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Abstract

Variable importance assessment has become a crucial step in machine-learning
applications when using complex learners, such as deep neural networks, on
large-scale data. Removal-based importance assessment is currently the reference
approach, particularly when statistical guarantees are sought to justify variable
inclusion. It is often implemented with variable permutation schemes. On the flip
side, these approaches risk misidentifying unimportant variables as important in the
presence of correlations among covariates. Here we develop a systematic approach
for studying Conditional Permutation Importance (CPI) that is model agnostic and
computationally lean, as well as reusable benchmarks of state-of-the-art variable
importance estimators. We show theoretically and empirically that CPI overcomes
the limitations of standard permutation importance by providing accurate type-I
error control. When used with a deep neural network, CPI consistently showed top
accuracy across benchmarks. An experiment on real-world data analysis in a large-
scale medical dataset showed that CPI provides a more parsimonious selection of
statistically significant variables. Our results suggest that CPI can be readily used
as drop-in replacement for permutation-based methods.

1 Introduction

Machine learning is an area of growing interest for biomedical research [Iniesta et al., 2016, Taylor
and Tibshirani, 2015, Malley et al., 2011] for predicting biomedical outcomes from heterogeneous
inputs [Hung et al., 2020, Zheng and Agresti, 2000, Giorgio et al., 2022, Sechidis et al., 2021].
Biomarker development is increasingly focusing on multimodal data including brain images, genetics,
biological specimens and behavioral data [Coravos et al., 2019, Siebert, 2011, Ye et al., 2008, Castillo-
Barnes et al., 2018, Yang et al., 2022]. Such high-dimensional settings with correlated inputs put
strong pressure on model identification. With complex, often nonlinear models, it becomes harder
to assess the role of features in the prediction, aka variable importance [Casalicchio et al., 2019,
Altmann et al., 2010]. In epidemiological and clinical studies, one is interested in population-level
feature importance, as opposed to instance-level feature importance.

In that context, variable importance is understood as conditional importance, meaning that it measures
the information carried by one variable on the outcome given the others, as opposed to the easily
accessible marginal importance of the variables. Conditional importance is necessary e.g. to assess
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whether a given measurement is worth acquiring, on top of others, for a diagnostic or prognostic
task. As the identification of relevant variables is model-dependent and potentially unstable, point
estimates of variable importance are misleading. One needs confidence intervals of importance
estimates or statistical guarantees, such as type-I error control, i.e. the percentage of non-relevant
variables detected as relevant (false positives). This control depends on the accuracy of the p-values
on variable importance being non-zero [Cribbie, 2000].

Within the family of removal-based importance assessment methods [Covert et al., 2022], a popular
model-agnostic approach is permutation variable importance, that measures the impact of shuffling
a given variable on the prediction [Janitza et al., 2018]. By repeating the permutation importance
analysis on permuted replicas of the variable of interest, importance values can be tested against the
null hypothesis of being zero, yielding p-values that are valid under general distribution assumptions.
Yet, statistical guarantees for permutation importance assessment do not hold in the presence of
correlated variables, leading to selection of unimportant variables [Molnar et al., 2021, Hooker et al.,
2021, Nicodemus et al., 2010, Stigler, 2005]. For instance, the method proposed in [Mi et al., 2021]
is a powerful variable importance evaluation scheme, but it does not control the rate of type-I error.

In this work, we propose a general methodology for studying the properties of Conditional Permuta-
tion Importance in biomedical applications alongside tools for benchmarking variable importance
estimators:

• Building on the previous literature on CPI, we develop theoretical results for the limita-
tions regarding Permutation Importance (PI) and advantages of conditional Permutation
Importance (CPI) given correlated inputs (section 3).

• We propose a novel implementation for CPI allowing us to combine the potential advantages
of highly expressive base learners for prediction (a deep neural network) and a comparably
lean Random Forest model as a conditional probability learner (section 4).

• We conduct extensive benchmarks on synthetic and heterogeneous multimodal real-world
biomedical data tapping into different correlation levels and data-generating scenarios for
both classification and regression (section 5).

• We propose a reusable library for simulation experiments and real-world applications of
our method on a public GitHub repo https://github.com/achamma723/Variable_
Importance.

2 Related work

A popular approach to interpret black-box predictive models is based on locally interpretable, i.e.
instance-based, models. LIME [Ribeiro et al., 2016] provides local interpretable model-agnostic
explanations by locally approximating a given complex model with a linear model around the instance
of interest. SHAP [Burzykowski, 2020] is a popular package that measures local feature effects using
the Shapley values from coalitional game theory.

However, global, i.e. population-level, explanations are better suited than instance-level explanations
for epidemiological studies and scientific discovery in general. Many methods can be subsumed under
the general category of removal-based approaches [Covert et al., 2022]. Permutation importance is
defined as the decrease in a model score when the values of a single feature are randomly shuffled
[Breiman, 2001]. This procedure breaks the relationship between the feature and the outcome, thus
the drop in model performance expresses the relevance of the feature. Janitza et al. [2018] use an
ensemble of Random Forests with the sample space equally partitioned. They approximate the null
distribution based on the observed importance scores to provide p-values. Yet, this coarse estimate of
the null distribution can give unstable results. Recently, a generic approach has been proposed in
[Williamson et al., 2021] that measures the loss difference between models that include or exclude a
given variable, also applied with LOCO (Leave One Covariate Out) in the work by Lei et al. [2018].
They show the asymptotic consistency of the model. However, their approach is intractable, given that
it requires refitting the model for each variable. A simplified version has been proposed by Gao et al.
[2022]. However, relying on linear approximations, some statistical guarantees from [Williamson
et al., 2021] are potentially lost.

Another recent paper by Mi et al. [2021] has introduced model-agnostic explanation for black-box
models based on the permutation approach. Permutation importance [Breiman, 2001] can work with
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any learner. Moreover, it relies on a single model fit, hence it is an efficient procedure. Strobl et al.
[2008] pointed out limitations with the permutation approach in the face of correlated variables. As
an alternative, they propose a conditional permutation importance by shuffling the variable of interest
conditionally on the other variables. However, the solution was specific to Random Forests, as it is
based on bisecting the space with the cutpoints extracted during the building process of the forest.

With the Conditional Randomization Test proposed by Candes et al. [2017], the association between
the outcome y and the variable of interest xj conditioned on x−j is estimated. The variable of
interest is sampled conditionally on the other covariates multiple times to compute a test statistic
and p-values. However, this solution is limited to generalized linear models and is computationally
expensive. Finally, a recent paper by [Watson and Wright, 2021] showed the necessity of conditional
schemes and introduced a knockoff sampling scheme, whereby the variable of interest is replaced by
its knockoff to monitor any drop in performance of the leaner used without refitting. This method is
computationally inexpensive, and enjoys statistical guarantees from from [Lei et al., 2018]. However,
it depends on the quality of the knockoff sampling where even a relatively small distribution shift in
knockoff generation can lead to large errors at inference time.

Other work has presented comparisons of select models within distinct communities [Liu et al.,
2021, Chipman et al., 2010, Janitza et al., 2018, Mi et al., 2021, Altenmüller et al., 2021], however,
lacking conceptualization from a unified perspective. In summary, previous work has established
potential advantages of conditional permutation schemes for inference of variable importance. Yet,
the lack of computationally scalable approaches has hampered systematic investigations of different
permutation schemes and their comparison with alternative techniques across a broader range of
predictive modeling settings.

3 Permutation importance and its limitations

3.1 Preliminaries

Notations We will use the following system of notations. We denote matrices, vectors, scalar
variables and sets by bold uppercase letters, bold lowercase letters, script lowercase letters, and
calligraphic letters, respectively (e.g. X, x, x, X ). We call µ the function that maps the sample space
X ⊂ Rp to the sample space Y ⊂ R and µ̂ is an estimate of µ. Permutation procedures will be
represented by (perm). We denote by JnK the set {1, . . . , n}.

Let X ∈ Rn×p be a design matrix where the i-th row and the j-th column are denoted xi and xj

respectively. Let X−j = (x1, . . . ,xj−1,xj+1, . . . ,xp) be the design matrix, where the jth column
is removed, and X(j) = (x1, . . . ,xj−1, {xj}perm,xj+1, . . . ,xp) the design matrix with the jth

column shuffled. The rows of X−j and X(j) are denoted x−ji and x
(j)
i respectively, for i ∈ JnK.

Problem setting Machine learning inputs are a design matrix X and a target y ∈ Rn or ∈ {0, 1}n
depending on whether it is a regression or a classification problem. Throughout the paper, we rely on
an i.i.d. sampling train / test partition scheme where the n samples are divided into ntrain training
and ntest test samples and consider that X and y are restricted to the test samples - the training
samples were used to obtain µ̂.

3.2 The permutation approach leads to false detections in the presence of correlations

A known problem with permutation variable importance is that if features are correlated, their
importance is typically over-estimated [Strobl et al., 2008], leading to a loss of type-I error control.
However, this loss has not been precisely characterized yet, which we will work through for the linear
case. We use the setting of [Mi et al., 2021], where the estimator µ̂, computed with empirical risk
minimization under the training set, is used to assess variable importance on a new set of data (test
set). We consider a regression model with a least-square loss function for simplicity. The importance
of variable xj is computed as follows:

m̂j =
1

ntest

ntest∑
i=1

(
(yi − µ̂(x

(j)
i ))2 − (yi − µ̂(xi))

2
)
. (1)
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Let εi = yi − µ(xi) for i ∈ JntestK. Re-arranging terms yields

m̂j =
1

ntest

ntest∑
i=1

(µ̂(xi)− µ̂(x
(j)
i ))(2µ(xi)− µ̂(xi)− µ̂(x

(j)
i ) + 2εi). (2)

Mi et al. [2021] argued that these terms vanish when ntest → ∞. But it is not the case as long as
the training set is fixed. In order to get tractable computation, we assume that µ and µ̂ are linear
functions: µ(x) = xw and µ̂(x) = xŵ. Let us further consider that xj is a null feature, i.e. wj = 0.
This yields xw = xjwj + x−jw−j = x−jw−j. Denoting the standard dot product by 〈., .〉, this
leads to (Detailed proof of getting from Eq. 2 to Eq. 3 can be found in supplement section A)

m̂j =
2ŵj

ntest

〈
xj − {xj}perm,X−j(w−j − ŵ−j) + ε

〉
(3)

as (‖xj‖2 − ‖{xj}perm‖2) = 0. Next, 1
ntest
〈{xj}perm,X−j(w−j − ŵ−j)〉 → 0 and 1

ntest
〈xj −

{xj}perm, ε〉 → 0 when ntest → ∞ with speed 1√
ntest

from the Berry-Essen theorem, assuming
that the first three moments of these quantities are bounded and that the test samples are i.i.d. Let us
assume that the correlation within X takes the following form: xj = X−ju+δ, where u ∈ Rp−1 and
δ is a random vector independent of X−j. By contrast, 2ŵj

ntest
〈xj,X−j(w−j − ŵ−j)〉 has a non-zero

limit 2ŵjuTCov(X−j)(w−j − ŵ−j), where Cov(X−j) = limntest→∞
X−jTX−j

ntest
(remember that

both w−j and ŵ−j are fixed, because the training set is fixed). Thus, the permutation importance of a
null but correlated variable does not vanish when ntest →∞, implying that this inference scheme
will lead to false positives.

4 Conditional sampling-based feature importance

4.1 Main result

We define the permutation of variable xj conditional to x−j, as a variable x̃j that retains the
dependency of xj with respect to the other variables in x−j, but where the independent part is
shuffled; x̃(j) is the vector x where xj is replaced by x̃j . We propose two constructions below (see
Fig. E1). In the case of regression, this leads to the following importance estimator:

m̂j
CPI =

1

ntest

ntest∑
i=1

(
(yi − µ̂(x̃

(j)
i ))2 − (yi − µ̂(xi))

2
)
. (4)

As noted by Watson and Wright [2021], this inference is correct, as in traditional permutation tests,
as long as one wishes to perform inference conditional to µ̂. However, the following proposition
states that this inference has much wider validity in the asymptotic regime.

Proposition. Assuming that the estimator µ̂ is obtained from a class of functions F with sufficient
regularity, i.e. that it meets conditions (A1, A2, A3, A4, B1 and B2) defined in supplementary material,
the importance score m̂j

CPI defined in (4) cancels when ntrain →∞ and ntest →∞ under the null
hypothesis, i.e. the j-th variable is not significant for the prediction. Moreover, the Wald statistic

zj =
mean(m̂j

CPI)

std(m̂j
CPI)

obtained by dividing the mean of the importance score by its standard deviation

asymptotically follows a standard normal distribution.

This implies that in the large sample limit, the p-value associated with zj controls the type-I error
rate for all optimal estimators in F .

The proof of the proposition is given in the supplement (section C). It consists in observing that the
importance score defined in (4) is 0 for the class of learners discussed in [Williamson et al., 2021],
namely those that meet a certain set of convergence guarantees and are invariant to arbitrary change of
their jth argument, conditional on the others. In the supplement, we also restate the precise technical
conditions under which the importance score m̂j

CPI used is (asymptotically) valid, i.e. leads to a
Wald-type statistic that behaves as a standard normal under the null hypothesis.

It is easy to see that for the setting in Sec. 3.2, all terms in Eq. 4 vanish with speed 1√
ntest

.
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4.2 Practical estimation

Next, we present algorithms for computing conditional permutation importance. We propose two con-
structions for x̃j , the conditionally permuted counterpart of xj . The first one is additive: on test sam-
ples, xj is divided into the predictable and random parts x̃j = E(xj |x−j) +

(
xj − E(xj |x−j)

)perm
,

where the residuals of the regression of xj on x−j are shuffled to obtain x̃j . In practice, the expec-
tation is obtained by a universal but efficient estimator, such as a random forest trained on the test
set.

The other possibility consists in using a random forest (RF) model to fit xj from x−j and then sample
the prediction within leaves of the RF.

Random shuffling is applied B times. For instance, using the additive construction, a shuffling of
the residuals ε̃j,b for a given b ∈ JBK allows to reconstruct the variable of interest as the sum of the
predicted version and the shuffled residuals, that is

x̃j,b = x̂j + ε̃j,b. (5)

Let X̃j,b = (x1, . . . ,xj−1, x̃j,b,xj+1, . . . ,xp) ∈ Rntest×p be the new design matrix including the
reconstructed version of the variable of interest xj. Both X̃j,b and the target vector y are fed to the
loss function in order to compute a loss score lj,bi ∈ R defined by

lj,bi =

{
yi log

(
S(ŷi)

S(ỹbi )

)
+ (1− yi) log

(
1−S(ŷi)
1−S(ỹbi )

)
(yi − ỹbi )2 − (yi − ŷi)2

(6)

for binary and regression cases respectively where i ∈ JntestK, j ∈ JpK, b ∈ JBK, i indexes a
test sample of the dataset, ŷi = µ̂(xi) and ỹbi = µ̂(x̃j,b

i ) is the new fitted value following the
reconstruction of the variable of interest with the bth residual shuffled and S(x) = 1

1+e−x .

The variable importance scores are computed as the double average over the number of permutations
B and the number of test samples ntest (line 15 of Alg. 1), while their standard deviations are
computed as the square root of the average over the test samples of the quadratic deviation over
the number of permutations (line 17). Note that, unlike Williamson et al. [2021], the variance
estimator is non-vanishing, and thus can be used as a plugin. A zjCPI statistic is then computed by
dividing the mean of the corresponding importance scores with the corresponding standard deviation
(line 18). P-values are computed using the cumulative distribution function of the standard normal
distribution (line 19). The conditional sampling and inference steps are summarized in Algorithm
1. This leads to the CPI-DNN method when µ̂ is a deep neural network, or CPI-RF when µ̂ is a
random forest. Supplementary analysis reporting the computational advantage of CPI-DNN over a
remove-and-relearn alternative a.k.a. LOCO-DNN, can be found in supplement (section D), which
justifies its computational leanness.

5 Experiments & Results

In all experiments, we refer to the original implementation of the different methods in order to
maintain a fair comparison. Regarding Permfit-DNN, CPI-DNN and CPI-RF models specifically, our
implementation involves a 2-fold internal validation (the training set of further split to get validation
set for hyperparameter tuning). The scores from different splits are thus concatenated to compute
the final variable importance. We focus on the Permfit-DNN and CPI-DNN importance estimators
that use a deep neural network as learner µ̂, using standard permutation and algorithm 1, respectively.
All experiments are performed with 100 runs. The evaluation metrics are detailed in the supplement
(section E).

5.1 Experiment 1: Type-I error control and accuracy when increasing variable correlation

We compare the performance of CPI-DNN with that of Permfit-DNN by applying both methods across
different correlation scenarios. The data {xi}ni=1 follow a Gaussian distribution with a prescribed
covariance structure Σ i.e. xi ∼ N (0,Σ)∀i ∈ JnK. We consider a block-designed covariance matrix
Σ of 10 blocks with an equal correlation coefficient ρ ∈ {0, 0.2, 0.5, 0.8} among the variables of
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Algorithm 1 Conditional sampling step: The algorithm implements the conditional sampling step
in place of the permutation approach when computing the p-value of variable xj

Require: X ∈ Rntest×p, y ∈ Rntest , µ̂: estimator, l: loss function, RFj : learner trained to predict
xj from x−j

1: B ← number of permutations
2: X−j ←X with j-th column removed
3: for i = 1 to ntest do
4: x̂ji ← RFj(x

−j
i )

5: end for
6: Residuals εj ← xj − x̂j

7: for b = 1 to B do
8: ε̃j,b ← Random Shuffling(εj)
9: x̃j,b ← x̂j + ε̃j,b

10: for i = 1 to ntest do
11: ỹbi ← µ̂(x̃j,b

i )

12: compute lj,bi

13: end for
14: end for

15: mean(m̂j
CPI) = 1

ntest

1
B

ntest∑
i=1

B∑
b=1

lj,bi

16: τ ji =

(
1
B

B∑
b=1

lj,bi −mean(m̂j
CPI)

)2

17: std(m̂j
CPI) =

√
1

ntest−1

ntest∑
i=1

τ ji

18: zjCPI =
mean(m̂j

CPI)

std(m̂j
CPI)

19: pj ← 1− cdf(zjCPI)

Figure 1: CPI-DNN vs Permfit-DNN: Performance at detecting important variables on simulated
data with n = 300 and p = 100. (A): The type-I error quantifies to which extent the rate of low
p-values (p < 0.05) exceeds the nominal false positive rate. (B): The AUC score measures to which
extent variables are ranked consistently with the ground truth. Dashed line: targeted type-I error rate.
Solid line: chance level.

each block. In this experiment, p = 100 and n = 300. The first variable of each of the first 5 blocks
is chosen to predict the target y with the following model, where ε ∼ N (0, I):

yi = x1i + 2 log(1 + 2(x11i )2 + (x21i + 1)2) + x31i x
41
i + εi, ∀i ∈ JnK

The AUC score and type-I error are presented in Fig. 1. Power and computation time are reported in
the supplement Fig. 1 - S1. Based on the AUC scores, Permfit-DNN and CPI-DNN showed virtually
identical performance. However, Permfit-DNN lost type-I error control when correlation in X is
increased, while CPI-DNN always controlled the type-I error at the targeted rate.

5.2 Experiment 2: Performance across different settings

In the second setup, we check if CPI-DNN and Permfit-DNN control the type-I error with an increasing
total number of samples n. The data are generated as previously, with a correlation ρ = 0.8. We fix
the number of variables p to 50 while the number of samples n increases from 100 to 1000 with a
step size of 100. We use 5 different models to generate the outcome y from X: classification, Plain
linear, Regression with ReLu, Interactions only and Main effects with interactions. Further details
regarding each data-generating scenario can be found in supplement (section G).
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Figure 2: Model comparisons across data-generating scenarios: The (A) type-I error and (B)
AUC scores of Permfit-DNN and CPI-DNN are plotted as function of sample size for five different
settings. The number n of samples increased from 100 to 1000 with a step size of 100. The number
of variables p was set to 50. Dashed line: targeted type-I error rate. Solid line: chance level.

The AUC score and type-I error of Permfit-DNN and CPI-DNN are shown as a function of sample
size in Fig. 2. The accuracy of the two methods was similar across data-generating scenarios, with
a slight reduction in the AUC scores of Permfit-DNN as compared to CPI-DNN. Only CPI-DNN
controlled the rate of type-I error in the different scenarios at the specified level of 0.05. Thus,
CPI-DNN provided an accurate ranking of the variables according to their importance score while, at
the same time, controlling for the type-I error in all scenarios.

5.3 Experiment 3: Performance benchmark across methods

In the third setup, we include Permfit-DNN and CPI-DNN in a benchmark with other state-of-the-art
methods for variable importance using the same setting as in Experiment 2, while fixing the total
number of samples n to 1000. We consider the following methods:

• Marginal Effects: A univariate linear model is fit to explain the response from each of the
variables separately. The importance scores are then obtained from the ensuing p-values.
• Conditional-RF [Strobl et al., 2008]: A conditional variable importance approach based on

a Random Forest model. This method provides p-values.
• d0CRT [Liu et al., 2021, Nguyen et al., 2022]: The Conditional Randomization Test with

distillation, using a sparse linear or logistic learner.
• Lazy VI [Gao et al., 2022].
• Permfit-DNN [Mi et al., 2021].
• LOCO [Lei et al., 2018]: This method applies the remove-and-retrain approach.
• cpi-knockoff [Watson and Wright, 2021]: Similar to CPI-RF, but permutation steps are

replaced by a sampling step with a knockoff sampler.
• CPI-RF: This corresponds to the method in Alg. 1, where µ̂ is a Random Forest.
• CPI-DNN: This corresponds to the method in Alg. 1, where µ̂ is a DNN.

The extensive benchmarks on baselines and competing methods that provide p-values are presented
in Fig. 3. For type-I error, d0CRT, CPI-RF, CPI-DNN, LOCO and cpi-knockoff provided reliable
control, whereas Marginal effects, Permfit-DNN, Conditional-RF and Lazy VI showed less consistent
results across scenarios. For AUC, we observed that marginal effects performed poorly, as they do
not use a proper predictive model. LOCO and cpi-knockoff behave similarly. d0CRT performed well
when the data-generating model was linear and did not include interaction effects. Conditional-RF
and CPI-RF showed reasonable performance across scenarios. Finally, Permfit-DNN and CPI-DNN
outperformed all the other methods, closely followed by Lazy VI.

Additional benchmarks on popular methods that do not provide p-values, e.g. BART [Chipman et al.,
2010] or local and instance-based methods such as Shapley values [Kumar et al., 2020], are reported
in the supplement (section H). The performance of these methods in terms of power and computation
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Figure 3: Extended model comparisons: CPI-DNN and Permfit-DNN were compared to baseline
models (outer columns) and competing approaches across data-generating scenarios (inner columns).
Prediction tasks were simulated with n = 1000 and p = 50. (A): Type-I error. (B): AUC scores.
Dashed line: targeted type-I error rate. Solid line: chance level.

time are reported in the supplement Figs. 3 - S2 & 3 - S3 respectively. Additional inspection of
power showed that across data generating scenarios, CPI-DNN, Permfit-DNN and conditional-RF
showed strong results. Marginal and d0CRT performed only well in scenarios without interaction
effects. CPI-RF, cpi-knockoff, LOCO and Lazy VI performed poorly. Finally, to put estimated
variable importance in perspective with model capacity, we benchmarked prediction performance of
the underlying learning algorithms in the supplement Fig. 3 - S4.

5.4 Experiment 4: Permfit-DNN vs CPI-DNN on Real Dataset UKBB

Large-scale simulations comparing the performance of CPI-DNN and Permfit-DNN are conducted in
supplement (section L). We conducted an empirical study of variable importance in a biomedical
application using the non-conditional permutation approach Permfit-DNN (no statistical guarantees
for correlated inputs) and the safer CPI-DNN approach. A recent real-world data analysis of the UK
Biobank dataset reported successful machine learning analysis of individual characteristics. The
UK Biobank project (UKBB) curates phenotypic and imaging data from a prospective cohort of
volunteers drawn from the general population of the UK [Constantinescu et al., 2022]. The data is
provided by the UKBB operating within the terms of an Ethics and Governance Framework. The
work focused on age, cognitive function and mood from brain images and social variables and put
the ensuing models in relation to individual life-style choices regarding sleep, exercise, alcohol and
tobacco [Dadi et al., 2021].

A coarse analysis of variable importance was presented, in which entire blocks of features were
removed. It suggested that variables measuring brain structure or brain activity were less important
for explaining the predictions of cognitive or mood outcomes than socio-demographic characteristics.
On the other hand, brain imaging phenotypes were highly predictive of the age of a person, in line
with the brain-age literature [Cole and Franke, 2017]. In this benchmark, we explored variable-level
importance rankings provided by the CPI-DNN and Permfit-DNN methods.

The real-world empirical benchmarks on predicting personal characteristics and life-style are summa-
rized in Fig. 4. Results in panel (A) suggest that highest agreement for rankings between CPI-DNN
and Permfit-DNN was achieved for social variables (bottom left, orange squares). At the same time,
CPI-DNN flagged more brain-related variables as relevant (bottom right, circles). We next computed
counts and percentage and broke down results by variable domain (Fig. 4, B). Naturally, the total
relevance for brain versus social variables varied by outcome. However, as a tendency, CPI-DNN
seemed more selective as it flagged fewer variables as important (blue) beyond those flagged as impor-
tant by both methods (light blue). This was more pronounced for social variables where CPI-DNN
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Figure 4: Real-world empirical benchmark: Prediction of personal characteristics (age, cognition,
mood) and life-style habits (alcohol consumption, sleep, exercise & smoking) from various sociode-
mographic and brain-imaging derived phenotypes in a sample of n = 8357 volunteers from the UK
Biobank. (A) plots variable rankings for Permfit-DNN (x axis) versus CPI-DNN (y axis) across all
outcomes. Color: variable domain (brain versus social). Shape: variables classified by both methods
as important (squares), unimportant (crosses) or by only one of the methods, i.e., CPI-DNN (circles)
or Permfit-DNN (triangles). (B) presents a detailed breakdown of percentage and counts of variable
classification split by variable domain.

sometimes added no further variables. As expected by the impact of aging on brain structure and
function, brain data was most important for age-prediction compared to other outcomes. Interestingly,
most disagreements between the methods occurred in this setting as CPI rejected 16 out of 66 brain
inputs that were found as important by Permfit. This outlines the importance of correlations between
brain variables, that lead to spurious importance findings with Permfit. We further explored the utility
of our approach for age-prediction from neuromagnetic recordings [Engemann et al., 2020] and
observed that CPI-DNN readily selected relevant frequency bands without fine-tuning the approach
(section M in the supplement).

6 Discussion

In this work, we have developed a framework for studying the behavior of marginal and conditional
permutation methods and proposed the CPI-DNN method, that was inspired by the limitations of the
Permfit-DNN approach. Both methods build on top of an expressive DNN learner, and both methods
turned out superior to competing methods at detecting relevant variables, leading to high AUC scores
across various simulated scenarios. However, our theoretical results predicted that Permfit-DNN
would not control type-I error with correlated data, which was precisely what our simulation-based
analyzes confirmed for different data-generating scenarios (Fig. 1 - 2). Other popular methods
(Fig. 3) showed similar failures of type-I error control across scenarios or only worked well in a
subset of tasks. Instead, CPI-DNN achieved control of type-I errors by upgrading the permutation
to conditional permutation. The consequences were pronounced for correlated predictive features
arising from generative models with product terms, which was visible even with a small fraction of
data points for model training. Among alternatives, the Lazy VI approach [Gao et al., 2022] obtained
an accuracy almost as good as Permfit-DNN and CPI-DNN but with an unreliable type-I error control.

Taken together, our results suggest that CPI-DNN may be a practical default choice for variable
importance estimation in predictive modeling. A practical validation of the standard normal dis-
tribution assumption for the non important variables can be found in supplement (section N). The
CPI approach is generic and can be implemented for any combination of learning algorithms as a
base learner or conditional means estimator. CPI-DNN has a linear and quadratic complexity in the
number of samples and variables, respectively. This is of concern when modeling the conditional
distribution of the variable of interest which lends itself to high computational complexity. In our
work, Random Forests proced to be useful default estimators as they are computationally lean and
their model complexity, given reasonable default choices implemented in standard software, can be
well controlled by tuning the tree depth. In fact, our supplementary analyses (section O) suggest that
proper hyperparameter tuning was sufficient to obtain good calibration of p-values. As a potential
limitation, it is noteworthy the current configuration of our approach uses a deep neural network as
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the base learner. Therefore, in general, more samples might be needed for good model performance,
hence, improved model interpretation.

Our real-world data analysis demonstrated that CPI-DNN is readily applicable, providing similar
variable rankings as Permfit-DNN. The differences observed are hard to judge as the ground truth
is not known in this setting. Moreover, accurate variable selection is important to obtain unbiased
interpretations which are relevant for data-rich domains like econometrics, epidemiology, medicine,
genetics or neuroscience. In that context, it is interesting that recent work raised doubts about the
signal complexity in the UK biobank dataset [Schulz et al., 2020], which could mean that underlying
predictive patterns are spread out over correlated variables. In the subset of the UK biobank that
we analysed, most variables actually had low correlation values (Fig. E4), which would explain
why CPI-DNN and Permfit-DNN showed similar results. Nevertheless, our empirical results seem
compatible with our theoretical results as CPI-DNN flagged fewer variables as important, pointing at
stricter control of type-I errors, which is a welcome property for biomarker discovery.

When considering two highly correlated variables x1 and x2, the corresponding conditional impor-
tance of both variables is 0. This problem is linked to the very definition of conditional importance,
and not to the CPI procedure itself. The only workaround is to eliminate, prior to importance
analysis, degenerate cases where conditional importance cannot be defined. Therefore, possible
future directions include inference on groups of variables, e.g, gene pathways, brain regions, while
preserving statistical control offered by CPI-DNN.
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A Supplement proof - getting from Eq. 2 to Eq. 3
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��x−ji ŵ−j + xji ŵ

j −����x−ji ŵ−j − {xji}
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B Diagram of CPI constructions

Figure E1: CPI-DNN’s constructions: Constructing the variable of interest x̃j is done either (1)
by the additive construction (top block) where a shuffled version of the residuals is added to the
predicted version using the remaining predictors with the mean of a random forest (RF) or (2) by the
sampling construction (bottom block) using a random forest (RF) model to fit xj from X−j and then
sample the prediction within the leaves of the RF.

C Conditional Permutation Importance (CPI) Wald statistic asymptotically
controls type-I errors: hypotheses, theorem and proof

Outline The proof relies on the observation that the importance score defined in (4) is 0 in the
asymptotic regime, where the permutation procedure becomes a sampling step, under the assumption
that variable j is not conditionally associated with y. Then all the proof focuses on the convergence of
the finite-sample estimator to the population one. To study this, we use the framework developed in
[Williamson et al., 2021]. Note that the major difference with respect to other contributions [Watson
and Wright, 2021] is that the ensuing inference is no longer conditioned on the estimated learner µ̂.
Next, we first restate the precise technical conditions under which the different importance scores
considered are asymptotically valid, i.e. lead to a Wald-type statistic that behaves as a standard
normal under the null hypothesis.

Notations Let F represent the class of functions from which a learner µ : x 7→ y is sought.

Let P0 be the data-generating distribution and Pn is the empirical data distribution observed after
drawing n samples (noted ntrain in the main text; in this section, we denote it n to simplify
notations). The separation between train and test samples is actually only relevant to alleviate
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some technical conditions on the class of learners used. M is the general class of distributions
from which P1, . . . , Pn, P0 are drawn. R := {c(P1 − P2) : c ∈ [0,∞), P1, P2 ∈ M} is the
space of finite signed measures generated by M. Let l be the loss function used to obtain µ.
Given f ∈ F , l(f ;P0) =

∫
l(f(x), y)P0(z)dz, where z = (x, y). Let µ0 denote a population

solution to the estimation problem µ0 ∈ argminf∈F l(f ;P0) and µ̂n a finite sample estimate µ̂n ∈
argminf∈F l(f ;Pn) = 1

n

∑
(x,y)∈Pn

l(f(x), y).

Let us denote by l̇(µ, P0;h) the Gâteaux derivative of P 7→ l(µ, P ) at P0 in the direction h ∈ R,
and define the random function gn : z 7→ l̇(µ̂n, P0; δz − P0)− l̇(µ0, P0; δz − P0), where δz is the
degenerate distribution on z = (x, y).

Hypotheses

(A1) (Optimality) there exists some constant C > 0, such that for each sequence µ1, µ2, · · · ∈ F
given that ‖µn − µ0‖ → 0, |l(µn, P0) − l(µ0, P0)| < C‖µn − µ0‖2F for each n large
enough.

(A2) (Differentiability) there exists some constant κ > 0 such that for each sequence ε1, ε2, · · · ∈
R and h1, h2, · · · ∈ R satisfying εn → 0 and ‖hn − h∞‖ → 0, it holds that

sup
µ∈F :‖µ−µ0‖F<κ

∣∣∣∣ l(µ, P0 + εnhn)− l(µ, P0)

εn
− l̇(µ, P0;hn)

∣∣∣∣→ 0.

(A3) (Continuity of optimization) ‖µP0+εh − µ0‖F = O(ε) for each h ∈ R.

(A4) (Continuity of derivative) µ 7→ l̇(µ, P0;h) is continuous at µ0 relative to ‖.‖F for each
h ∈ R.

(B1) (Minimum rate of convergence) ‖µ̂n − µ0‖F = oP (n−1/4).
(B2) (Weak consistency)

∫
gn(z)2dP0(z) = oP (1).

(B3) (Limited complexity) there exists some P0-Donsker class G0 such that P0(gn ∈ G0)→ 1.

Proposition (Theorem 1 in [Williamson et al., 2021]) If the above conditions hold, l(µ̂n, Pn) is an
asymptotically linear estimator of l(µ0, P0) and l(µ̂n, Pn) is non-parametric efficient.

Let P ?0 be the distribution obtained by sampling the j-th coordinate of x from the conditional
distribution of q0(xj |x−j), obtained after marginalizing over y:

q0(xj |x−j) =

∫
P0(x, y)dy∫

P0(x, y)dxjdy

P ?0 (x, y) = q0(xj |x−j)
∫
P0(x, y)dxj . Similarly, let P ?n denote its finite-sample counterpart. It

turns out from the definition of m̂j
CPI in Eq. 4 that m̂j

CPI = l(µ̂n, P
?
n)− l(µ̂n, Pn). It is thus the

final-sample estimator of the population quantity mj
CPI = l(µ̂0, P

?
0 )− l(µ̂0, P0).

Given that m̂j
CPI = l(µ̂n, P

?
n)− l(µ̂0, P

?
0 )− (l(µ̂n, Pn)− l(µ̂0, P0)) + l(µ̂0, P

?
0 )− l(µ̂0, P0), the

estimator m̂j
CPI is asymptotically linear and non-parametric efficient.

The crucial observation is that under the j-null hypothesis, y is independent of xj given x−j. Indeed,
in that case P0(x, y) = q0(xj |x−j)P0(y|x−j)P0(x−j) and P0(xj |x−j, y) = P0(xj |x−j), so that
P ?0 = P0. Hence, mean/variance of m̂j

CPI ’s distribution provide valid confidence intervals for mj
CPI

and mean(m̂j
CPI) →n→∞ 0. Thus, the Wald statistic ẑjCPJ defined in section (4.2) converges to a

standard normal distribution, implying that the ensuing test is valid.

In practice, hypothesis (B3), which is likely violated, is avoided by the use of cross-fitting as discussed
in [Williamson et al., 2021]: as stated in the main text, variable importance is evaluated on a set of
samples not used for training. An interesting impact of the cross-fitting approach is that it reduces the
hypotheses to (A1) and (A2), plus the following two:

(B’1) (Minimum rate of convergence) ‖µ̂n − µ0‖F = oP (n−1/4) on each fold of the sample
splitting scheme.

(B2’) (Weak consistency)
∫
gn(z)2dP0(z) = oP (1) on each fold of the sample splitting scheme.
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D Computational scaling of CPI-DNN and leanness

Figure E2: CPI-DNN vs LOCO-DNN: Performance at detecting important variables on simulated
data with n = 1000, p = 50 and ρ = 0.8 in terms of (AUC score), Type-I error, Power and Time.
Dashed line: targeted type-I error rate. Solid line: chance level.

Computationally lean refers to two facts: (1) there is no need to refit the costly MLP learner to
predict y unlike LOCO-DNN (A removal-based method provided with our learner) as seen in Fig. E2.
Both CPI-DNN and LOCO-DNN achieved a high AUC score and controlled the Type-I error in a
highly correlated setting (ρ=0.8). However, in terms of computation time, CPI-DNN is far ahead of
LOCO-DNN, which validates our use of the permutation scheme. (2) The conditional estimation step
involved for the conditional permutation procedure is done with an efficient RF estimator, leading to
small time difference wrt Permfit-DNN; Overall we obtain the accuracy of LOCO-type procedures
for the cost of a basic permutation scheme.

E Evaluation Metrics

AUC score [Bradley, 1997]: The variables are ordered by increasing p-values, yielding a family of
p splits into relevant and non-relevant at various thresholds. AUC score measures the consistency of
this ranking with the ground truth (psignals predictive features versus p− psignals).

Type-I error : Some methods output p-values for each of the variables, that measure the evidence
against each variable being a null variable. This score checks whether the rate of low p-values of null
variables exceeds the nominal false positive rate (set to 0.05).

Power : This score reports the average proportion of informative variables detected (when consid-
ering variables with p-value < 0.05).

Computation time : The average computation time per core on 100 cores.

Prediction Scores : As some methods share the same core to perform inference and with the data
divided into a train/test scheme, we evaluate the predictive power for the different cores on the test
set.
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F Supplement Figure 1 - Power & Computation time

Figure 1 - S1: Permfit-DNN vs CPI-DNN: Performance at detecting important variables on simulated
data under the setting of experiment 1, with n = 300 and p = 100. (A): The power reports the average
proportion of informative variables detected (p-value < 0.05). (B): The computation time is in
seconds with (log10 scale) per core on 100 cores.

Based on Fig. 1 - S1, both methods Permfit-DNN and CPI-DNN have almost similar power. In
high correlation regime, Permfit-DNN yields more detections, but it does not control type-I errors
(Fig. 1). Regarding computation time, CPI-DNN is slightly more computationally expensive than
Permfit-DNN.

G Supplement Experiment 5.2 - Models

Classification The signal Xβmain is turned to binomial variables using the probit function Φ.
βmain and βquad are the two vectors with different lengths of regression coefficients having only
nsignal = 20 non-zero coefficients, the true model. βmain is used with the main effects while
βquad is involved with the interaction effects. Following [Janitza et al., 2018], the β values
∈ {βmain,βquad} are drawn i.i.d. from the set B = {±3,±2,±1,±0.5}.

yi ∼ Binomial(Φ(xiβ
main)), ∀i ∈ JnK

Plain linear model We rely on a linear model, where βmain is drawn as previously and ε is the
Gaussian additive noise ∼ N (0, I) with magnitude σ = ||Xβmain||2

SNR
√
n

: yi = xiβ
main + σεi, ∀i ∈

JnK.

Regression with ReLu An extra ReLu function is applied to the output of the Plain linear model:
yi = Relu(xiβ

main + σεi), ∀i ∈ JnK.

Interactions only model We compute the product of each pair of variables. The corresponding
values are used as inputs to a linear model: yi = quad(xi,β

quad) + σεi, ∀i ∈ JnK, where

quad(xi, β
quad) =

psignals∑
k,j=1
k<j

βquadk,jx
k
i x

j
i . The magnitude σ of the noise is set to ||quad(X,βquad)||2

SNR
√
n

.

The non-zero βquad coefficients are drawn uniformly from B.
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Main effects with Interactions We combine both Main and Interaction effects. The magnitude
σ of the noise is set to ||Xβ

main+quad(X,βquad)||2
SNR

√
n

: yi = xiβ
main+quad(xi, β

quad)+σεi, ∀i ∈ JnK.

H Supplement Figure 3 - Extended model comparisons

We also benchmarked the following methods deprived of statistical guarantees:

• Knockoffs [Candes et al., 2017, Nguyen et al., 2020]: The knockoff filter is a variable
selection method for multivariate models that controls the False Discovery Rate. The first
step of this procedure involves sampling extra null variables that have a correlation structure
similar to that of the original variables. A statistic is then calculated to measure the strength
of the original variables versus their knockoff counterpart. We call this the knockoff statistic
w = {wj}pj=1 that is the difference between the importance of a given feature and the
importance of its knockoff.

• Approximate Shapley values [Burzykowski, 2020]: SHAP being an instance method, we
relied on an aggregation (averaging) of the per-sample Shapley values.

• Shapley Additive Global importancE (SAGE) [Covert et al., 2020]: Whereas SHAP focuses
on the local interpretation by aiming to explain a model’s individual predictions, SAGE is
an extension to SHAP assessing the role of each feature in a global interpretability manner.
The SAGE values are derived by applying the Shapley value to a function that represents the
predictive power contained in subsets of features.

• Mean Decrease of Impurity [Louppe et al., 2013]: The importance scores are related to the
impact that each feature has on the impurity function in each of the nodes.

• BART [Chipman et al., 2010]: BART is an ensemble of additive regression trees. The trees
are built iteratively using a back-fitting algorithm such as MCMC (Markov Chain Monte
Carlo). By keeping track of covariate inclusion frequencies, BART can identify which
components are more important for explaining y.

Based on AUC, we observe SHAP, SAGE and Mean Decrease of Impurity (MDI) perform poorly.
These approaches are vulnerable to correlation. Next, Knockoff-Deep and Knockoff-Lasso perform
well when the model does not include interaction effects. BART and Knockoff-Bart show fair
performance overall.

Figure 3 - S1: Extended model comparisons: State-of-the-art methods for variable importance not
providing statistical guarantees in terms of p-values are compared (outer columns) and to competing
approaches across data-generating scenarios (inner columns) using the settings of experiments 2 and
3. Prediction tasks were simulated with n = 1000 and p = 50. Solid line: chance level.
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I Supplement Figure 3 - Power

Figure 3 - S2: Extended model comparisons: CPI-DNN and Permfit-DNN were compared to
baseline models (outer columns) and to competing approaches across data-generating scenarios (inner
columns). Convention about power as in Fig. 1 - S1. Prediction tasks were simulated with n = 1000
and p = 50.

Based on the power computation, Permfit-DNN and CPI-DNN outperform the alternative methods.
Thus, the use of the right learner leads to better interpretations.

J Supplement Figure 3 - Computation time

Figure 3 - S3: Extended model comparisons: The computation times for the different methods
(with and without statistical guarantees in terms of p-values) are reported in seconds with (log10
scale) per core on 100 cores. Prediction tasks were simulated with n = 1000 and p = 50.

The computation time of the different methods mentioned in this work (with and without statistical
guarantees) is presented in Fig. 3 - S3 in seconds with (log10 scale). First, we compare CPI-RF,
cpi-knockoff and LOCO based on a Random Forest learner with p=50. We see that cpi-knockoff and
LOCO are faster than CPI-DNN. A possible reason is that CPI-DNN uses an inner 2-fold internal
validation for hyperparameter tuning (learning rate, L1 and L2 regularization) unlike the alternatives.
Next, The DNN-based methods (CPI-DNN and Permfit-DNN) are competitive with the alternatives
that control type-I error (d0CRT , cpi-knockoff and LOCO) despite the use of computationally lean
learners in the latter.
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K Supplement Figure 3 - Prediction scores on simulated data

Figure 3 - S4: Evaluating predictive power: Performance of the different base learners used in the
variable importance methods (Marginal = {Marginal effects}, Lasso = {Knockoff-Lasso}, Random
Forest = {MDI, d0CRT, CPI-RF, Conditional-RF, cpi-knockoff, LOCO}, BART = {Knockoff-BART,
BART} and DNN = {Knockoff-Deep, Permfit-DNN, CPI-DNN, Lazy VI}) on simulated data with n
= 1000 and p = 50 in terms of ROC-AUC score for the classification and R2 score for the regression.

The results for computing the prediction accuracy using the underlying learners of the different
methods are reported in Fig. 3 - S4. Marginal inference, performs poorly, as it is not a predictive
approach. Linear models based on Lasso show a good performance in the no-interaction effect
scenario. Non-linear models based on Random Forest and BART improve on the lasso-based models.
Nevertheless, they fail to achieve a good performance in scenarios with interaction effects. The
models equipped with a deep learner outperform the other methods.
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L Large scale simulations

Figure E3: Semi-simulation with UK Biobank: (Top panel) Performance of CPI-DNN and Permfit-
DNN is compared in terms of AUC score, Type-I error, Power and Time on the data from UKBB
with n = 8357 and p = 671. (Bottom panel) Correlation strength among the variables in the UKBB
dataset.

Figure E4: Large scale simulation: Performance of CPI-DNN and Permfit-DNN is compared in
terms of AUC score, Type-I error, Power and Time on simulated data with n = 10000, p = 50 and
ρ = 0.8.

In Figs. E3 and E4, we provide a comparison of the performance of both Permfit-DNN and CPI-DNN
on the semi-simulated data from UK Biobank, with the design matrix consisting of the variables in the
UK BioBank and the outcome is generated following a random selection of the true support, where
n=8357 and p=671, and a large scale simulation with n=10000, p = 50 and block-based correlation
of coefficient ρ = 0.8. For the UKBB-based simulation, we see that CPI-DNN achieves a higher
AUC score and Power. However, both methods control the type-I error at the targeted level. To better
understand the reason, we plotted (Fig. E3 Bottom panel) the histogram of the correlation values
within the UKBB data: in this case, we consider a low-correlation setting which explains the good
control for Permfit-DNN. In the large scale simulation where the correlation coefficient is set to 0.8,
the difference is clear and only CPI-DNN controls the type-I error.
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M Age prediction from brain activity (MEG) in Cam-CAN dataset

Figure E5: Age prediction from brain activity: Predicting age from brain activity in different
frequencies with n = 536 and p = 4032.

Following the work of Engemann et al. [2020], we have applied CPI-DNN to the problem of age
prediction from brain activity in different frequencies recorded with magnetoencephalography (MEG)
in the Cam-CAN dataset. Without tweaking, the DNN learner reached a prediction performance
on par with the published results as seen in Fig. E5. The p-values formally confirm aspects of the
exploratory analysis in the original publication (importance of beta band).
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N Practical validation of the normal distribution assumption

Figure E6: CPI-DNN vs Permfit-DNN p-values calibration: Q-Q plot for the distribution of the
p-values vs the uniform distribution with n = 1000 and p = 50.

Figure E7: Normal distribution assumption: Histogram plots of the distribution of the importance
scores of a random picked non-significant variable with n = 1000 and p = 50.

In Fig. E7, we compared the distribution of the importance scores of a random picked non-significant
variable using CPI-DNN and Permfit-DNN through histogram plots, and we can emphasize that the
normal distribution assumption holds in practice.

Also, in Fig. E6, we plot the distribution of the p-values provided by CPI-DNN and Permfit-DNN
vs the uniform distribution through QQ-plot. We can see that the p-values for CPI-DNN are well
calibrated and slightly deviated towards higher values. However, with Permfit-DNN the p-values are
not calibrated.
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O Random Forest for modeling the conditional distribution and resulting
calibration

Figure E8: Random forest calibration: Calibration of the p-values for CPI-DNN (left panel) and
the control of type-I error (right panel) as a function of the complexity of the Random Forest (the
max depth of the trees). Dashed line: targeted type-I error rate. Solid line: uniform distribution.

The use of the Random Forest model was to maintain a good non-linear model with time benefits for
the prediction of the conditional distribution of the variable of interest. In Fig. E8, We can see that
reducing the depth to 1 or 2, thus making the model overly simple, breaks the control of the type-I
errors at the targeted level. With larger depths, the model becomes more conservative. Therefore, the
max depth of the Random Forest is chosen based on the performance with 2-fold cross validation.
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