝜔1 + · · · +𝜔𝑛 . Third, however, if one or several agents are distinguished as leaders, or if the cardinality of the

network is known, then under any of the above three assumptions it becomes possible to recover the complete multiset [𝜔1, . . . , 𝜔𝑛]
and thus compute any function of the distributed input as long as it is invariant under permutation of its arguments. In the case of

dynamic networks, we also discuss the impact of multiple connectivity assumptions.

1 INTRODUCTION

The aim of many multi-agent systems is to get all agents to compute a common value, which is a function of the

values observed or sensed by each agent. Some typical examples are minimum-finding, the computation of the average

and of the sum of the agent values. The computation of such functions naturally arises in a wide range of practical

situations, including sensor networks, distributed optimization, or distributed control in autonomous systems. Towards

this purpose, the agents repeatedly alternate between internal computations and communicating with each other. Here,

our objective is to understand the fundamental limitations and capabilities for function computation that are inherent

to the communication model assumed when considering a multi-agent network system.

Our abstract model captures common requirements for a variety of different settings, including the case of wireless

sensor networks. We consider a networked system with a fixed set of agents and communication links that may vary

over time. Our basic connectivity assumption is of a finite diameter, i.e., any pair of agents can communicate, possibly

indirectly, over a period of time that is uniformly bounded throughout the execution. We model agents as automata

1
When agents are given unique identifiers, the question of computability is rather shallow, as essentially all functions are computable given sufficient

connectivity.

Authors’ addresses: Bernadette Charron-Bost, CNRS, DI ENS and École Normale Supérieure, 75005, Paris, France, charron@di.ens.fr; Patrick Lambein-

Monette, Unaffiliated, Paris, France, patrick@lambein.name.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

1

ar
X

iv
:s

ub
m

it/
52

64
08

5
 [

cs
.D

C
]

 2
9

N
ov

 2
02

3

HTTPS://ORCID.ORG/0009-0007-0132-8138
HTTPS://ORCID.ORG/0000-0002-9401-8564
https://orcid.org/0009-0007-0132-8138
https://orcid.org/0000-0002-9401-8564
https://orcid.org/0000-0002-9401-8564
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

2 Bernadette Charron-Bost and Patrick Lambein-Monette

interacting over reliable communication channels. These automata are deterministic – in particular, randomization is

not allowed – and identical – i.e., each agent runs the same local algorithm.

The network is anonymous: agents do not possess unique identifiers, and nothing initially distinguishes any two

agents apart from, possibly, their input value. In addition, agents have limited or no knowledge of the network. In

particular, they are not assumed to know the size of the network; at best, they have an upper bound over it. They are also

unaware of the structure of the network or its diameter. Concerning the memory of each agent, it cannot be bounded

and must grow with the size of the network, given that the class of functions under consideration includes the sum, the

average. . . However, for our positive results, we will be looking for finite-state solutions: if possible, an agent should

only use bounded memory in any execution. We will also be looking for self-stabilizing algorithms, i.e., algorithms

which tolerate arbitrary initializations, and for algorithms that tolerate asynchronous starts (which is obviously the case

of self-stabilizing algorithms).

We then consider four classical models for inter-agent communication. In the lowest-level model – namely, the

simple broadcast model, an agent “blindly” sends a message, without knowing by whom, or by how many, this message

will be received; the content of the message is entirely determined by the local state of the agent, and is the same for

every recipient. This model can be enriched in two ways, either with the feature of symmetric communications – an

agent 𝑗 receives a message from another agent 𝑖 if and only if 𝑖 itself receives a message from 𝑗 – or with outdegree

awareness – i.e., when an agent broadcasts a message, it knows in advance how many other agents will receive this

message. In the latter case, the content of the message is still the same for every recipient, but is no longer determined

solely by the local state of the sender, as it can also depend on its current outdegree.

Symmetric communications arise in many natural systems – such as the popular Hegselmann-Krause model used to

study the dynamics of opinion formation [19] – and is a basic feature of the pairwise interactions of the celebrated

population protocols model [2]. Outdegree awareness is often implicitly assumed by distributed algorithms designed for

engineering systems, such as the credit-recovery algorithm for termination detection [27] or the Push-Sum algorithm

used for decentralized optimization problems [23].

A final communication model is given by output port awareness, in which case each agent is aware of output ports

corresponding to each communication links. This amounts to a local output labelling: the outgoing links of an agent 𝑖

have unique labels, and the messages sent by 𝑖 over a given link may depend on the corresponding label. In this model,

it is no longer the case that agent 𝑖 sends the same message to each of its neighbors. We note in passing that this model

is only meaningful in the context of static networks.

We will consider a general definition of what it means for a networked system to “compute” a function: given a metric

space (𝑋, 𝛿) and a function of arbitrary arity 𝑓 :

⋃
𝑛∈ℕ>0

𝛺𝑛 → 𝑋 , each agent holds an output that must asymptotically

converge in (𝑋, 𝛿) to the value taken by 𝑓 when its arguments correspond to the agents’ input values. In particular,

when 𝑋 is endowed with the discrete metric, all agents must eventually settle on the desired value, but they are not

required to become aware when their outputs stabilize. In contrast, when 𝑋 = ℝ𝑘
is equipped with the Euclidean metric,

the outputs need only converge towards the desired outcome but are not required to ever stabilize on its exact value;

this is actually an extremely common metric choice in the literature on distributed control. In all cases, regardless the

metric on 𝑋 , our definition of function computation contains no termination requirement: an agent is not supposed to

return a value that is the desired value exactly, or to within a given precision.

For the simple broadcast model, a function 𝑓 is computable if and only if 𝑓 is set-based, i.e., if its value only depends

on the set of its arguments. Set-based functions include, for example, the minimum and the maximum, but not the

sum or the average. This result holds for any metric 𝛿 , for static and dynamic networks, and assuming or not that the

Know your audience 3

network size is known. The simple gossip algorithm clearly computes the set of input values, and thus any set-based

function. For the impossibility result, it was shown by Hendrickx and Tsitsiklis for an arbitrary network size [21], but

the stronger version under the assumption of a known network size had been previously shown by Boldi and Vigna [6].

In this paper, we characterize the functions that are computable under the assumptions of symmetric communications,

output port awareness, or simply outdegree awareness. In particular, we show that these communication models are

actually equivalent in terms of function computability.

Summary and contributions. First, we provide a general model of computation in anonymous networks with the

features described above and which encompasses the various communication models that we have just introduced.

Then, we tackle the case of static networks: we prove that with either output port awareness, symmetric communica-

tions, or outdegree awareness, a function 𝑓 is computable if and only if 𝑓 is frequency-based, i.e., its value only depends

on the set of its arguments and their frequencies. In particular, computing the average of initial values is possible while

it is impossible with the simple broadcast model. However, computing the sum of initial values remains impossible.

This result holds in any of the three communication models under consideration, for any metric 𝛿 , and assuming or not

that a bound on the network size is known. Our approach for both positive and negative results exploits the notion of

graph fibration, which originated from homotopy theory and has been used first in order to characterize the classes of

anonymous networks in which leader election is possible [1, 5, 32].

The impossibility results all use the fundamental lifting lemma [8] stating that all the agents in the same fibre, i.e.,

with similar in-neighborhood, have the same behavior if they start in the same state. In fact, our impossibility proofs

are a formalization in terms of graph fibration of the argument used in [20].

The first step for our positive results is the distributed algorithm that computes the minimal base of the network [8].

Then we show that the minimal base allows for computing the cardinalities of the fibres up to some common factor. For

that, each agent solves a homogeneous system, which we prove to be of rank one in each of the three communication

models under consideration. While the latter property clearly holds in the cases of output port awareness and symmetric

communications, it requires a more sophisticated argument for the model with outdegree awareness, which has led

us to develop a method à la Perron-Frobenius for matrices whose diagonal entries may be negative. The result is a

self-stabilizing and finite-state algorithm for computing a frequency-based function in a static network that is linear in

time in the number of agents.

As a consequence, when the network size is known or if the network is able to appoint a leader, our approach allows

for computing any multiset-based function of the initial values, that is to say any function invariant under permutation.

Hence, each of these two assumptions considerably increases the computational power in the case of output port

awareness, symmetric communications, or outdegree awareness, while they leave it unchanged in the simple broadcast

model [6].

Table 1 summarizes the computability results for static networks in our considered communication models and

under various assumptions of centralized help (knowledge of 𝑛 or of a bound over 𝑛, presence of a leader).

For dynamic networks, we first observe that the above impossibility results also hold in this case since it encompasses

static networks. For the positive results, we develop a different method based on the stochastic analysis of consensus

algorithms derived from statistical physics, namely the Metropolis and the Push-Sum algorithms. These algorithms

allow for asymptotically computing the average of initial values in dynamic networks. They are not efficient in time

and are not self-stabilizing, but they tolerate asynchronous starts and use no persistent memory. We provide a concise

4 Bernadette Charron-Bost and Patrick Lambein-Monette

Table 1. Computable functions in static, strongly connected networks of 𝑛 anonymous agents

no centralized help

a bound over 𝑛 is known

𝑛 is known

one leader

simple

broadcast

outdegree

awareness

symmetric

communications

output port

awareness

set-based

Hendrickx et al. [20]

frequency-based

Theorem 4.1, eq. (1)

frequency-based

Theorem 4.1, eq. (4)

frequency-based

Theorem 4.1, eq. (3)

set-based

Boldi & Vigna [6]

frequency-based

Corollary 4.2, eq. (1)

frequency-based

Corollary 4.2, eq. (4)

frequency-based

Corollary 4.2, eq. (3)

set-based
a

Boldi & Vigna [6]

multiset-based

Corollary 4.3, eq. (1)

multiset-based

Corollary 4.3, eq. (4)

multiset-based

Corollary 4.3, eq. (3)

set-based
b

Boldi & Vigna [6]

multiset-based

Corollary 4.4, eq. (1)

multiset-based

Corollary 4.4, eq. (4)

multiset-based

Corollary 4.4, eq. (3)

a
This is in fact for 𝑛 ⩾ 4; for smaller networks, the topology always allows for the recovery of the multi-set of input values, as Jérémie

Chalopin pointed out to us.

b
Even though Boldi and Vigna [6] do not consider networks with a leader, their impossibility argument can be adapted to this case.

and streamlined proof of the convergence of the Push-Sum algorithm to the average of the initial values in a dynamic

network with a finite diameter.

In the case an upper bound on the network size is available, we obtain the same characterization of computable

functions in dynamic networks with symmetric communications or outdegree awareness as in the static case, and this

characterization holds for any metric, in particular for the discrete metric (exact computation). When no bound on the

network size is known, these algorithms only achieve an approximate computation of the frequencies of the initial

values, and thus of frequency-based functions if they satisfy some continuity property with respect to the frequencies

of their arguments. Typical examples of such functions, which we call continuous in frequency, are the average function

and the threshold frequency predicates with a non-rational threshold. We have thus proven that, in dynamic networks,

the frequency-based condition which is necessary for approximate computability, is nearly sufficient in the sense that it

simply needs to be enriched with continuity in frequency.

The results pertaining to dynamic networks are collected in Table 2.

Table 2. Computable functions in dynamic networks of 𝑛 anonymous agents with finite diameter

no centralized help

a bound over 𝑛 is known

𝑛 is known

one leader

simple

broadcast

outdegree

awareness

symmetric

communications

set-based

Hendrickx et al. [20]
?

frequency-based

Di Luna & Viglietta [26]

set-based

Hendrickx et al. [20]

frequency-based

Corollary 5.3

frequency-based

CB & LM [11]

set-based

Hendrickx et al. [20]

multiset-based

Corollary 5.4

multiset-based

CB & LM [11]

set-based

Hendrickx et al. [20]
?

multiset-based

Di Luna & Viglietta [25]

Know your audience 5

Related works. There is a very large literature on computability in multi-agent systems, but most of it focuses on

computing functions whose values may depend on the network topology, and not only on the initial values. Moreover,

a common requirement is that all agents become aware that they produce the desired outputs. We refer the reader

to [1, 18, 28, 34] for some fundamental results in this setting.

The biologically-inspired population protocols model has some common features with our model, namely a fixed

set of anonymous agents with pairwise interactions
2
and no requirement of termination awareness. However, agents

in this model are finite-state, and the fairness condition on interactions, despite implying that every pair of agents

communicate infinitely often, does not require a bounded dynamic diameter. A spectacular result is the characterization

of the predicates that are computable by population protocols: Angluin et al. [2, 3] proved that the class of computable

predicates is exactly the class of predicates definable in Presburger arithmetic.

Closest to our work in the static case are [6] and [20]. The first paper characterizes the class of functions that are

computable with simple broadcast or with symmetric communications when the network size is known. The second

paper gives an almost characterization of the computable functions in a static network with symmetric communications

when no bound on the network size is known: similarly to our results in the dynamic case, Hendrickx et al. proved that

the frequency-based condition is sufficient only for an approximate computation of the frequencies of the initial values.

Hence, we have solved the open question proposed in [20] of an exact characterization of computable functions with

symmetric communications, and have extended it to communication models with output port awareness and outdegree

awareness.

For dynamic networks, our positive result has to be compared with the remarkable algorithm proposed by Di Luna

and Viglietta [25, 26] which allows for an exact computation of any frequency-based function in the case of symmetric

communications. Their algorithm is linear in time, but it uses an infinite number of states and an infinite bandwidth in

each of its executions. Moreover, it is not self-stabilizing and does not even tolerate asynchronous starts.

2 THE COMPUTING MODEL

2.1 Networked systems

We consider a networked system with a fixed and finite set of agents denoted 1, · · · , 𝑛. Computation proceeds in

synchronized rounds, which are communication closed in the sense that no message received in round 𝑡 is sent in a

round different from 𝑡 . In round 𝑡 (𝑡 = 1, 2, · · ·), each agent successively (a) sends messages at the beginning of round 𝑡 ,

(b) receives some messages, and (c) undergoes an internal transition to a new state. Communications that occur at

round 𝑡 correspond to the (directed) graph 𝔾(𝑡) = ([𝑛], 𝐸𝑡) where [𝑛] = {1, . . . , 𝑛} and (𝑖, 𝑗) ∈ 𝐸𝑡 if and only if the

agent 𝑗 receives the message sent by 𝑖 to 𝑗 at round 𝑡 . Hence, the agent 𝑖 ∈ [𝑛] corresponds to the vertex 𝑖 in each

graph 𝔾(𝑡), and we will sometimes refer to an agent or a vertex as a node of the network. We assume a self-loop at each

vertex in each graph 𝔾(𝑡), since an agent can communicate with itself instantaneously. The network is thus modeled by

the dynamic graph 𝔾, i.e., the infinite sequence of graphs 𝔾 = (𝔾(𝑡))𝑡⩾1, with the same set of vertices.

Each agent may possess more or less information about the network it belongs to. The knowledge of certain

informations thus corresponds to some constraints on the network, and so to restrict to a non-empty subset of networks,

called a network class. Since we consider anonymous networks, network classes are assumed to be closed under graph

isomorphisms. As an example, the network class where the number of agents is known to be 𝑛 is captured by the set of

dynamic graphs with 𝑛 vertices. Similarly, the class of symmetric networks corresponds to the set of dynamic graphs

2
This corresponds to a dynamic network with symmetric communications and vertices of degree zero or one.

6 Bernadette Charron-Bost and Patrick Lambein-Monette

with bidirectional edges – that is, at each round 𝑡 , (𝑖, 𝑗) ∈ 𝐸𝑡 if and only if (𝑗, 𝑖) ∈ 𝐸𝑡 . We also consider the class of

networks 𝔾 with a finite dynamic diameter – that is, there exists some positive integer 𝐷 such that, for every 𝑡 ∈ ℕ>0,

the graph product
3 𝔾(𝑡) ◦ · · · ◦ 𝔾(𝑡 + 𝐷 − 1) is the complete graph. In other words, for every pair of vertices 𝑖, 𝑗 and

from every round 𝑡 , there is a dynamic path of length at most 𝐷 connecting 𝑖 to 𝑗 ; the smallest such integer 𝐷 is called

the dynamic diameter of 𝔾. It measures connectivity over time and generalizes the diameter of static graphs. Note that

with a dynamic diameter 𝐷 ⩾ 2, some intermediate graphs in any period of length 𝐷 may be disconnected (e.g., with

only self-loops).

2.2 Algorithms, communication models, and executions

An algorithm A is given by a set Q of local states, a subset Q0 ⊆ Q of initial states, a set of messagesM, a sending

function, and a transition function.

The transition function determines the state after a transition: the new state is computed on the basis of the current

state and the collection of messages that have been received. That corresponds to a transition function 𝛿 : Q×M⊕ → Q,
whereM⊕ denotes the set of finite multi-sets over the setM.

The messages to be sent by an agent depend on its current state and on its out-neighborhood, which can be

compactly described by a local output labelling: if the outdegree is 𝑑− , then the output ports are labelled with the

numbers 1, . . . , 𝑑− . In this communication model, called output port awareness, a sending function is thus of the

type 𝜎 : Q × ℕ>0 →
⋃

𝑘∈ℕ>0
M𝑘

. If 𝑞 is the state of an agent and 𝑑− is its outdegree, the message sent by the agent on

the port labelled by ℓ ∈ [𝑑−] is the ℓ-th entry of 𝜎 (𝑞, 𝑑−) ∈ M𝑑−
, denoted 𝜎 (𝑞, 𝑑−) [ℓ].

We can weaken this model by considering only the sending functions satisfying

∀𝑞 ∈ Q,∀𝑘 ∈ ℕ>0,∀ℓ, ℓ′ ∈ [𝑘]2, 𝜎 (𝑞, 𝑘) [ℓ] = 𝜎 (𝑞, 𝑘) [ℓ′] .

In this communication, model called outdegree awareness, communications are isotropic – a sender sends the same

messages to all its recipients – and sending functions are actually of type 𝜎 : Q × ℕ>0 →M.

A further weakening of the communication model consists in requiring messages to depend only on the current

state of the sender. In this simple broadcast model, sending functions satisfy the following graph-invariant property

∀𝑞 ∈ Q,∀𝑘 ∈ ℕ>0,∀ℓ ∈ [𝑘], 𝜎 (𝑞, 𝑘) [ℓ] = 𝜎 (𝑞, 1) [1]

and thus correspond to functions of the type 𝜎 : Q →M.

Hence, these different notions of sending functions yield three communication models – namely, simple broadcast,

outdegree awareness, and output port awareness. In the latter model, from an algorithmic point of view, we remark that

labelling messages with output ports is only useful in the context of a static network and fixed output port labellings.

This description may be completed with a fourth model, called the model of symmetric communications, which

corresponds to the restriction of the simple broadcast model to the class of networks with bidirectional links. For this

model, in the case of static networks, each agent can determine its outdegree at the end of the receiving phase in the

first round, since it is equal to its indegree, i.e., the number of messages it has just received. In other words, symmetric

communications implies outdegree awareness in the class of static networks. This is no longer the case with dynamic

networks, since the in/outdegree in round 𝑡 is not yet available at the time of emission in the simple broadcast model,

and may differ from one round to the next.

3
Recall that the product 𝐺 = 𝐺1 ◦𝐺2 of two directed graphs 𝐺1 = (𝑉 , 𝐸1) and 𝐺1 = (𝑉 , 𝐸2) with the same set of vertices 𝑉 is the directed graph

𝐺 = (𝑉 , 𝐸) where 𝐸 = { (𝑗, 𝑖) ∈ 𝑉 2
: ∃𝑘 ∈ 𝑉 , (𝑖, 𝑘) ∈ 𝐸1 ∧ (𝑘, 𝑗) ∈ 𝐸2 }.

Know your audience 7

An execution of an algorithm A in the dynamic graph 𝔾 proceeds as follows: In each round 𝑡 = 1, 2, . . . , each agent

applies the sending function 𝜎 to generate the message to be sent on each of its output port, then it receives the messages

sent by its incoming neighbors in the graph 𝔾(𝑡), and finally applies the transition function 𝛿 to its current state and

the multi-set of messages it has just received to go to a next state.

An execution ofA in a network with 𝑛 agents thus corresponds to an infinite sequence of global states 𝐶0,𝐶1,𝐶2, · · · ,
where a global state is defined as a mapping 𝐶 : [𝑛] → Q. The sequence of global states is entirely determined by the

initial global state 𝐶0
and the dynamic graph 𝔾. In the rest of the paper, we adopt the following notation: given an

execution of A, the value at the end of round 𝑡 of any variable 𝑥𝑖 , local to the agent 𝑖 , is denoted by 𝑥𝑖 (𝑡), and 𝑥𝑖 (0) is
the initial value of 𝑥𝑖 in this execution.

We may consider the more general model of executions with asynchronous starts [12], where each agent is activated

in an arbitrary round. Whether the basic network is static or not, this execution model can be handled by a simple

dynamic graph with inactive agents being modeled as isolated vertices. Regarding eventual convergence properties,

a self-stabilizing algorithm [15] – i.e., an algorithm that works for an arbitrary initialization – obviously tolerates

asynchronous starts. In contrast, in the self-stabilizing model, an agent cannot measure the time elapsed since it started

the computation, while it can easily do it in the execution model with asynchronous starts. In this sense, self-stabilization

is more restrictive than tolerance to asynchronous starts.

2.3 Computability in a metric space

Let 𝛺 be a non-empty set and let (𝑋, 𝛿) be a metric space. Observe that the topology induced by 𝛿 is always coarser

than the discrete metric 𝛿0 defined by

𝛿0 (𝑥,𝑦) ≔
{
0 if 𝑥 = 𝑦

1 otherwise.

If 𝑋 = ℝ𝑘
, then we may also consider the Euclidean distance

𝛿2 (𝒙,𝒚) ≔
√︃
(𝑥1 − 𝑦1)2 + · · · + (𝑥𝑘 − 𝑦𝑘)2 .

Let 𝑓 :

⋃
𝑛∈ℕ>0

𝛺𝑛 → 𝑋 be a function of arbitrary arity, and let A be an algorithm with a set of local states of the

form 𝛺 × 𝑋 and such that its transition function does not modify the first state component in 𝛺 . The first component

of the local state of agent 𝑖 is 𝑖’s input value, and the second one corresponds to the value in 𝑋 of an output variable

denoted 𝑥𝑖 .

We say that the algorithm A 𝛿-computes the function 𝑓 in the network class C if, in every execution of A with a

network 𝔾 ∈ C composed of the agents 1, · · · , 𝑛 and with the input values 𝑣1, · · · , 𝑣𝑛 in 𝛺 , all sequences (𝑥𝑖 (𝑡))𝑡 ∈ℕ
converge with respect to the distance 𝛿 to the same value 𝑥∗ = 𝑓 (𝑣1, · · · , 𝑣𝑛).

The function 𝑓 is said to be 𝛿-computable in the network class C if there exists an algorithm that 𝛿-computes 𝑓 in C.
Therefore, if 𝑓 is 𝛿-computable in a network class C, then it is 𝛿-computable in any subclass of C. However, if 𝑓 is

𝛿-computable in two network classes C1 and C2, then 𝑓 may be not 𝛿-computable in C1 ∪ C2.
Since the discrete metric 𝛿0 defines the finest topology on 𝑋 , if A 𝛿0-computes a function 𝑓 , then it 𝛿-computes 𝑓

for any distance 𝛿 on 𝑋 . Moreover, there exists a round after which all the variables 𝑥𝑖 are equal to 𝑥
∗
, and A is said to

compute 𝑓 in finite time. If𝑋 = ℝ𝑘
andA 𝛿2-computes 𝑓 is the Euclidean distance 𝛿2, thenA computes 𝑓 asymptotically

or approximately.

8 Bernadette Charron-Bost and Patrick Lambein-Monette

In this paper, we focus on the class of the frequency-based functions [20] whose output values only depend on the set

of input values and their frequencies. For a formal definition, let us first introduce some additional definitions. We say

that a function 𝜈 : 𝛺 → ℚ⩾0 is a frequency function if it is positive for a finite set of values and

∑
𝜔∈𝛺 𝜈 (𝜔) = 1. Given

a vector 𝒗 ∈ 𝛺𝑛
, the frequency function in 𝒗, denoted 𝜈𝒗 , is defined by:

𝜈𝒗 : 𝜔 ∈ 𝛺 ↦→ |𝒗
−1 (𝜔) |
𝑛

∈ ℚ

where |𝒗−1 (𝜔) | is the multiplicity of the value 𝜔 in 𝒗.

Conversely, for every frequency function 𝜈 on 𝛺 , there exist vectors whose frequency functions are equal to 𝜈 :

For instance, let us consider a total ordering 𝜔1, · · · , 𝜔ℓ on 𝜈’s support, irreducible representants 𝑝𝑘/𝑞𝑘 of the pos-

itive rational numbers 𝜈 (𝜔𝑘), and the vector ⟨𝜈⟩ where values in 𝜈’s support occur in order 𝜔1, · · · , 𝜔ℓ and with

multiplicities 𝑝1𝑞/𝑞1, · · · , 𝑝ℓ𝑞/𝑞ℓ , where 𝑞 = lcm(𝑞1, · · · , 𝑞ℓ). This vector of size 𝑞 will be denoted by ⟨𝜈⟩ in the sequel.
4

The vectors with the same frequency function 𝜈 are said to be 𝜈-frequenced and equivalent in frequency. A function 𝑓 :⋃
𝑛∈ℕ>0

𝛺𝑛 → 𝑋 is then frequency-based if 𝑓 takes the same value on all vectors equivalent in frequency, that is,

∀𝒗,𝒘 ∈ 𝛺𝑛 ×𝛺𝑚, 𝜈𝒗 = 𝜈𝒘 =⇒ 𝑓 (𝒗) = 𝑓 (𝒘) .

Typically, the average function, whose value for a vector 𝒗 ∈ ℝ𝑛
is denoted 𝒗 =

∑
𝑖∈ [𝑛] 𝑣𝑖
𝑛 , is frequency-based.

We will similarly consider the class of set-based functions, which take the same value on all vectors with the same

support, and the class of multiset-based functions – also referred to as “symmetric” functions – which take the same

value on all vectors that are permutations of one another. The three classes clearly obey the inclusion:

set-based ⊊ frequency-based ⊊ multiset-based ;

examples of functions of each class include, respectively, the maximum, the average, and the sum of the entries of a

vector.

3 GRAPH FIBRATIONS

A (directed, multi-)graph 𝐺 is composed of a non-empty set of vertices 𝑉𝐺 = [𝑛𝐺], where [𝑛𝐺] ≔ {1, . . . , 𝑛𝐺 } and a

set 𝐸𝐺 of edges defined by two functions 𝑠𝐺 , 𝑡𝐺 : 𝐸𝐺 → 𝑉𝐺 , which specify the source and the target vertices of each

edge.

A valued graph in 𝛺 is a graph𝐺 together with a function 𝒗 : 𝑉𝐺 → 𝛺 , called a valuation. A colored graph, with a set

of colors C, is a graph 𝐺 together with a coloring function 𝑐 : 𝐸𝐺 → C. In the case where 𝛺 and C are singletons, the

introduction of values and colors makes no difference, i.e., vertices are actually not valued and edges not colored.

Outdegree awareness and output port awareness then respectively correspond to a valuation and a coloring of any

arbitrary graph 𝐺 . The valued graph, where each vertex 𝑖 of 𝐺 is valued with its outdegree 𝑑−
𝑖
, is denoted by 𝐺𝑜𝑑 .

Similarly, 𝐺𝑜𝑝 denotes any colored graph resulting from a coloring of edges in 𝐺 with local output port labellings.

Our first results with static networks rely on the notion of fibration, which originates in homotopy theory, and

has been developed in order to characterize the classes of static anonymous networks in which leader election is

solvable [5, 34] and functions are computable [6, 33].

A graph morphism 𝜑 : 𝐺 → 𝐻 is a pair of functions 𝜑𝑉 : 𝑉𝐺 → 𝑉𝐻 and 𝜑𝐸 : 𝐸𝐺 → 𝐸𝐻 that commute with the source

and target functions, i.e., 𝑠𝐻 ◦𝜑𝐸 = 𝜑𝑉 ◦ 𝑠𝐺 . In the valued and colored cases, we also require 𝒗𝐺 = 𝒗𝐻 ◦𝜑𝑉 if 𝒗𝐺 and 𝒗𝐻

4
Actually, the vector ⟨𝜈 ⟩ depends on the total ordering on 𝜈’s support and is defined up to some permutation.

Know your audience 9

are valuations of the graphs 𝐺 and 𝐻 , and 𝑐𝐺 = 𝑐𝐻 ◦ 𝜑𝐸 if 𝑐𝐺 and 𝑐𝐻 are colors of 𝐺 and 𝐻 . When no confusion may

arise, subscripts will be dropped. A graph isomorphism is a graph morphism that is additionally bijective, i.e., both

functions 𝜑𝑉 , 𝜑𝐸 are bijective.

A fibration between (valued, colored) graphs 𝐺 and 𝐵 is a morphism 𝜑 : 𝐺 → 𝐵 such that for every edge 𝑒 ∈ 𝐸𝐵 and

for each 𝑖 ∈ 𝑉𝐺 with 𝜑 (𝑖) = 𝑡 (𝑒), there exists a unique edge �̃� 𝑖 verifying 𝜑 (�̃� 𝑖) = 𝑒 and 𝑡 (�̃� 𝑖) = 𝑖 . We restrict fibrations to

be epimorphisms – that is, 𝜑𝑉 and 𝜑𝐸 are both surjective. Under this condition, fibrations preserve strong connectivity.

All graph isomorphisms are fibrations, but the converse is generally false.

If 𝜑 : 𝐺 → 𝐵 is a fibration, then 𝐵 is called the base of the fibration. The fibre over a vertex 𝑖 of the base 𝐵 is the set

of vertices in 𝐺 that are mapped to 𝑖 , and is denoted by 𝜑−1 (𝑖). A fibration 𝜑 : 𝐺 → 𝐵 induces an equivalence relation

between the vertices of 𝐺 , whose classes are precisely the fibres of 𝜑 : when two vertices 𝑗 and 𝑘 are in the same fibre,

they have similar in-neighborhoods – that is, there is a bijective correspondence between the egres of 𝐺 edges coming

to 𝑗 and those coming to 𝑘 .

3.1 Lifting lemma

Impossibility results are based on the fundamental Lifting lemma [8, Lemma 2], which relates the behaviors of the

same algorithm on two different networks. For a formal statement of this lemma, we first observe that the notion of

execution of an algorithm defined in Section 2.2 for communication graphs formed with simple edge graphs naturally

extends to multi-graphs. This extension works in the broadcast model as well as in the communication models with

outdegree awareness and output port awareness. Then we introduce some additional notation: if 𝜑 : 𝐺 → 𝐵 is a

fibration and 𝐶 : 𝑉𝐵 → Q is a global state of the vertices in 𝐵, then we obtain a global state 𝐶𝜑
of the vertices in 𝐺 by

copying the state of a vertex of 𝐵 fibrewise. Formally, we let

∀𝑖 ∈ 𝑉𝐺 , 𝐶
𝜑

𝑖
≔ 𝐶𝜑 (𝑖) .

Similarly, any valuation 𝒗 of the vertices in 𝐵 can be lifted into the valuation 𝒗𝜑 of the vertices in𝐺 . From the restriction

of the function 𝑓 to 𝛺𝑛𝐺
, we thus define the 𝑛𝐵-arity function 𝑓 𝜑 as 𝑓 𝜑 (𝒗) ≔ 𝑓 (𝒗𝜑). We now recall the statement of

the Lifting lemma.

Lemma 3.1 (Lifting lemma). Let 𝜑 : 𝐺 → 𝐵 be a fibration. Then, for every algorithm A and every computa-

tion 𝐶0,𝐶1, · · · of A on 𝐵, the sequence (𝐶0)𝜑 , (𝐶1)𝜑 , · · · is a computation of A on 𝐺 .

By unicity of the limit (with respect to any distance 𝛿), the Lifting lemma imposes strong constraints on the type of

computable functions in a class of networks that can be “collapsed” by fibration onto other ones in this class.

Lemma 3.2. Let 𝜑 : 𝐺 → 𝐵 be a fibration. If a function 𝑓 is 𝛿-computed by some algorithm A on both graphs 𝐺 and 𝐵,

then 𝑓 𝜑 = 𝑓 .

In particular, if the function 𝑓 is 𝛿-computable in a class that contains both 𝐺 and 𝐵, then the premise of Lemma 3.2

hold and 𝑓 𝜑 = 𝑓 . By applying Lemma 3.2 to fibrations that are graph isomorphisms, and because the network classes

under consideration are closed under graph isomorphisms, we obtain that the value of a computable function only

depends on themulti-set of its arguments, and this in any network class considered in this work – that is, only symmetric

functions are computable in our model.

Lemma 3.3. If a function 𝑓 is 𝛿-computed by some algorithmA in an anonymous network class, then 𝑓 is a multiset-based

function.

10 Bernadette Charron-Bost and Patrick Lambein-Monette

Thus, the arguments of a computable function 𝑓 are actually multi-sets in 𝛺⊕ . If the support of a vector 𝒗 ∈ ℝ𝑛
is

the set {𝜔1, · · · , 𝜔𝑘 } and if 𝜇ℓ denotes the multiplicity of 𝜔ℓ in 𝒗, then we have

𝑓 (𝒗) = 𝑓 (𝜔𝜇1
1
, · · · , 𝜔𝜇𝑘

𝑘
),

where 𝜔
𝜇ℓ
ℓ

denotes the sequence 𝜔ℓ , · · · , 𝜔ℓ , of length 𝜇ℓ .

3.2 Minimum base

A graph 𝐺 is said to be fibration prime if every fibration from 𝐺 is an isomorphism – that is, if 𝐺 cannot be collapsed

onto a smaller graph by a fibration. Every graph 𝐺 has exactly one fibration prime basis (up to some isomorphism),

called the minimum base of 𝐺 .

Boldi and Vigna [8] constructed a self-stabilizing algorithmwhich distributively computes, in finite time, the minimum

base of the underlying graph of a static and strongly connected network. More precisely, when running this algorithm

over the static network 𝐺 , each agent builds a graph at the end of each round that, from round 𝑛 + 𝐷 onwards, is

guaranteed to be the minimum base of 𝐺 , where 𝑛 is the number of vertices in 𝐺 and 𝐷 is its diameter. Then they

proposed a finite-state variant of this algorithm that fits our model and stabilizes with an overhead of O(𝐷 log𝐷)
rounds when compared to the infinite-state version.

4 COMPUTABILITY IN STATIC NETWORKS

In this section, we establish our main theorem for static networks, namely that a function of arbitrary arity is computable

if and only if its output value only depends on the frequencies of input values. This result holds whatever the distance

is and even when agents only know their outdegrees.

Theorem 4.1. Let (𝑋, 𝛿) be a metric space. In any of the three communication models with either output port awareness,

symmetric communications, or outdegree awareness, and for any function 𝑓 :

⋃
𝑛∈ℕ>0

𝛺𝑛 → 𝑋 , the following assertions

are equivalent:

(i) 𝑓 is frequency-based;

(ii) 𝑓 is 𝛿-computable in the class of static strongly connected networks.

4.1 Proof of the impossibility result

The main argument in the proof of the impossibility result in Theorem 4.1 already appears in [6, 20]. We recall it in

order to make the paper self-contained and to show that the result holds whatever the distance is and in any of the

three communication models under consideration.

Proof of (𝑖𝑖) ⇒ (𝑖).
Let 𝒗 and𝒘 be two 𝛺-vectors, of respective lengths 𝑛 and𝑚, with the same frequency functions 𝜈𝒗 = 𝜈𝒘 . They share

the same support {𝜔1, · · · , 𝜔ℓ }, and we let 𝜈𝒗 (𝜔𝑘) =
𝑝𝑘
𝑞𝑘

with gcd(𝑝𝑘 , 𝑞𝑘) = 1. Then the integer 𝑝 = lcm(𝑞1, · · · , 𝑞ℓ)
divides both 𝑛 and𝑚.

Let us now consider the bidirectional rings 𝑅𝑝 , 𝑅
𝑝
𝑜𝑝 , and 𝑅

𝑝

𝑜𝑑
, of size 𝑝 , with or without output port awareness

and outdegree awareness. The mapping 𝑖 ∈ [𝑛] ↦→ 𝑖 mod 𝑝 ∈ [𝑝] induces a fibration 𝜑 : 𝑅𝑛 → 𝑅𝑝 . This fibration

preserves both the deterministic coloration of the outgoing links and the outdegree valuation of the vertices. Similarly,

we define a fibration𝜓 : 𝑅𝑚 → 𝑅𝑝 , which is also a fibration of the colored and valued rings 𝑅𝑚𝑜𝑝 and 𝑅𝑚
𝑜𝑑
.

Know your audience 11

Let A be an algorithm that 𝛿-computes a function 𝑓 in the class of static strongly connected networks, with or

without output port or outdegree awareness. In particular, A 𝛿-computes 𝑓 on 𝑅𝑛 (resp. 𝑅𝑛𝑜𝑝 and 𝑅𝑛
𝑜𝑑
). Lemma 3.2

shows that A 𝛿-computes the function 𝑓 𝜑 on 𝑅𝑝 (resp. 𝑅
𝑝
𝑜𝑝 and 𝑅

𝑝

𝑜𝑑
). Similarly, A 𝛿-computes the function 𝑓𝜓 on 𝑅𝑝

(resp. 𝑅
𝑝
𝑜𝑝 and 𝑅

𝑝

𝑜𝑑
). We thus obtain that 𝑓 𝜑 = 𝑓𝜓 , that is for every vector 𝒖 ∈ 𝛺𝑝

, 𝑓 (𝒖𝜑) = 𝑓 (𝒖𝜓).
The vector 𝒖 = (𝜔𝑝 𝑝1/𝑞1

1
, · · · , 𝜔𝑝 𝑝ℓ /𝑞ℓ

𝑘
) = ⟨𝜈𝒗⟩ is of size 𝑝 . Then 𝒖𝜑 and 𝒖𝜓 are respectively obtained by permuting the

entries of 𝒗 and𝒘 . Lemma 3.3 shows that 𝑓 (𝒗) = 𝑓 (𝒖𝜑) and 𝑓 (𝒘) = 𝑓 (𝒖𝜓). The equality 𝑓 𝜑 = 𝑓𝜓 leads to 𝑓 (𝒗) = 𝑓 (𝒘)
as required.

4.2 Positive result with outdegree awareness

We now devise an algorithm that computes any frequency-based function 𝑓 in the class of static strongly connected

networks with outdegree awareness in linear time. Since the discrete metric 𝛿0 defines the finest topology on 𝑋 , our

algorithm also 𝛿-computes 𝑓 for any distance 𝛿 on 𝑋 . For that, we use the self-stabilizing algorithm of Boldi and

Vigna [8] that constructs distributively the minimum base of the underlying network 𝐺 . Their algorithm relies firstly

on the inductive construction by each agent of its view in the graph𝐺 , and secondly on a partial function B that allows

an agent to extract from a truncated and possibly incorrect version of its view a candidate for the minimum base of 𝐺 .

More precisely, in each round 𝑡 , each agent 𝑖 builds an in-tree 𝑇 𝑡
𝑖
and a multi-graph B(𝑇 𝑡

𝑖
) that is guaranteed to be

the minimum base of the graph 𝐺 (up to some isomorphism) from round 𝑛 + 𝐷 , where 𝑛 is the number of vertices

in 𝐺 and 𝐷 is its diameter. The algorithm is then made finite-state with a loss of less than 𝐷 log(1 + 𝐷) rounds in the

stabilization time. Moreover, it straightforwardly adapts to any valued version of 𝐺 .

Proof of (𝑖) ⇒ (𝑖𝑖) in the case of outdegree awareness.

Let 𝐺𝑣,𝑑− be a double-valued graph of size 𝑛 and of finite diameter 𝐷 . The first valuation 𝒗 forms a vector in 𝛺𝑛
; we

let 𝑆 denote 𝒗’s support. The second valuation 𝑑− ∈ ℕ𝑛
is the valuation of the vertices with their outdegrees. As above

explained, at each round 𝑡 ⩾ 𝑛 + 𝐷 + 𝐷 log(1 + 𝐷) of Boldi and Vigna’s algorithm in the graph𝐺𝒗,𝑑− , each agent builds

the minimum base 𝐵𝒘, 𝑏 of 𝐺𝒗,𝑑− . Let 𝜑 : 𝐺𝒗,𝑑− → 𝐵𝒘, 𝑏 be the corresponding fibration and let𝑚 = |𝑉𝐵 |.
All the vertices of a fibre share the same entry in 𝒗 and the same outdegree:

5

∀𝑖 ∈ 𝑉𝐵, ∀𝑘 ∈ 𝜑−1 (𝑖), 𝑤𝑖 = 𝑣𝑘 and 𝑏𝑖 = 𝑑−
𝑘
.

Clearly, the𝑚 fibres satisfy the following equalities:

𝑏𝑖
��𝜑−1 (𝑖)�� = ∑︁

𝑗∈𝑉𝐵
𝑑𝑖, 𝑗

��𝜑−1 (𝑗)�� , (1)

where 𝑑𝑖, 𝑗 denotes the number of edges in 𝐵 from 𝑖 to 𝑗 . The minimum base 𝐵𝒘, 𝑏 entirely determines the square

matrix 𝑴 of size𝑚 defined by

𝑀𝑖, 𝑗 =

{
𝑑𝑖, 𝑗 if 𝑖 ≠ 𝑗

𝑑𝑖,𝑖 − 𝑏𝑖 if 𝑖 = 𝑗 .

Let us now consider the linear system 𝑴 𝒛 = 0 where 0 is the zero vector of size𝑚. Observe that the system 𝑴 𝒛 = 0
has a positive solution 𝒛 whose entries are given by 𝑧𝑖 =

��𝜑−1 (𝑖)��.
Define the matrix 𝑷 ≔ 𝑴 + 𝛼 I, where I is the identity matrix and 𝛼 is an arbitrary real number satisfying

𝛼 > − min

1⩽𝑖⩽𝑚
𝑀𝑖,𝑖 .

5
Observe that 𝑏𝑖 may be different from the outdegree of the vertex 𝑖 in the graph 𝐵.

12 Bernadette Charron-Bost and Patrick Lambein-Monette

The matrix 𝑷 is non-negative, and its diagonal entries are all positive. Hence, there is a self-loop at each vertex of the

associated graph 𝐺𝑷 associated
6
to 𝑷 . Moreover, 𝐺𝑷 coincides with the support of the graph 𝐵𝒘,𝑏 , except possibly for

the self-loops. Therefore, this graph is strongly connected, i.e., the matrix 𝑷 is irreducible.

The Perron-Frobenius theorem then applies to the matrix 𝑷 : the spectral radius 𝜚𝑷 of 𝑷 is an eigenvalue of 𝑷 of

algebraic and geometric multiplicity one, and associated with an eigenvector 𝒙 with positive entries. Hence, 𝜆 = 𝜚𝑷 − 𝛼
is a real eigenvalue of𝑴 , and every (complex) eigenvalue of𝑴 other than 𝜆 has a real part less than 𝜆. The eigenvalue 𝜆

has algebraic and geometric multiplicity one with the positive eigenvector 𝒙 .

If 𝒚 ∈
(
ℝ⩾0

)𝑚
is a non-zero eigenvector of the matrix 𝑴 for a real eigenvalue 𝜇, then 𝒚 is also an eigenvector of the

matrix 𝑷 for the real eigenvalue 𝜇 + 𝛼 . As just shown, we have:

𝜇 + 𝛼 ⩽ 𝜚𝑷 .

Let 𝑦𝑖 be a non-zero entry of the vector 𝒚. Since 𝑷 is non-negative, the 𝑖-th entry of 𝑷 𝒚 satisfies:

(𝑷𝒚)𝑖 = (𝜇 + 𝛼) 𝑦𝑖 ⩾ 𝑃𝑖,𝑖 𝑦𝑖

which implies that 𝜇 + 𝛼 > 0. We now show that 𝒚 is a positive vector. For that, we use the strong connectivity of the

graph 𝐺𝑷 , and prove by finite induction over ℓ , 0 ⩽ ℓ ⩽ 𝑚 − 1, that the entry 𝑦𝑗 is positive whenever 𝑗 is at distance ℓ
from 𝑖 in 𝐺𝑷 .

(1) The base case ℓ = 0 is by definition of 𝑖 .

(2) Inductive step: let ℓ ⩾ 1 and assume that the entries of the vector 𝒚 for all vertices at distance ℓ − 1 from 𝑖 are

positive. The vertex 𝑗 has an outgoing neighbor 𝑘 at distance ℓ − 1 from 𝑖 , and the 𝑗-th entry of 𝑷 𝒚 satisfies:

(𝑷 𝒚)𝑗 = (𝜇 + 𝛼) 𝑦𝑗 ⩾ 𝑃𝑗,𝑘 𝑦𝑘 .

Since both 𝑃𝑗,𝑘 and 𝜇 + 𝛼 are positive, the inductive assumption implies that 𝑦𝑗 is positive.

Hence, we can choose a positive real number 𝜀 small enough in order to have the componentwise inequality:

𝜀 𝒙 ⩽ 𝒚.

Since the matrix 𝑷 is non-negative, we obtain the following inequality for every positive integer 𝑘 :

𝜀 𝑷𝑘 (𝒙) = 𝜀 (𝜚𝑷)𝑘𝒙 ⩽ 𝑷𝑘 (𝒚) = (𝜇 + 𝛼)𝑘𝒚.

It follows that 𝜚𝑷 ⩽ 𝜇 + 𝛼 , and thus 𝜇 = 𝜚𝑷 − 𝛼 = 𝜆.

Since the system 𝑴 𝒛 = 0 has a positive solution whose entries are equal to the cardinalities of the fibres, we deduce

that 𝜆 = 0, and the set of solutions of this system, namely ker𝑴 , is a subspace of dimension one.

In a second step of the algorithm, using Gaussian elimination over the Euclidean ring ℤ (see e.g., [22]), each agent

computes a positive integer vector 𝒛 ∈ ℕ𝑚
whose all entries are coprime and such that ker𝑴 = ℝ 𝒛. Subsequently,

the agent computes 𝑓 (�̃�) where �̃� ∈ 𝛺 𝑝
is a vector of size 𝑝 ≔

∑𝑚
𝑖=1 𝑧𝑖 and where each value 𝑣𝑖 in 𝑆 occurs with

multiplicity 𝑧𝑖 . Since we have just proved that there exists a positive integer 𝑘 such that

∀𝑖 ∈ 𝑉𝐵,
��𝜑−1 (𝑖)�� = 𝑘 𝑧𝑖 , (2)

and 𝑓 is a frequency-based function, each agent actually outputs the value 𝑓 (�̃�) = 𝑓 (𝒗).

6
See Section 5.2 for a definition of the associated graph.

Know your audience 13

In each round 𝑡 , each agent 𝑖 builds the finite tree 𝑇 𝑡
𝑖
and the (valued) multi-graph B(𝑇 𝑡

𝑖
), and then applies the

Gaussian elimination method over the Euclidean ring to solve the linear system corresponding to B(𝑇 𝑡
𝑖
). The above

recalled result by Boldi and Vigna [8] on the graphs B(𝑇 𝑡
𝑖
) implies that, in this way, each agent computes the value 𝑓 (𝒗)

no later than in round 𝑛 + 𝐷 .

4.3 Positive results with output port awareness and symmetric graphs

Each agent can easily retrieve its outdegree in a bidirectional network as well as when it is output port aware. The

above algorithm with a preliminary phase of outdegree calculation thus allows agents to compute any frequency-based

function in the models with symmetric communications or with output port awareness. We now present two variants

of the algorithm for symmetric communications and with output port awareness accordingly, which directly compute

frequency-based functions without pre-calculation of the outdegrees, leading to linear systems that can be easily solved

without the use of Gaussian elimination.

Output port awareness. With output port awareness, any fibration is actually a covering, i.e., for any pair of vertices 𝑖

and 𝑗 in the same fibre, the outgoing edges of 𝑖 and 𝑗 are in one-to-one correspondence. This local isomorphism property

gives a bijective correspondence between the whole neighborhoods of two vertices in the same fibre and, as a result,

the cardinality of all fibres is the same (see e.g., [7]). In the case of output port awareness, eq. (1) is thus replaced by:��𝜑−1 (𝑖)�� = ��𝜑−1 (𝑗)�� . (3)

Each agent builds themulti-graphsB(𝑇 𝑡
𝑖
) which are eventually equal to theminimum base 𝐵𝒘 of the (colored and valued)

graph 𝐺𝒗 . If 𝑝 denotes the common cardinality of all the fibres, then 𝒗 = (𝑤𝑝

1
, · · · ,𝑤𝑝

𝑚). It follows that 𝑓 (𝒗) = 𝑓 (𝒘)
since 𝑓 is a frequency-based function. In this way, each agent can thus directly compute the value 𝑓 (𝒗) from the

construction of the valued multi-graph 𝐵𝒘 .

Symmetric communications. If the network 𝐺 is bidirectional, then for any fibration 𝜑 : 𝐺 → 𝐵, we have:

𝑑𝑖, 𝑗 |𝜑−1 (𝑗) | = 𝑑𝑗,𝑖 |𝜑−1 (𝑖) | (4)

where 𝑑𝑖, 𝑗 denotes the number of 𝑖 → 𝑗 edges in the multi-graph 𝐵.

Let𝑚 the number of vertices in the graph 𝐵. Up to some permutation of the vertices in 𝐵, we may assume that

none of the degrees 𝑑1,2, · · · , 𝑑𝑚−1,𝑚 is zero, since 𝐵 is strongly connected. Hence, the cardinalities of the fibres form

a solution of a linear system of𝑚 equations and𝑚 variables whose set of solutions is thus of dimension at least one.

Moreover, the positive integer vector 𝒛 defined by:

𝑧𝑖 ≔

𝑑1,2 × · · · × 𝑑𝑚−1,𝑚 if 𝑖 = 1

𝑑2,1× ··· ×𝑑𝑖,𝑖−1
𝑑1,2× ··· ×𝑑𝑖−1,𝑖 𝑧1 if 𝑖 ≠ 1

is obviously a basis of the solution set. Consequently, if �̃� denotes a vector with the same support as 𝒗 and where each

value 𝑣𝑖 ∈ 𝑆 occurs with multiplicity 𝑧𝑖 , then 𝑓 (�̃�) = 𝑓 (𝒗), since the function 𝑓 is frequency-based. eq. (4) thus yields

an algorithm that directly computes the function 𝑓 from the construction of the minimum base 𝐵𝒘 in the case of a

bidirectional network.

14 Bernadette Charron-Bost and Patrick Lambein-Monette

4.4 Computing with knowledge on the network size

As explained in Section 2.1, computability of a function when the number of agents is known means that for every

positive integer 𝑛, there exists an algorithm which computes the function in the class C𝑠𝑛 of static strongly connected

networks with 𝑛 agents. Similarly, the function is computable when an upper bound on the network size is known if for

every positive integer 𝑁 , there is an algorithm which computes the function in the network class C𝑠⩽𝑁 = C𝑠
1
∪ · · · ∪ C𝑠

𝑁
.

A refinement of the proof in Section 4.1 shows that the impossibility result still holds when a bound on the size of

the network is known. With the above positive results, we thus obtain the following corollary.

Corollary 4.2. Let (𝑋, 𝛿) be a metric space. In any of the three communication models with either output port awareness,

symmetric communications, or outdegree awareness, and for any function 𝑓 :

⋃
𝑛∈ℕ>0

𝛺𝑛 → 𝑋 , the following assertions

are equivalent:

(i) 𝑓 is frequency-based;

(ii) 𝑓 is 𝛿-computable in every network class C𝑠⩽𝑁 .

Proof. We only need to prove that (𝑖𝑖) ⇒ (𝑖). For that, we refine the argument in the impossibility proof in

Theorem 4.1. We consider two 𝛺-vectors of length 𝑛 and 𝑚, with the same frequency functions and continue the

proof by replacing computability in the class of strongly connected networks with computability in the sub-network

class C𝑠⩽𝑁 with 𝑁 = max(𝑛,𝑚). □

When the exact size of the network is known, deducing multiplicities from frequencies is straightforward, and

computing frequency-based functions thus allows for computing multiset-based functions. Hence, knowing the size

of the network considerably increases the computational power in the case of output port awareness, symmetric

communications, or outdegree awareness, while leaving it unchanged in the simple broadcast model [6].

Any function which is computable in a network class closed under graph isomorphisms is necessarily invariant under

permutation, i.e., is a multiset-based function. We thus obtain the following computability result when the network size

is known.

Corollary 4.3. Let (𝑋, 𝛿) be a metric space. In any of the three communication models with either output port awareness,

symmetric communications, or outdegree awareness, and for any function 𝑓 :

⋃
𝑛∈ℕ>0

𝛺𝑛 → 𝑋 , the following assertions

are equivalent:

(i) 𝑓 is multiset-based;

(ii) 𝑓 is 𝛿-computable in every network class C𝑠𝑛 .

4.5 Computing with leaders

We now study the impact of having leaders on the computational power in a static network with either output port

awareness, symmetric communications, or outdegree awareness. In the case of a unique leader, its fibre is of cardinality

one, and so the linearity coefficient 𝑘 in eq. (2) is equal to one. Hence, agents compute the cardinality of each fibre, and

our algorithm thus computes any function that is multiset-based.

Corollary 4.4. Let (𝑋, 𝛿) be a metric space. In any of the three communication models with either output port awareness,

symmetric communications, or outdegree awareness, and for any function 𝑓 :

⋃
𝑛∈ℕ>0

𝛺𝑛 → 𝑋 , the following assertions

are equivalent:

(i) 𝑓 is multiset-based;

Know your audience 15

(ii) 𝑓 is 𝛿-computable in the class of static strongly connected networks with one leader.

Observe that this result can be easily extended to the case of ℓ leaders if ℓ is known of all agents: the vertices in

a graph 𝐺 corresponding to the leaders collapse onto some subset 𝐿𝐵 of vertices in the minimum base 𝐵 of 𝐺 . The

cardinality of each fibre 𝜑−1 (𝑖) is then given by:��𝜑−1 (𝑖)�� = ℓ∑
𝑗∈𝐿𝐵 𝑧𝑗

𝑧𝑖 , (5)

where 𝒛 is the positive integer vector whose all entries are coprime and such that ker𝑴 = ℝ 𝒛. Hence, our algorithm,

together with eq. (5), allows each agent to compute any multiset-based function.

5 DYNAMIC NETWORKS

We now investigate how to compute a frequency-based function with symmetric communications or outdegree

awareness in dynamic networks with a finite dynamic diameter. In the case of symmetric communications, a remarkable

recent algorithm due Di Luna and Viglietta [25, 26] exactly computes any frequency-based function in linear time in

the dynamic diameter of the network, solving an important open question of computability. In particular, for a dynamic

graph that is strongly connected in each round, their algorithm operates in linear time in the size of the network.

Unfortunately, this algorithm is not self-stabilizing and does not even tolerate asynchronous starts. Moreover, this

algorithm is based on the construction, by each agent, of an infinite history tree, and so uses an infinite number of states

and an infinite bandwidth in each of its executions.

In this section, we propose to develop another method which consists in using consensus algorithms derived from

statistical physics – namely, the Metropolis and the Push-Sum algorithms. These algorithms only achieve asymptotic

convergence and their temporal complexity is non-linear. However, both tolerate asynchronous starts and use no

persistent memory.

The Metropolis algorithm computes the average of initial values in the class of symmetric networks with a finite

dynamic diameter and in the communication model of outdegree awareness, even under asynchronous starts. Its

convergence rate has been showed to be quadratic [10] in the case of a dynamic network that is strongly connected in

each round.
7
A variant for the simple model of symmetric communications (without assuming outdegree awareness)

has been proposed [11, 24], but its temporal complexity is in O(𝑛4).
In the case of outdegree awareness, we develop another approach based on the Push-Sum algorithm. The algorithm

was introduced in [23], where its correctness was shown in a probabilistic communication model with pairwise

communications in the fully-connected graph. This result was then extended to arbitrary strongly connected graphs

in [4]. Further, Nedic̀ et al. [30] proved the correctness of Push-Sum in any dynamic network with a finite diameter.

Below, we give a self-contained and streamlined convergence proof, and then describe how Push-Sum can be used to

compute frequency-based functions.

7
Using the Lazy Metropolis algorithm [30, 31], this result can be extended to the case of (symmetric) networks with a finite dynamic diameter.

16 Bernadette Charron-Bost and Patrick Lambein-Monette

5.1 The Push-Sum algorithm and the quot-sum function

The Push-Sum algorithm proceeds as follows: each agent 𝑖 maintains three variables 𝑥𝑖 , 𝑦𝑖 , and 𝑧𝑖 . The two variables 𝑦𝑖

and 𝑧𝑖 are initialized respectively to 𝑣𝑖 ∈ ℝ and𝑤𝑖 ∈ ℝ>0, and they are updated as follows:

𝑦𝑖 (𝑡) =
∑︁

𝑘∈ In𝑖 (𝑡)

𝑦𝑘 (𝑡 − 1)
𝑑−
𝑘
(𝑡) (6)

𝑧𝑖 (𝑡) =
∑︁

𝑘∈ In𝑖 (𝑡)

𝑧𝑘 (𝑡 − 1)
𝑑−
𝑘
(𝑡) . (7)

The variable 𝑥𝑖 is initialized to 𝑣𝑖/𝑤𝑖 and set to 𝑥𝑖 = 𝑦𝑖/𝑧𝑖 at the end of each round. Observe that by the very definition

of its update rules, the Push-Sum algorithm requires output port awareness.

The main result of this section is that, under the assumption of a network with a finite dynamic diameter, the

Push-Sum algorithm computes the quot-sum function defined by

𝑞𝑠 :
⋃

𝑛∈ℕ>0

(ℝ ×ℝ>0)𝑛 →ℝ

(
(𝑣1,𝑤1), · · · , (𝑣𝑛,𝑤𝑛)

)
↦→

∑
𝑘∈[𝑛] 𝑣𝑘∑
𝑘∈[𝑛] 𝑤𝑘

.

In other words, for each agent 𝑖 , the quotient 𝑥𝑖 (𝑡)/𝑦𝑖 (𝑡) asymptotically converges to the quot-sum of the initial values.

5.2 Preliminaries

We first introduce some notation. Let 𝑛 be a positive integer, 𝒗 ∈ ℝ𝑛
a real vector, and𝑨 ∈ ℝ𝑛 ×ℝ𝑛

a real square matrix,

both of size 𝑛. The vector 𝒗 or the matrix 𝑨 is said to be non-negative (resp. positive) if all its entries are non-negative

(resp. positive). The graph associated to a non-negative matrix 𝑨 is the directed graph 𝐺𝑨 = ([𝑛], 𝐸𝑨), where 𝐸𝑨 is the

set of edges defined as

𝐸𝑨 ≔ {(𝑗, 𝑖) ∈ [𝑛]2 : 𝐴𝑖, 𝑗 > 0}.

A vector is stochastic if it is non-negative and its entries sum to 1; amatrix is in turn (row-)stochastic if each of its rows is a

stochastic vector; correspondingly, a matrix is column-stochastic if each of its columns is a stochastic vector. Importantly,

the sum of entries of a vector is left invariant by any column-stochastic matrix 𝑨 – namely,

∑
𝑖∈[𝑛] (𝑨𝒗)𝑖 =

∑
𝑖∈[𝑛] 𝑣𝑖 .

Let 𝑨 = (𝑨(𝑡))𝑡 ∈ℕ>0
be a sequence of non-negative square matrices of size 𝑛. The entry of 𝑨(𝑡) at the 𝑖-th row

and 𝑗-th column is denoted by 𝐴𝑖, 𝑗 (𝑡). For any positive real number 𝛼 , the matrix 𝑨(𝑡) is said to be 𝛼-safe if all

its positive entries lie in the interval [𝛼, +∞). The graph associated to the matrix 𝑨(𝑡) is denoted 𝔾𝐴 (𝑡), and the

sequence 𝔾𝐴 (1),𝔾𝐴 (2), · · · forms a dynamic graph 𝔾𝑨 over the set of nodes [𝑛]. If 𝑡, 𝑡 ′ ∈ ℕ>0, with 𝑡 ′ ⩾ 𝑡 , we let

𝑨(𝑡 ′ : 𝑡) denote the backward product 𝑨(𝑡 ′) × · · · × 𝑨(𝑡). Hence, the graph associated to the matrix 𝑨(𝑡 ′ : 𝑡) is the
(forward) product 𝔾(𝑡 : 𝑡 ′) = 𝔾(𝑡) ◦ · · · ◦ 𝔾(𝑡 ′).

Lemma 5.1. Let (𝑨(𝑡))𝑡 ∈ℕ>0
be a sequence of 𝛼-safe column-stochastic matrices of size 𝑛 with positive diagonal entries,

and let 𝒗 ∈ ℝ𝑛 be a non-negative vector. If the associated dynamic graph 𝔾𝑨 has a finite dynamic diameter 𝐷 , then for

all 𝑖 ∈ [𝑛] and all 𝑡 ⩾ 𝐷 , we have

𝛼𝐷
∑︁

𝑘∈[𝑛]
𝑣𝑘 ⩽ 𝑣𝑖 (𝑡) ⩽

∑︁
𝑘∈[𝑛]

𝑣𝑘

where 𝒗 (𝑡) ≔ 𝑨(𝑡 : 1) 𝒗.

Know your audience 17

Proof. By induction, we easily check that, for any 𝑡 ∈ ℕ, all the entries of 𝒗 (𝑡) are positive. Moreover, the sum of

the entries in 𝒗 (𝑡) is invariant with 𝑡 . It follows that, for every integer 𝑡 ∈ ℕ, we have

𝑣𝑖 (𝑡) ⩽
∑︁

𝑘∈[𝑛]
𝑣𝑘 (𝑡) =

∑︁
𝑘∈[𝑛]

𝑣𝑘 .

For the lower bound, we start by observing that since all the positive entries of the matrices 𝑨(1),𝑨(2), · · · are at
least equal to 𝛼 , the positive entries of every product of 𝑡 matrices in this sequence are at least equal to 𝛼𝑡 . In particular,

if 𝑡 ⩾ 𝐷 , then all the positive entries of the matrix 𝐴(𝑡 : 𝑡 − 𝐷 + 1) are at least equal to 𝛼𝐷 . Moreover, the graph

associated to the product matrix 𝑨(𝑡 : 𝑡 − 𝐷 + 1) is the graph 𝔾(𝑡 − 𝐷 + 1 : 𝑡) equal to the complete graph, since 𝐷 is

the dynamic diameter of 𝔾. Therefore, all the entries of the matrix 𝑨(𝑡 : 𝑡 − 𝐷 + 1) are positive, and thus at least equal

to 𝛼 𝐷
.

Pick 𝑡 ⩾ 𝐷 . We have 𝒗 (𝑡) = 𝑨(𝑡 : 𝑡 − 𝐷 + 1) 𝒗 (𝑡 − 𝐷), and thus

𝑣𝑖 (𝑡) =
∑︁

𝑘∈[𝑛]
𝐴𝑖,𝑘 (𝑡 : 𝑡 − 𝐷 + 1)𝑣𝑘 (𝑡 − 𝐷) ⩾ 𝛼𝐷

∑︁
𝑘∈[𝑛]

𝑣𝑘 (𝑡 − 𝐷) .

Since the sum of the entries in 𝒗 (𝑡) is constant, we obtain 𝑣𝑖 (𝑡) ⩾ 𝛼𝐷
∑
𝑘∈[𝑛] 𝑣𝑘 . □

5.3 Push-Sum for computing the quot-sum function

We are now in position to prove that the Push-Sum algorithm computes the quot-sum of initial values.

Theorem 5.2. The Push-Sum algorithm computes the quot-sum function in the class of networks with a finite dynamic

diameter. More precisely, in any execution of Push-Sum with a network of dynamic diameter 𝐷 , all the output variables are

within 𝜀 of the quot-sum of the initial values in O

(
𝑛2𝐷 log

1

𝜀

)
rounds.

Proof. We first consider an execution of the Push-Sum algorithm in a dynamic network 𝔾 with 𝑛 agents and a

finite dynamic diameter 𝐷 , and synchronous starts at round one for all agents. Observe that if 𝐴(𝑡) is the square matrix

defined from the directed graph 𝔾(𝑡) by

𝐴𝑖, 𝑗 (𝑡) =
{
1/𝑑−

𝑗
(𝑡) if (𝑗, 𝑖) ∈ 𝐸 (𝑡)

0 otherwise

where 𝑑−
𝑗
(𝑡) denotes the outdegree of 𝑗 in 𝔾(𝑡), then 𝐴(𝑡) corresponds to the update rules for the variables 𝑦𝑖 and 𝑧𝑖 at

round 𝑡 , namely

𝒚(𝑡) = 𝑨(𝑡)𝒚(𝑡 − 1) and 𝒛 (𝑡) = 𝑨(𝑡) 𝒛 (𝑡 − 1).

Each matrix 𝑨(𝑡) is column-stochastic and
1

𝑛 -safe. Lemma 5.1 shows that for all 𝑖 ∈ [𝑛] and 𝑡 ⩾ 𝐷 ,

𝑛−𝐷
∑︁

𝑘∈[𝑛]
𝑤𝑘 ⩽ 𝑦𝑖 (𝑡) ⩽

∑︁
𝑘∈[𝑛]

𝑤𝑘 . (8)

The vector 𝒛 (𝑡) is positive, and thus 𝒙 (𝑡) = [diag(𝒛 (𝑡))]−1𝒚(𝑡). It follows that

𝒙 (𝑡) = 𝑩(𝑡) 𝒙 (𝑡 − 1)

where 𝑩(𝑡) ≔ [diag(𝒛 (𝑡))]−1𝑨(𝑡) diag(𝒛 (𝑡 − 1)).
We easily check that all the entries of 𝑩(𝑡) are non-negative, and 𝑩(𝑡) is a stochastic matrix with a positive diagonal.

Its associated graph is the same as 𝑨(𝑡)’s, namely 𝔾(𝑡).

18 Bernadette Charron-Bost and Patrick Lambein-Monette

The next step of the proof consists in proving that the product matrix 𝑩(𝑡 : 1) converges to a rank one matrix.
8
Let

us first observe that Dobrushin’s ergodic coefficient [16, eq. (1.5)] of a stochastic matrix 𝑷 , defined by

𝛿 (𝑷) ≔ 1 −min

𝑖≠𝑗

∑︁
𝑘∈[𝑛]

min(𝑃𝑖,𝑘 , 𝑃𝑗,𝑘)

lies in the range [0, 1] and satisfies the inequality

𝛿 (𝑷) ⩽ 1 − 𝑛𝛼

when 𝑷 is 𝛼-safe and its associated graph is fully-connected. A result by Seneta [17] combined with a straightforward

argument of convex duality shows that for any stochastic matrix 𝑷 , the ergodic coefficient 𝛿 (𝑷) coincides with the

matrix seminorm

sup

𝛿 (𝒗)>0

𝛿 (𝑷 𝒗)
𝛿 (𝒗)

associated to the seminorm on ℝ𝑛
defined by 𝛿 (𝒗) = max𝑖∈[𝑛] 𝑣𝑖 −min𝑖∈[𝑛] 𝑣𝑖 . Consequently, the ergodic coefficient 𝛿

is a matrix seminorm, and so is sub-multiplicative.

The sequence (𝑨(𝑡))𝑡 ∈ℕ>0
is

1

𝑛 -safe, and the inequalities in eq. (8) show that every matrix product

𝑩(𝑡 + 𝐷 − 1 : 𝑡) = [diag(𝒛 (𝑡 + 𝐷 − 1))]−1𝑨(𝑡 + 𝐷 − 1 : 𝑡) diag(𝒛 (𝑡 − 1))

is 𝑛−2𝐷 -safe. It follows that

𝛿 (𝑩(𝑡 : 1)) ⩽
(
1 − 𝑛−2𝐷

) ⌊𝑡/𝐷 ⌋
.

Because of the inequality log(1−𝑎) ⩽ −𝑎, valid whenever 𝑎 ⩾ 0, we obtain that if 𝑡 ⩾ 𝐷 𝑛2𝐷 log

(
1

𝜀

)
, then 𝛿 (𝑩(𝑡 : 1)) ⩽ 𝜀

and 𝛿 (𝑥 (𝑡)) ⩽ 𝜀 𝛿 (𝑥 (0)).
This shows that lim𝑡→∞ 𝑥+ (𝑡) − 𝑥− (𝑡) = 0, where 𝑥− (𝑡) ≔ min𝑖∈[𝑛] 𝑥𝑖 (𝑡) and 𝑥+ (𝑡) ≔ max𝑖∈[𝑛] 𝑥𝑖 (𝑡). Since each

matrix 𝑩(𝑡) is stochastic, the sequences
(
𝑥+ (𝑡)

)
𝑡 ∈ℕ and

(
𝑥− (𝑡)

)
𝑡 ∈ℕ are non-increasing and non-decreasing, respectively.

Hence, the two sequences converge to the same limit, that we denote 𝑥∗, and all the sequences
(
𝑥𝑖 (𝑡)

)
𝑡 ∈ℕ also converge

to 𝑥∗. The convergence rate follows from the above.

Every sequence (𝑧𝑖 (𝑡))𝑡 ∈ℕ is bounded (see eq. (8)), and hence lim𝑡→∞ 𝑦𝑖 (𝑡) − 𝑥∗𝑧𝑖 (𝑡) = 0 . Since the sum of the

entries in 𝒚(𝑡) and 𝒛 (𝑡) are constant, this implies that

∑
𝑘∈[𝑛] 𝑣𝑘 = 𝑥∗

∑
𝑘∈[𝑛] 𝑤𝑘 . □

Push-Sum is not a self-stabilizing algorithm (initializations of the variables 𝑦𝑖 and 𝑧𝑖 cannot be arbitrary), but it

tolerates asynchronous starts. Clearly, an execution with the dynamic graph 𝔾 and the agents 𝑖 starting at rounds 𝑠𝑖 is

similar to the execution where all the agents start at round one and with the dynamic graph 𝔾 with 𝑛 vertices and the

set of edges defined by:

𝐸𝑡 = {(𝑖, 𝑗) ∈ 𝐸𝑡 : 𝑖 = 𝑗 ∨ 𝑡 ⩾ max(𝑠𝑖 , 𝑠𝑗)}.

Observe that if 𝔾 has a finite dynamic diameter 𝐷 , then max(𝑠𝑖) + 𝐷 is an upper bound on 𝔾’s dynamic diameter.

5.4 Push-Sum for computing a frequency-based function

A Push-Sum based algorithm for computing the frequency function 𝜈 : 𝑣 ∈ 𝛺𝑛 → 𝜈𝑣 ∈ ℚ𝛺
can be easily derived from

Theorem 5.2 (see Algorithm 1). The variables 𝑥𝑖 , 𝑦𝑖 , and 𝑧𝑖 are now three arrays of dynamic size, each of which initially

contains only one variable, indexed by the initial value of vertex 𝑖 and equal to one. As soon as the vertex 𝑖 becomes

8
This convergence result can be directly deduced from a theorem [9, Theorem 3] established by Cao, Morse, and Anderson for dynamic graphs that are

rooted with bounded delay. The proof that we develop here in the particular case of a finite dynamic diameter is simpler and provides a better bound on

the convergence rate.

Know your audience 19

aware that some value 𝜔 ∈ 𝛺 is initially present in the network, upon the first receipt of some variables indexed by 𝜔 ,

it appends three variables to 𝑥𝑖 , 𝑦𝑖 , and 𝑧𝑖 all indexed by 𝜔 , and respectively initialized to 0, 0, and 1. Then, vertex 𝑖

starts to run the Push-Sum algorithm with the variables 𝑦𝑖 [𝜔] and 𝑧𝑖 [𝜔].

Algorithm 1: The Push-Sum algorithm for computing the frequency function

1 Input :𝑣𝑖 ∈ 𝛺
2 Initially:
3 𝑥𝑖 [𝑣𝑖] ← 0, 𝑦𝑖 [𝑣𝑖] ← 1, 𝑧𝑖 [𝑣𝑖] ← 1

4 In each round:
5 send ⟨𝑦𝑖 , 𝑧𝑖 , 𝑑−𝑖 ⟩ to all

6 receive ⟨𝑦𝑗1 , 𝑧𝑗1 , 𝑑−𝑗1 ⟩, · · · , ⟨𝑦𝑗ℓ , 𝑧𝑗ℓ , 𝑑
−
𝑗ℓ
⟩ from the in-neighbors ⊲ ℓ in-neighbors

7 for 𝜔 appearing in the support of any vector 𝑦𝑖 , 𝑦𝑗1 , . . . , 𝑦𝑗ℓ do
8 for 𝑘 = 1, . . . , ℓ do
9 if 𝜔 is not in the support of 𝑦𝑗𝑘 then
10 𝑦𝑗𝑘 [𝜔] ← 0, 𝑧𝑗𝑘 [𝜔] ← 1

11 if 𝜔 is not in the support of 𝑦𝑖 then
12 𝑥𝑖 [𝜔] ← 0, 𝑦𝑖 [𝜔] ← 0, 𝑧𝑖 [𝜔] ← 1

13 for 𝜔 in the support of 𝑦𝑖 do
14 𝑦𝑖 [𝜔] ←

∑ℓ
𝑘=1

𝑦𝑗𝑘 [𝜔]/𝑑−𝑗𝑘
15 𝑧𝑖 [𝜔] ←

∑ℓ
𝑘=1

𝑧𝑗𝑘 [𝜔]/𝑑−𝑗𝑘
16 𝑥𝑖 [𝜔] ← 𝑦𝑖 [𝜔]/𝑧𝑖 [𝜔]

For each value 𝜔 ∈ 𝛺 , the execution of this algorithm corresponds to one instance of the Push-Sum algorithm

initiated by the vertices whose initial value is 𝜔 . Since Push-Sum tolerates asynchronous starts, the frequency of the

value 𝜔 is asymptotically computed in the corresponding variable in the 𝑥𝑖 array if 𝜔 is the initial value of some agent,

or is equal to zero if 𝜔 is not initially present in the network.

Observe that the frequency of the value 𝜔 in the vector 𝒗 ∈ 𝛺𝑛
– namely, 𝜈𝒗 (𝜔) – is a rational number in the finite

set

ℚ𝑛 =

{
𝑝

𝑞
∈ ℚ : 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ>0 ∧ 0 ⩽ 𝑝 ⩽ 𝑞 ⩽ 𝑛

}
.

If the agent 𝑖 knows an upper bound 𝑁 on the network size, then 𝑖 can determine the set ℚ𝑁 ⊇ ℚ𝑛 and, at each round,

it can compute the nearest rational number to 𝑥𝑖 [𝜔] (𝑡) in ℚ𝑁 . Theorem 5.2 shows that these rational numbers are

eventually all equal to 𝜈𝒗 (𝜔). In this way, agent 𝑖 computes the frequency function in any vector 𝒗 ∈ 𝛺𝑛
in finite time,

and hence the value of 𝑓 (𝒗), if 𝑓 is a frequency-based function. Since two different numbers in ℚ𝑁 are at distance at

least 1/𝑁 2
, we obtain that the stabilization time of the algorithm is in O(𝑛2𝐷 log𝑁).

Let C⩽𝑁 denote the class of dynamic networks with at most 𝑁 vertices and a finite dynamic diameter. Combined

with the impossibility result in Corollary 4.2, we obtain the following characterization of computable functions in

dynamic anonymous networks with a finite dynamic diameter, when a bound on the network size is known.

Corollary 5.3. Let (𝑋, 𝛿) be a metric space. With outdegree awareness, for any function 𝑓 :

⋃
𝑛∈ℕ>0

𝛺𝑛 → 𝑋 , the

following assertions are equivalent:

(i) 𝑓 is frequency-based;

20 Bernadette Charron-Bost and Patrick Lambein-Monette

(ii) 𝑓 is 𝛿-computable in every network class C⩽𝑁 .

Since any function which is computable in a network class closed under graph isomorphisms is necessarily a

multiset-based function, we derive the following computability result when the network size is known.

Corollary 5.4. Let (𝑋, 𝛿) be a metric space. With outdegree awareness, for any function 𝑓 :

⋃
𝑛∈ℕ>0

𝛺𝑛 → 𝑋 , the

following assertions are equivalent:

(i) 𝑓 is multiset-based;

(ii) 𝑓 is 𝛿-computable in every network class C𝑛 .

We now study how to use the Push-Sum algorithm for computing a function when no bound on the network size is

available. For that, we first observe that at each round 𝑡 , the positive rational numbers 𝑥𝑖 [𝜔] (𝑡) may not correspond

to a frequency vector, since their sum may be different from one. This is why each agent 𝑖 maintains an additional

variable 𝒙𝑖 , set to

𝑥𝑖 [𝜔] =
𝑥𝑖 [𝜔]∑
𝜔 ′ 𝑥𝑖 [𝜔 ′]

to form a frequency function. Then, agent 𝑖 can easily construct a vector ⟨𝒙𝑖 ⟩ on 𝛺 that is 𝒙𝑖 -frequenced, i.e., whose

frequency function is 𝒙𝑖 .

This leads us to introduce the notion of 𝛿-continuity in frequency for a frequency-based function 𝑓 :

⋃
𝑛∈ℕ>0

𝛺𝑛 →
𝑋 . If 𝒗 (1), 𝒗 (2), · · · is a sequence of vectors of arbitrary size such that, for every value 𝜔 ∈ 𝛺 , the sequence of

frequencies 𝜈𝒗 (1) [𝜔], 𝜈𝒗 (2) [𝜔], · · · converges to some limit value 𝜈∗ [𝜔] and those limit values form a frequency

function 𝜈∗, then the sequence 𝑓 (𝒗 (1)), 𝑓 (𝒗 (2)), · · · converges in (𝑋, 𝛿) to 𝑓
(
⟨𝜈∗⟩

)
.

As an example, the average function is continuous in frequency with the classical metric on ℝ. Other examples are

provided by the threshold frequency predicates 𝛷𝜔
𝑟 :

⋃
𝑛∈ℕ>0

𝛺𝑛 → {0, 1}, where 𝑟 is a real number in [0, 1] and 𝜔 ∈ 𝛺 ,

defined by

𝛷𝜔
𝑟 (𝒗) ≔

{
1 if 𝜈𝒗 (𝜔) ⩾ 𝑟

0 otherwise.

Indeed, the function𝛷𝜔
𝑟 is continuous in frequency with the discrete metric on {0, 1} if and only if 𝑟 is irrational.

Algorithm 1, complemented with the variables 𝒙𝑖 , then 𝛿-computes any function 𝑓 that is 𝛿-continuous in frequency:

the variables 𝑓
(
⟨𝒙𝑖 ⟩

)
all tend to 𝑓 (𝒗) (in the sense of the metric 𝛿).

Corollary 5.5. Let (𝑋, 𝛿) be a metric space. In the communication model with outdegree awareness, every frequency-

based function 𝑓 :

⋃
𝑛∈ℕ>0

𝛺𝑛 → 𝑋 that is 𝛿-continuous in frequency is 𝛿-computable in the class of dynamic networks of

finite dynamic diameter.

5.5 Computing with leaders

If there is a set of ℓ ⩾ 1 leaders in the network, with ℓ known to all agents, a slight variant of the Push-Sum algorithm

allows each agent 𝑖 to compute any multiset-based function: its code is unchanged except if it is not a leader in which

case its variables 𝑧𝑖 [𝜔] are initially set to zero instead of one (cf. lines 3, 10, and 12 in Algorithm 1; it is then possible,

on line 16, that 𝑥𝑖 [𝜔] be equal to∞, but only for finitely many rounds). The variable ℓ𝑥𝑖 [𝜔] tends to 𝜔’s multiplicity,

which is thus asymptotically computable. The frequency-based condition can thus be replaced by the multiset-based

condition in Corollaries 5.3 and 5.5.

Know your audience 21

6 CONCLUDING REMARKS

In this paper, we have presented a panorama of function computability by anonymous networks, both static and dynamic,

for the various communication models that are typically considered when studying message-passing distributed systems.

Three classes of functions stand out: set-based functions, whose output is determined by the set of values appearing

in the input vector; multiset-based – or symmetric – functions, which are determined by the multiset of values; and the

intermediate class of frequency-based functions, whose values may depend on the relative frequency of the input values,

but not on their multiplicities.

A fundamental result states that in anonymous networks communicating through a simple local broadcast primitive –

where an agent has no knowledge or control of the recipients of its messages – only set-based functions can be computed,

both in the dynamic and in the static case. This holds even if we assume global symmetry breaking in the form of one or

several agents being designated as leaders. Conversely, a simple flooding algorithm easily allows all agents to recover

the set of all input values in finite time, and thus to compute any set-based function.

In hope of computing a larger class of functions, we have described three ways of augmenting this simple communi-

cation model: we can work under the assumption that communication links are symmetric; we can assume that senders

are aware, ahead of emission, of how many other agents will receive each of their messages; or, in the case of a static

network, we can assume that an agent may individually address each of its neighbors.

Under all three models for static networks, and under the former two for dynamic networks, the class of computable

functions is almost characterized as that of the frequency-based functions, up to some restrictions in the dynamic

case, discussed hereafter. Moreover, under any of these models, breaking the symmetry by introducing one or several

leaders allows for recovering the full multiset of input values, and thus for computing multiset-based functions, as

does providing the agents with the size of the network, but not with a bound over the size of the network. For static

networks, these results are collected in Table 1, and for dynamic networks they are presented in Table 2.

There are slight limitations to the above picture that we expect further works to address. First, our Push-Sum-based

method for computing frequency-based functions only works if a bound over the number of agents is known by the

agents, in order to turn an approximate result into an exact one. Otherwise, we must restrict ourselves to functions that

are additionally continuous in frequency. Can we lift these restrictions and recover the same computability statement for

the static and the dynamic case? What exactly characterizes continuity in frequency?

Another consideration, still regarding the dynamic case, concerns the connectivity assumption. The algorithms

that we consider have not, in general, been shown to work under the relaxed assumption of a network that, while

never becoming permanently split, do not have a finite dynamic diameter – asides from the Metropolis-based family of

algorithms. The convergence of the latter, for a symmetric communication model, results from Moreau’s remarkable

theorem [29, Theorem 1], which ensures the convergence of a wide family of algorithms. This weaker connectivity

assumption is often considered when studying natural systems through a distributed lens [2, 3, 13, 14]. Which of our

computability results continue to hold in this case? The recent algorithm designed by Di Luna and Viglietta [25, 26] for

the case of symmetric networks, could conceivably work; what, however, can be said in the outdegree awareness model,

where Moreau’s theorem does not apply?

Finally, what of self-stabilizing computation? Here again, neither Di Luna and Viglietta’s algorithm, nor Push-Sum,

continue to work. Can either of them be fixed? If not, what can be said of self-stabilizing computation over dynamic

networks, under the different communication models that we consider?

22 Bernadette Charron-Bost and Patrick Lambein-Monette

ACKNOWLEDGMENTS

We would like to thank Jérémie Chalopin, Louis de Monterno, Alex Olshevsky, and Michaël Thomazo for useful

discussions related to this work.

REFERENCES
[1] Dana Angluin. Local and global properties in networks of processors (extended abstract). In Raymond E. Miller, Seymour Ginsburg, Walter A.

Burkhard, and Richard J. Lipton, editors, Proceedings of the 12th Annual ACM Symposium on Theory of Computing, April 28-30, 1980, Los Angeles,
California, USA, pages 82–93. ACM, 1980. URL: https://doi.org/10.1145/800141.804655.

[2] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation in networks of passively mobile finite-state sensors.

Distributed Comput., 18(4):235–253, 2006. URL: https://doi.org/10.1007/s00446-005-0138-3.
[3] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power of population protocols. Distributed Comput.,

20(4):279–304, 2007. URL: https://doi.org/10.1007/s00446-007-0040-2.

[4] Florence Bénézit, Vincent D. Blondel, Patrick Thiran, John N. Tsitsiklis, and Martin Vetterli. Weighted gossip: Distributed averaging using non-doubly

stochastic matrices. In IEEE International Symposium on Information Theory, ISIT 2010, June 13-18, 2010, Austin, Texas, USA, Proceedings, pages
1753–1757. IEEE, 2010. URL: https://doi.org/10.1109/ISIT.2010.5513273.

[5] Paolo Boldi, Shella Shammah, Sebastiano Vigna, Bruno Codenotti, Peter Gemmell, and Janos Simon. Symmetry breaking in anonymous networks:

Characterizations. In Fourth Israel Symposium on Theory of Computing and Systems, ISTCS 1996, Jerusalem, Israel, June 10-12, 1996, Proceedings,
pages 16–26. IEEE Computer Society, 1996.

[6] Paolo Boldi and Sebastiano Vigna. Computing vector functions on anonymous networks. In Danny Krizanc and Peter Widmayer, editors,

SIROCCO’97, 4th International Colloquium on Structural Information & Communication Complexity, Monte Verita, Ascona, Switzerland, July 24-26,
1997, pages 201–214. Carleton Scientific, 1997.

[7] Paolo Boldi and Sebastiano Vigna. Fibrations of graphs. Discret. Math., 243(1-3):21–66, 2002. URL: https://doi.org/10.1016/S0012-365X(00)00455-6.
[8] Paolo Boldi and Sebastiano Vigna. Universal dynamic synchronous self-stabilization. Distributed Comput., 15(3):137–153, 2002. doi:10.1007/

s004460100062.

[9] Ming Cao, A. Stephen Morse, and Brian D. O. Anderson. Reaching a Consensus in a Dynamically Changing Environment: A Graphical Approach.

SIAM Journal on Control and Optimization, 47(2):575–600, 2008. URL: http://epubs.siam.org/doi/10.1137/060657005, doi:10.1137/060657005.

[10] Bernadette Charron-Bost. Geometric bounds for convergence rates of averaging algorithms. Inf. Comput., 285(Part):104909, 2022. doi:10.1016/j.
ic.2022.104909.

[11] Bernadette Charron-Bost and Patrick Lambein-Monette. Computing outside the box: Average consensus over dynamic networks. In James Aspnes

and Othon Michail, editors, 1st Symposium on Algorithmic Foundations of Dynamic Networks, SAND 2022, March 28-30, 2022, Virtual Conference,
volume 221 of LIPIcs, pages 10:1–10:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SAND.2022.10.

[12] Bernadette Charron-Bost and Shlomo Moran. The firing squad problem revisited. Theor. Comput. Sci., 793:100–112, 2019. doi:10.1016/j.tcs.
2019.07.023.

[13] Bernard Chazelle. The Total s-Energy of a Multiagent System. SIAM Journal on Control and Optimization, 49(4):1680–1706, 2011. URL: http:
//epubs.siam.org/doi/10.1137/100791671, doi:10.1137/100791671.

[14] Bernard Chazelle. Natural algorithms and influence systems. Commun. ACM, 55(12):101–110, 2012. URL: https://doi.org/10.1145/2380656.2380679.

[15] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. CACM, 17(11):643–644, 1974.

[16] Roland L. Dobrushin. Central limit theorem for nonstationary markov chains. II. Theory of Probability and Its Applications, 1:329–383, 1956. URL:
https://api.semanticscholar.org/CorpusID:119707237.

[17] Roland L. Dobrushin. Coefficients of ergodicity: Structure and applications. Advances in Applied Probability, 11(3):576–590, 1956. URL: https:
//doi.org/10.2307/1426955.

[18] Faith E. Fich and Eric Ruppert. Hundreds of impossibility results for distributed computing. Distributed Comput., 16(2-3):121–163, 2003. URL:
https://doi.org/10.1007/s00446-003-0091-y.

[19] Rainer Hegselmann and Ulrich Krause. Opinion dynamics and bounded confidence models, analysis, and simulation. Journal of artificial societies
and social simulation, 5(3):1–33, 2002.

[20] Julien M. Hendrickx, Alexander Olshevsky, and John N. Tsitsiklis. Distributed anonymous discrete function computation. IEEE Trans. Autom.
Control., 56(10):2276–2289, 2011. doi:10.1109/TAC.2011.2163874.

[21] Julien M. Hendrickx and John N. Tsitsiklis. Fundamental limitations for anonymous distributed systems with broadcast communications. In 2015
53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 9–16. IEEE, 2015. URL: http://ieeexplore.ieee.org/
document/7446980/, doi:10.1109/ALLERTON.2015.7446980.

[22] Nathan Jacobson. Basic Algebra, volume 1. Freeman, 1980.

[23] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate information. In 44th Symposium on Foundations
of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 482–491. IEEE Computer Society, 2003. URL:

https://doi.org/10.1109/SFCS.2003.1238221.

https://doi.org/10.1145/800141.804655
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1109/ISIT.2010.5513273
https://doi.org/10.1016/S0012-365X(00)00455-6
https://doi.org/10.1007/s004460100062
https://doi.org/10.1007/s004460100062
http://epubs.siam.org/doi/10.1137/060657005
https://doi.org/10.1137/060657005
https://doi.org/10.1016/j.ic.2022.104909
https://doi.org/10.1016/j.ic.2022.104909
https://doi.org/10.4230/LIPIcs.SAND.2022.10
https://doi.org/10.1016/j.tcs.2019.07.023
https://doi.org/10.1016/j.tcs.2019.07.023
http://epubs.siam.org/doi/10.1137/100791671
http://epubs.siam.org/doi/10.1137/100791671
https://doi.org/10.1137/100791671
https://doi.org/10.1145/2380656.2380679
https://api.semanticscholar.org/CorpusID:119707237
https://doi.org/10.2307/1426955
https://doi.org/10.2307/1426955
https://doi.org/10.1007/s00446-003-0091-y
https://doi.org/10.1109/TAC.2011.2163874
http://ieeexplore.ieee.org/document/7446980/
http://ieeexplore.ieee.org/document/7446980/
https://doi.org/10.1109/ALLERTON.2015.7446980
https://doi.org/10.1109/SFCS.2003.1238221

Know your audience 23

[24] Patrick Lambein-Monette. Average consensus in anonymous dynamic networks: An algorithmic approach. (Consensus de moyenne dans les réseaux
dynamiques anonymes: Une approche algorithmique). PhD thesis, Polytechnic Institute of Paris, France, 2020. URL: https://tel.archives-ouvertes.fr/tel-

03168053.

[25] Giuseppe Antonio Di Luna and Giovanni Viglietta. Computing in anonymous dynamic networks is linear. In 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 1122–1133. IEEE, 2022. doi:10.1109/FOCS54457.
2022.00108.

[26] Giuseppe Antonio Di Luna and Giovanni Viglietta. Optimal computation in leaderless and multi-leader disconnected anonymous dynamic networks.

In Rotem Oshman, editor, 37th International Symposium on Distributed Computing, DISC 2023, October 10-12, 2023, L’Aquila, Italy, volume 281 of

LIPIcs, pages 18:1–18:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.DISC.2023.18.

[27] Friedemann Mattern. Global quiescence detection based on credit distribution and recovery. Inform. Processing Letters, 30(4):195–200, 1989.
[28] Shlomo Moran and Manfred K. Warmuth. Gap theorems for distributed computation. SIAM J. Comput., 22(2):379–394, 1993. URL: https:

//doi.org/10.1137/0222028.

[29] Luc Moreau. Stability of multiagent systems with time-dependent communication links. IEEE Transactions on Automatic Control, 50(2):169–182,
2005. URL: http://ieeexplore.ieee.org/document/1393134/, doi:10.1109/TAC.2004.841888.

[30] Angelia Nedic, Alex Olshevsky, and Michael G. Rabbat. Network topology and communication-computation tradeoffs in decentralized optimization.

Proc. IEEE, 106(5):953–976, 2018. doi:10.1109/JPROC.2018.2817461.
[31] Alex Olshevsky. Linear time average consensus and distributed optimization on fixed graphs. SIAM J. Control. Optim., 55(6):3990–4014, 2017.

doi:10.1137/16M1076629.

[32] Masafumi Yamashita and Tiko Kameda. Electing a leader when processor identity numbers are not distinct (extended abstract). In Jean-Claude

Bermond and Michel Raynal, editors, Distributed Algorithms, 3rd International Workshop, Nice, France, September 26-28, 1989, Proceedings, volume

392 of Lecture Notes in Computer Science, pages 303–314. Springer, 1989. URL: https://doi.org/10.1007/3-540-51687-5_52.
[33] Masafumi Yamashita and Tiko Kameda. Computing functions on asynchronous anonymous networks. Math. Syst. Theory, 29(4):331–356, 1996.

doi:10.1007/bf01192691.

[34] Masafumi Yamashita and Tsunehiko Kameda. Computing on anonymous networks: Part I- characterizing the solvable cases. IEEE Trans. Parallel
Distributed Syst., 7(1):69–89, 1996. URL: https://doi.org/10.1109/71.481599.

,

https://tel.archives-ouvertes.fr/tel-03168053
https://tel.archives-ouvertes.fr/tel-03168053
https://doi.org/10.1109/FOCS54457.2022.00108
https://doi.org/10.1109/FOCS54457.2022.00108
https://doi.org/10.4230/LIPIcs.DISC.2023.18
https://doi.org/10.1137/0222028
https://doi.org/10.1137/0222028
http://ieeexplore.ieee.org/document/1393134/
https://doi.org/10.1109/TAC.2004.841888
https://doi.org/10.1109/JPROC.2018.2817461
https://doi.org/10.1137/16M1076629
https://doi.org/10.1007/3-540-51687-5_52
https://doi.org/10.1007/bf01192691
https://doi.org/10.1109/71.481599

	Abstract
	1 Introduction
	2 The computing model
	2.1 Networked systems
	2.2 Algorithms, communication models, and executions
	2.3 Computability in a metric space

	3 Graph fibrations
	3.1 Lifting lemma
	3.2 Minimum base

	4 Computability in static networks
	4.1 Proof of the impossibility result
	4.2 Positive result with outdegree awareness
	4.3 Positive results with output port awareness and symmetric graphs
	4.4 Computing with knowledge on the network size
	4.5 Computing with leaders

	5 Dynamic networks
	5.1 The Push-Sum algorithm and the quot-sum function
	5.2 Preliminaries
	5.3 Push-Sum for computing the quot-sum function
	5.4 Push-Sum for computing a frequency-based function
	5.5 Computing with leaders

	6 Concluding Remarks
	Acknowledgments
	References

