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Statistically Valid Variable Importance Assessment through Conditional Permutations

Variable importance assessment has become a crucial step in machine-learning applications when using complex learners, such as deep neural networks, on large-scale data. Removal-based importance assessment is currently the reference approach, particularly when statistical guarantees are sought to justify variable inclusion. It is often implemented with variable permutation schemes. On the flip side, these approaches risk misidentifying unimportant variables as important in the presence of correlations among covariates. Here we develop a systematic approach for studying Conditional Permutation Importance (CPI) that is model agnostic and computationally lean, as well as reusable benchmarks of state-of-the-art variable importance estimators. We show theoretically and empirically that CPI overcomes the limitations of standard permutation importance by providing accurate type-I error control. When used with a deep neural network, CPI consistently showed top accuracy across benchmarks. An experiment on real-world data analysis in a largescale medical dataset showed that CPI provides a more parsimonious selection of statistically significant variables. Our results suggest that CPI can be readily used as drop-in replacement for permutation-based methods.

Introduction

Machine learning is an area of growing interest for biomedical research [START_REF] Iniesta | Machine learning, statistical learning and the future of biological research in psychiatry[END_REF][START_REF] Taylor | Statistical learning and selective inference[END_REF][START_REF] Malley | Statistical Learning for Biomedical Data[END_REF] for predicting biomedical outcomes from heterogeneous inputs [START_REF] Hung | Improving predictive power through deep learning analysis of K-12 online student behaviors and discussion board content[END_REF], Zheng and Agresti, 2000[START_REF] Giorgio | Alzheimer's Disease Neuroimaging Initiative. A robust and interpretable machine learning approach using multimodal biological data to predict future pathological tau accumulation[END_REF][START_REF] Sechidis | Using knockoffs for controlled predictive biomarker identification[END_REF]. Biomarker development is increasingly focusing on multimodal data including brain images, genetics, biological specimens and behavioral data [START_REF] Coravos | Developing and adopting safe and effective digital biomarkers to improve patient outcomes[END_REF][START_REF] Siebert | Integrated biomarker discovery: Combining heterogeneous data[END_REF], Ye et al., 2008[START_REF] Castillo-Barnes | Robust Ensemble Classification Methodology for I123-Ioflupane SPECT Images and Multiple Heterogeneous Biomarkers in the Diagnosis of Parkinson's Disease[END_REF][START_REF] Yang | Artificial intelligence-enabled detection and assessment of Parkinson's disease using nocturnal breathing signals[END_REF]. Such high-dimensional settings with correlated inputs put strong pressure on model identification. With complex, often nonlinear models, it becomes harder to assess the role of features in the prediction, aka variable importance [START_REF] Casalicchio | Visualizing the Feature Importance for Black Box Models[END_REF][START_REF] Altmann | Permutation importance: A corrected feature importance measure[END_REF]. In epidemiological and clinical studies, one is interested in population-level feature importance, as opposed to instance-level feature importance.

In that context, variable importance is understood as conditional importance, meaning that it measures the information carried by one variable on the outcome given the others, as opposed to the easily accessible marginal importance of the variables. Conditional importance is necessary e.g. to assess 37th Conference on Neural Information Processing Systems (NeurIPS 2023).

whether a given measurement is worth acquiring, on top of others, for a diagnostic or prognostic task. As the identification of relevant variables is model-dependent and potentially unstable, point estimates of variable importance are misleading. One needs confidence intervals of importance estimates or statistical guarantees, such as type-I error control, i.e. the percentage of non-relevant variables detected as relevant (false positives). This control depends on the accuracy of the p-values on variable importance being non-zero [START_REF] Cribbie | Evaluating the importance of individual parameters in structural equation modeling: The need for type I error control[END_REF].

Within the family of removal-based importance assessment methods [START_REF] Covert | Explaining by Removing: A Unified Framework for Model Explanation[END_REF], a popular model-agnostic approach is permutation variable importance, that measures the impact of shuffling a given variable on the prediction [START_REF] Janitza | A computationally fast variable importance test for random forests for high-dimensional data[END_REF]. By repeating the permutation importance analysis on permuted replicas of the variable of interest, importance values can be tested against the null hypothesis of being zero, yielding p-values that are valid under general distribution assumptions. Yet, statistical guarantees for permutation importance assessment do not hold in the presence of correlated variables, leading to selection of unimportant variables [START_REF] Molnar | General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models[END_REF][START_REF] Hooker | Unrestricted Permutation forces Extrapolation: Variable Importance Requires at least One More Model, or There Is No Free Variable Importance[END_REF][START_REF] Nicodemus | The behaviour of random forest permutation-based variable importance measures under predictor correlation[END_REF][START_REF] Stigler | Correlation and causation: A comment[END_REF]. For instance, the method proposed in [START_REF] Mi | Permutation-based identification of important biomarkers for complex diseases via machine learning models[END_REF] is a powerful variable importance evaluation scheme, but it does not control the rate of type-I error.

In this work, we propose a general methodology for studying the properties of Conditional Permutation Importance in biomedical applications alongside tools for benchmarking variable importance estimators:

• Building on the previous literature on CPI, we develop theoretical results for the limitations regarding Permutation Importance (PI) and advantages of conditional Permutation Importance (CPI) given correlated inputs (section 3). • We propose a novel implementation for CPI allowing us to combine the potential advantages of highly expressive base learners for prediction (a deep neural network) and a comparably lean Random Forest model as a conditional probability learner (section 4). • We conduct extensive benchmarks on synthetic and heterogeneous multimodal real-world biomedical data tapping into different correlation levels and data-generating scenarios for both classification and regression (section 5). • We propose a reusable library for simulation experiments and real-world applications of our method on a public GitHub repo https://github.com/achamma723/Variable_ Importance.

Related work

A popular approach to interpret black-box predictive models is based on locally interpretable, i.e. instance-based, models. LIME [Ribeiro et al., 2016] provides local interpretable model-agnostic explanations by locally approximating a given complex model with a linear model around the instance of interest. SHAP [START_REF] Biecek | Explanatory Model Analysis[END_REF] is a popular package that measures local feature effects using the Shapley values from coalitional game theory.

However, global, i.e. population-level, explanations are better suited than instance-level explanations for epidemiological studies and scientific discovery in general. Many methods can be subsumed under the general category of removal-based approaches [START_REF] Covert | Explaining by Removing: A Unified Framework for Model Explanation[END_REF]. Permutation importance is defined as the decrease in a model score when the values of a single feature are randomly shuffled [START_REF] Breiman | Random Forests[END_REF]. This procedure breaks the relationship between the feature and the outcome, thus the drop in model performance expresses the relevance of the feature. [START_REF] Janitza | A computationally fast variable importance test for random forests for high-dimensional data[END_REF] use an ensemble of Random Forests with the sample space equally partitioned. They approximate the null distribution based on the observed importance scores to provide p-values. Yet, this coarse estimate of the null distribution can give unstable results. Recently, a generic approach has been proposed in [START_REF] Williamson | A General Framework for Inference on Algorithm-Agnostic Variable Importance[END_REF] that measures the loss difference between models that include or exclude a given variable, also applied with LOCO (Leave One Covariate Out) in the work by [START_REF] Lei | Distribution-Free Predictive Inference for Regression[END_REF]. They show the asymptotic consistency of the model. However, their approach is intractable, given that it requires refitting the model for each variable. A simplified version has been proposed by [START_REF] Gao | Lazy Estimation of Variable Importance for Large Neural Networks[END_REF]. However, relying on linear approximations, some statistical guarantees from [START_REF] Williamson | A General Framework for Inference on Algorithm-Agnostic Variable Importance[END_REF] are potentially lost.

Another recent paper by [START_REF] Mi | Permutation-based identification of important biomarkers for complex diseases via machine learning models[END_REF] has introduced model-agnostic explanation for black-box models based on the permutation approach. Permutation importance [START_REF] Breiman | Random Forests[END_REF] can work with any learner. Moreover, it relies on a single model fit, hence it is an efficient procedure. [START_REF] Strobl | Conditional variable importance for random forests[END_REF] pointed out limitations with the permutation approach in the face of correlated variables. As an alternative, they propose a conditional permutation importance by shuffling the variable of interest conditionally on the other variables. However, the solution was specific to Random Forests, as it is based on bisecting the space with the cutpoints extracted during the building process of the forest.

With the Conditional Randomization Test proposed by [START_REF] Candes | Panning for Gold: Model-X Knockoffs for High-dimensional Controlled Variable Selection[END_REF], the association between the outcome y and the variable of interest x j conditioned on x -j is estimated. The variable of interest is sampled conditionally on the other covariates multiple times to compute a test statistic and p-values. However, this solution is limited to generalized linear models and is computationally expensive. Finally, a recent paper by [START_REF] Watson | Testing conditional independence in supervised learning algorithms[END_REF] showed the necessity of conditional schemes and introduced a knockoff sampling scheme, whereby the variable of interest is replaced by its knockoff to monitor any drop in performance of the leaner used without refitting. This method is computationally inexpensive, and enjoys statistical guarantees from from [START_REF] Lei | Distribution-Free Predictive Inference for Regression[END_REF]. However, it depends on the quality of the knockoff sampling where even a relatively small distribution shift in knockoff generation can lead to large errors at inference time.

Other work has presented comparisons of select models within distinct communities [START_REF] Liu | Fast and Powerful Conditional Randomization Testing via Distillation[END_REF][START_REF] Chipman | BART: Bayesian additive regression trees[END_REF][START_REF] Janitza | A computationally fast variable importance test for random forests for high-dimensional data[END_REF][START_REF] Mi | Permutation-based identification of important biomarkers for complex diseases via machine learning models[END_REF][START_REF] Sophie Altenmüller | When research is me-search: How researchers' motivation to pursue a topic affects laypeople's trust in science[END_REF], however, lacking conceptualization from a unified perspective. In summary, previous work has established potential advantages of conditional permutation schemes for inference of variable importance. Yet, the lack of computationally scalable approaches has hampered systematic investigations of different permutation schemes and their comparison with alternative techniques across a broader range of predictive modeling settings.

3 Permutation importance and its limitations

Preliminaries

Notations We will use the following system of notations. We denote matrices, vectors, scalar variables and sets by bold uppercase letters, bold lowercase letters, script lowercase letters, and calligraphic letters, respectively (e.g. X, x, x, X ). We call µ the function that maps the sample space X ⊂ R p to the sample space Y ⊂ R and μ is an estimate of µ. Permutation procedures will be represented by (perm). We denote by n the set {1, . . . , n}.

Let X ∈ R n×p be a design matrix where the i-th row and the j-th column are denoted x i and x j respectively. Let X -j = (x 1 , . . . , x j-1 , x j+1 , . . . , x p ) be the design matrix, where the j th column is removed, and X (j) = (x 1 , . . . , x j-1 , {x j } perm , x j+1 , . . . , x p ) the design matrix with the j th column shuffled. The rows of X -j and X (j) are denoted x -j i and x (j)

i respectively, for i ∈ n .

Problem setting Machine learning inputs are a design matrix X and a target y ∈ R n or ∈ {0, 1} n depending on whether it is a regression or a classification problem. Throughout the paper, we rely on an i.i.d. sampling train / test partition scheme where the n samples are divided into n train training and n test test samples and consider that X and y are restricted to the test samples -the training samples were used to obtain μ.

The permutation approach leads to false detections in the presence of correlations

A known problem with permutation variable importance is that if features are correlated, their importance is typically over-estimated [START_REF] Strobl | Conditional variable importance for random forests[END_REF], leading to a loss of type-I error control. However, this loss has not been precisely characterized yet, which we will work through for the linear case. We use the setting of [START_REF] Mi | Permutation-based identification of important biomarkers for complex diseases via machine learning models[END_REF], where the estimator μ, computed with empirical risk minimization under the training set, is used to assess variable importance on a new set of data (test set). We consider a regression model with a least-square loss function for simplicity. The importance of variable x j is computed as follows:

mj = 1 n test ntest i=1 (y i -μ(x (j) i )) 2 -(y i -μ(x i )) 2 .
(1)

Let ε i = y i -µ(x i ) for i ∈ n test . Re-arranging terms yields mj = 1 n test ntest i=1 (μ(x i ) -μ(x (j) i ))(2µ(x i ) -μ(x i ) -μ(x (j) i ) + 2ε i ).
(2) [START_REF] Mi | Permutation-based identification of important biomarkers for complex diseases via machine learning models[END_REF] argued that these terms vanish when n test → ∞. But it is not the case as long as the training set is fixed. In order to get tractable computation, we assume that µ and μ are linear functions: µ(x) = xw and μ(x) = x ŵ. Let us further consider that x j is a null feature, i.e. w j = 0. This yields xw = x j w j + x -j w -j = x -j w -j . Denoting the standard dot product by ., . , this leads to (Detailed proof of getting from Eq. 2 to Eq. 3 can be found in supplement section A)

mj = 2 ŵj n test x j -{x j } perm , X -j (w -j -ŵ-j ) + ε (3) as ( x j 2 -{x j } perm 2 ) = 0. Next, 1 ntest {x j } perm , X -j (w -j -ŵ-j ) → 0 and 1 ntest x j - {x j } perm , ε → 0 when n test → ∞ with speed 1
√ ntest from the Berry-Essen theorem, assuming that the first three moments of these quantities are bounded and that the test samples are i.i.d. Let us assume that the correlation within X takes the following form: x j = X -j u + δ, where u ∈ R p-1 and δ is a random vector independent of X -j . By contrast, 2 ŵj ntest x j , X -j (w -jŵ-j ) has a non-zero limit 2 ŵj u T Cov(X -j )(w -jŵ-j ), where Cov(X -j ) = lim ntest→∞ X -jT X -j ntest (remember that both w -j and ŵ-j are fixed, because the training set is fixed). Thus, the permutation importance of a null but correlated variable does not vanish when n test → ∞, implying that this inference scheme will lead to false positives.

4 Conditional sampling-based feature importance

Main result

We define the permutation of variable x j conditional to x -j , as a variable xj that retains the dependency of x j with respect to the other variables in x -j , but where the independent part is shuffled; x(j) is the vector x where x j is replaced by xj . We propose two constructions below (see Fig. E1). In the case of regression, this leads to the following importance estimator:

mj CP I = 1 n test ntest i=1 (y i -μ(x (j) i )) 2 -(y i -μ(x i )) 2 . ( 4 
)
As noted by [START_REF] Watson | Testing conditional independence in supervised learning algorithms[END_REF], this inference is correct, as in traditional permutation tests, as long as one wishes to perform inference conditional to μ. However, the following proposition states that this inference has much wider validity in the asymptotic regime.

Proposition. Assuming that the estimator μ is obtained from a class of functions F with sufficient regularity, i.e. that it meets conditions (A1, A2, A3, A4, B1 and B2) defined in supplementary material, the importance score mj CP I defined in (4) cancels when n train → ∞ and n test → ∞ under the null hypothesis, i.e. the j-th variable is not significant for the prediction. Moreover, the Wald statistic

z j = mean( mj CP I ) std( mj CP I )
obtained by dividing the mean of the importance score by its standard deviation asymptotically follows a standard normal distribution. This implies that in the large sample limit, the p-value associated with z j controls the type-I error rate for all optimal estimators in F.

The proof of the proposition is given in the supplement (section C). It consists in observing that the importance score defined in (4) is 0 for the class of learners discussed in [START_REF] Williamson | A General Framework for Inference on Algorithm-Agnostic Variable Importance[END_REF], namely those that meet a certain set of convergence guarantees and are invariant to arbitrary change of their j th argument, conditional on the others. In the supplement, we also restate the precise technical conditions under which the importance score mj CP I used is (asymptotically) valid, i.e. leads to a Wald-type statistic that behaves as a standard normal under the null hypothesis.

It is easy to see that for the setting in Sec. 3.2, all terms in Eq. 4 vanish with speed 1 √ ntest .

Practical estimation

Next, we present algorithms for computing conditional permutation importance. We propose two constructions for xj , the conditionally permuted counterpart of x j . The first one is additive: on test samples, x j is divided into the predictable and random parts xj

= E(x j |x -j ) + x j -E(x j |x -j ) perm ,
where the residuals of the regression of x j on x -j are shuffled to obtain xj . In practice, the expectation is obtained by a universal but efficient estimator, such as a random forest trained on the test set.

The other possibility consists in using a random forest (RF) model to fit x j from x -j and then sample the prediction within leaves of the RF.

Random shuffling is applied B times. For instance, using the additive construction, a shuffling of the residuals ˜ j,b for a given b ∈ B allows to reconstruct the variable of interest as the sum of the predicted version and the shuffled residuals, that is

xj,b = xj + ˜ j,b . (5) 
Let Xj,b = (x 1 , . . . , x j-1 , xj,b , x j+1 , . . . , x p ) ∈ R ntest×p be the new design matrix including the reconstructed version of the variable of interest x j . Both Xj,b and the target vector y are fed to the loss function in order to compute a loss score l j,b i ∈ R defined by

l j,b i = y i log S(ŷi) S(ỹ b i ) + (1 -y i ) log 1-S(ŷi) 1-S(ỹ b i ) (y i -ỹb i ) 2 -(y i -ŷi ) 2 (6)
for binary and regression cases respectively where i ∈ n test , j ∈ p , b ∈ B , i indexes a test sample of the dataset, ŷi = μ(x i ) and ỹb i = μ(x j,b i ) is the new fitted value following the reconstruction of the variable of interest with the b th residual shuffled and S(x) = 1 1+e -x . The variable importance scores are computed as the double average over the number of permutations B and the number of test samples n test (line 15 of Alg. 1), while their standard deviations are computed as the square root of the average over the test samples of the quadratic deviation over the number of permutations (line 17). Note that, unlike [START_REF] Williamson | A General Framework for Inference on Algorithm-Agnostic Variable Importance[END_REF], the variance estimator is non-vanishing, and thus can be used as a plugin. A z j CP I statistic is then computed by dividing the mean of the corresponding importance scores with the corresponding standard deviation (line 18). P-values are computed using the cumulative distribution function of the standard normal distribution (line 19). The conditional sampling and inference steps are summarized in Algorithm 1. This leads to the CPI-DNN method when μ is a deep neural network, or CPI-RF when μ is a random forest. Supplementary analysis reporting the computational advantage of CPI-DNN over a remove-and-relearn alternative a.k.a. LOCO-DNN, can be found in supplement (section D), which justifies its computational leanness.

Experiments & Results

In all experiments, we refer to the original implementation of the different methods in order to maintain a fair comparison. Regarding Permfit-DNN, CPI-DNN and CPI-RF models specifically, our implementation involves a 2-fold internal validation (the training set of further split to get validation set for hyperparameter tuning). The scores from different splits are thus concatenated to compute the final variable importance. We focus on the Permfit-DNN and CPI-DNN importance estimators that use a deep neural network as learner μ, using standard permutation and algorithm 1, respectively. All experiments are performed with 100 runs. The evaluation metrics are detailed in the supplement (section E).

Experiment 1: Type-I error control and accuracy when increasing variable correlation

We compare the performance of CPI-DNN with that of Permfit-DNN by applying both methods across different correlation scenarios. The data {x i } n i=1 follow a Gaussian distribution with a prescribed covariance structure Σ i.e. x i ∼ N (0, Σ)∀i ∈ n . We consider a block-designed covariance matrix Σ of 10 blocks with an equal correlation coefficient ρ ∈ {0, 0.2, 0.5, 0.8} among the variables of Algorithm 1 Conditional sampling step: The algorithm implements the conditional sampling step in place of the permutation approach when computing the p-value of variable x j Require: X ∈ R ntest×p , y ∈ R ntest , μ: estimator, l: loss function, RF j : learner trained to predict

x j from x -j 1: B ← number of permutations 2: X -j ← X with j-th column removed 3: for i = 1 to n test do 4: 

xj i ← RF j (x -j i
y i = x 1 i + 2 log(1 + 2(x 11 i ) 2 + (x 21 i + 1) 2 ) + x 31 i x 41 i + i , ∀i ∈ n
The AUC score and type-I error are presented in Fig. 1. Power and computation time are reported in the supplement Fig. 1 -S1. Based on the AUC scores, Permfit-DNN and CPI-DNN showed virtually identical performance. However, Permfit-DNN lost type-I error control when correlation in X is increased, while CPI-DNN always controlled the type-I error at the targeted rate.

Experiment 2: Performance across different settings

In the second setup, we check if CPI-DNN and Permfit-DNN control the type-I error with an increasing total number of samples n. The data are generated as previously, with a correlation ρ = 0.8. We fix the number of variables p to 50 while the number of samples n increases from 100 to 1000 with a step size of 100. We use 5 different models to generate the outcome y from X: classification, Plain linear, Regression with ReLu, Interactions only and Main effects with interactions. Further details regarding each data-generating scenario can be found in supplement (section G). 

Experiment 3: Performance benchmark across methods

In the third setup, we include Permfit-DNN and CPI-DNN in a benchmark with other state-of-the-art methods for variable importance using the same setting as in Experiment 2, while fixing the total number of samples n to 1000. We consider the following methods:

• Marginal Effects: A univariate linear model is fit to explain the response from each of the variables separately. The importance scores are then obtained from the ensuing p-values. • Conditional-RF [START_REF] Strobl | Conditional variable importance for random forests[END_REF]: A conditional variable importance approach based on a Random Forest model. This method provides p-values. • d 0 CRT [START_REF] Liu | Fast and Powerful Conditional Randomization Testing via Distillation[END_REF][START_REF] Binh | A Conditional Randomization Test for Sparse Logistic Regression in High-Dimension[END_REF]: The Conditional Randomization Test with distillation, using a sparse linear or logistic learner. • Lazy VI [START_REF] Gao | Lazy Estimation of Variable Importance for Large Neural Networks[END_REF].

• Permfit-DNN [START_REF] Mi | Permutation-based identification of important biomarkers for complex diseases via machine learning models[END_REF].

• LOCO [START_REF] Lei | Distribution-Free Predictive Inference for Regression[END_REF]: This method applies the remove-and-retrain approach.

• cpi-knockoff [START_REF] Watson | Testing conditional independence in supervised learning algorithms[END_REF]: Similar to CPI-RF, but permutation steps are replaced by a sampling step with a knockoff sampler. • CPI-RF: This corresponds to the method in Alg. 1, where μ is a Random Forest.

• CPI-DNN: This corresponds to the method in Alg. 1, where μ is a DNN.

The extensive benchmarks on baselines and competing methods that provide p-values are presented in Fig. 3. For type-I error, d 0 CRT, CPI-RF, CPI-DNN, LOCO and cpi-knockoff provided reliable control, whereas Marginal effects, Permfit-DNN, Conditional-RF and Lazy VI showed less consistent results across scenarios. For AUC, we observed that marginal effects performed poorly, as they do not use a proper predictive model. LOCO and cpi-knockoff behave similarly. d 0 CRT performed well when the data-generating model was linear and did not include interaction effects. Conditional-RF and CPI-RF showed reasonable performance across scenarios. Finally, Permfit-DNN and CPI-DNN outperformed all the other methods, closely followed by Lazy VI.

Additional benchmarks on popular methods that do not provide p-values, e.g. BART [START_REF] Chipman | BART: Bayesian additive regression trees[END_REF] or local and instance-based methods such as Shapley values [START_REF] Kumar | Problems with Shapley-value-based explanations as feature importance measures[END_REF], are reported in the supplement (section H). The performance of these methods in terms of power and computation 

Experiment 4: Permfit-DNN vs CPI-DNN on Real Dataset UKBB

Large-scale simulations comparing the performance of CPI-DNN and Permfit-DNN are conducted in supplement (section L). We conducted an empirical study of variable importance in a biomedical application using the non-conditional permutation approach Permfit-DNN (no statistical guarantees for correlated inputs) and the safer CPI-DNN approach. A recent real-world data analysis of the UK Biobank dataset reported successful machine learning analysis of individual characteristics. The UK Biobank project (UKBB) curates phenotypic and imaging data from a prospective cohort of volunteers drawn from the general population of the UK [START_REF] Constantinescu | A framework for research into continental ancestry groups of the UK Biobank[END_REF]. The data is provided by the UKBB operating within the terms of an Ethics and Governance Framework. The work focused on age, cognitive function and mood from brain images and social variables and put the ensuing models in relation to individual life-style choices regarding sleep, exercise, alcohol and tobacco [START_REF] Dadi | Population modeling with machine learning can enhance measures of mental health[END_REF].

A coarse analysis of variable importance was presented, in which entire blocks of features were removed. It suggested that variables measuring brain structure or brain activity were less important for explaining the predictions of cognitive or mood outcomes than socio-demographic characteristics. On the other hand, brain imaging phenotypes were highly predictive of the age of a person, in line with the brain-age literature [START_REF] Cole | Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers[END_REF]. In this benchmark, we explored variable-level importance rankings provided by the CPI-DNN and Permfit-DNN methods.

The real-world empirical benchmarks on predicting personal characteristics and life-style are summarized in Fig. 4. Results in panel (A) suggest that highest agreement for rankings between CPI-DNN and Permfit-DNN was achieved for social variables (bottom left, orange squares). At the same time, CPI-DNN flagged more brain-related variables as relevant (bottom right, circles). We next computed counts and percentage and broke down results by variable domain (Fig. 4,B). Naturally, the total relevance for brain versus social variables varied by outcome. However, as a tendency, CPI-DNN seemed more selective as it flagged fewer variables as important (blue) beyond those flagged as important by both methods (light blue). This was more pronounced for social variables where CPI-DNN sometimes added no further variables. As expected by the impact of aging on brain structure and function, brain data was most important for age-prediction compared to other outcomes. Interestingly, most disagreements between the methods occurred in this setting as CPI rejected 16 out of 66 brain inputs that were found as important by Permfit. This outlines the importance of correlations between brain variables, that lead to spurious importance findings with Permfit. We further explored the utility of our approach for age-prediction from neuromagnetic recordings [START_REF] Denis A Engemann | Combining magnetoencephalography with magnetic resonance imaging enhances learning of surrogate-biomarkers[END_REF] and observed that CPI-DNN readily selected relevant frequency bands without fine-tuning the approach (section M in the supplement).

Discussion

In this work, we have developed a framework for studying the behavior of marginal and conditional permutation methods and proposed the CPI-DNN method, that was inspired by the limitations of the Permfit-DNN approach. Both methods build on top of an expressive DNN learner, and both methods turned out superior to competing methods at detecting relevant variables, leading to high AUC scores across various simulated scenarios. However, our theoretical results predicted that Permfit-DNN would not control type-I error with correlated data, which was precisely what our simulation-based analyzes confirmed for different data-generating scenarios (Fig. 12). Other popular methods (Fig. 3) showed similar failures of type-I error control across scenarios or only worked well in a subset of tasks. Instead, CPI-DNN achieved control of type-I errors by upgrading the permutation to conditional permutation. The consequences were pronounced for correlated predictive features arising from generative models with product terms, which was visible even with a small fraction of data points for model training. Among alternatives, the Lazy VI approach [START_REF] Gao | Lazy Estimation of Variable Importance for Large Neural Networks[END_REF] obtained an accuracy almost as good as Permfit-DNN and CPI-DNN but with an unreliable type-I error control.

Taken together, our results suggest that CPI-DNN may be a practical default choice for variable importance estimation in predictive modeling. A practical validation of the standard normal distribution assumption for the non important variables can be found in supplement (section N). The CPI approach is generic and can be implemented for any combination of learning algorithms as a base learner or conditional means estimator. CPI-DNN has a linear and quadratic complexity in the number of samples and variables, respectively. This is of concern when modeling the conditional distribution of the variable of interest which lends itself to high computational complexity. In our work, Random Forests proced to be useful default estimators as they are computationally lean and their model complexity, given reasonable default choices implemented in standard software, can be well controlled by tuning the tree depth. In fact, our supplementary analyses (section O) suggest that proper hyperparameter tuning was sufficient to obtain good calibration of p-values. As a potential limitation, it is noteworthy the current configuration of our approach uses a deep neural network as the base learner. Therefore, in general, more samples might be needed for good model performance, hence, improved model interpretation.

Our real-world data analysis demonstrated that CPI-DNN is readily applicable, providing similar variable rankings as Permfit-DNN. The differences observed are hard to judge as the ground truth is not known in this setting. Moreover, accurate variable selection is important to obtain unbiased interpretations which are relevant for data-rich domains like econometrics, epidemiology, medicine, genetics or neuroscience. In that context, it is interesting that recent work raised doubts about the signal complexity in the UK biobank dataset [START_REF] Schulz | Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets[END_REF], which could mean that underlying predictive patterns are spread out over correlated variables. In the subset of the UK biobank that we analysed, most variables actually had low correlation values (Fig. E4), which would explain why CPI-DNN and Permfit-DNN showed similar results. Nevertheless, our empirical results seem compatible with our theoretical results as CPI-DNN flagged fewer variables as important, pointing at stricter control of type-I errors, which is a welcome property for biomarker discovery.

When considering two highly correlated variables x 1 and x 2 , the corresponding conditional importance of both variables is 0. This problem is linked to the very definition of conditional importance, and not to the CPI procedure itself. The only workaround is to eliminate, prior to importance analysis, degenerate cases where conditional importance cannot be defined. Therefore, possible future directions include inference on groups of variables, e.g, gene pathways, brain regions, while preserving statistical control offered by CPI-DNN.
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C Conditional Permutation Importance (CPI) Wald statistic asymptotically controls type-I errors: hypotheses, theorem and proof

Outline The proof relies on the observation that the importance score defined in (4) is 0 in the asymptotic regime, where the permutation procedure becomes a sampling step, under the assumption that variable j is not conditionally associated with y. Then all the proof focuses on the convergence of the finite-sample estimator to the population one. To study this, we use the framework developed in [START_REF] Williamson | A General Framework for Inference on Algorithm-Agnostic Variable Importance[END_REF]. Note that the major difference with respect to other contributions [START_REF] Watson | Testing conditional independence in supervised learning algorithms[END_REF] is that the ensuing inference is no longer conditioned on the estimated learner μ.

Next, we first restate the precise technical conditions under which the different importance scores considered are asymptotically valid, i.e. lead to a Wald-type statistic that behaves as a standard normal under the null hypothesis.

Notations Let F represent the class of functions from which a learner µ : x → y is sought.

Let P 0 be the data-generating distribution and P n is the empirical data distribution observed after drawing n samples (noted n train in the main text; in this section, we denote it n to simplify notations). The separation between train and test samples is actually only relevant to alleviate some technical conditions on the class of learners used. M is the general class of distributions from which P 1 , . . . , P n , P 0 are drawn. R := {c(P 1 -P 2 ) : c ∈ [0, ∞), P 1 , P 2 ∈ M} is the space of finite signed measures generated by M. Let l be the loss function used to obtain µ. Given f ∈ F, l(f ; P 0 ) = l(f (x), y)P 0 (z)dz, where z = (x, y). Let µ 0 denote a population solution to the estimation problem µ 0 ∈ argmin f ∈F l(f ; P 0 ) and μn a finite sample estimate μn ∈ argmin f ∈F l(f ; P n ) = 1 n (x,y)∈Pn l(f (x), y).

Let us denote by l(µ, P 0 ; h) the Gâteaux derivative of P → l(µ, P ) at P 0 in the direction h ∈ R, and define the random function g n : z → l(μ n , P 0 ; δ z -P 0 ) -l(µ 0 , P 0 ; δ z -P 0 ), where δ z is the degenerate distribution on z = (x, y).

Hypotheses

(A1) (Optimality) there exists some constant C > 0, such that for each sequence µ

1 , µ 2 , • • • ∈ F given that µ n -µ 0 → 0, |l(µ n , P 0 ) -l(µ 0 , P 0 )| < C µ n -µ 0 2
F for each n large enough. (A2) (Differentiability) there exists some constant κ > 0 such that for each sequence

1 , 2 , • • • ∈ R and h 1 , h 2 , • • • ∈ R satisfying n → 0 and h n -h ∞ → 0, it holds that sup µ∈F : µ-µ0 F <κ l(µ, P 0 + n h n ) -l(µ, P 0 ) n -l(µ, P 0 ; h n ) → 0. (A3) (Continuity of optimization) µ P0+ h -µ 0 F = O( ) for each h ∈ R. (A4) (Continuity of derivative) µ → l(µ, P 0 ; h) is continuous at µ 0 relative to . F for each h ∈ R. (B1) (Minimum rate of convergence) μn -µ 0 F = o P (n -1/4 ). (B2) (Weak consistency) g n (z) 2 dP 0 (z) = o P (1). ( B3 
) (Limited complexity) there exists some P 0 -Donsker class G 0 such that P 0 (g n ∈ G 0 ) → 1.

Proposition (Theorem 1 in [START_REF] Williamson | A General Framework for Inference on Algorithm-Agnostic Variable Importance[END_REF]) If the above conditions hold, l(μ n , P n ) is an asymptotically linear estimator of l(µ 0 , P 0 ) and l(μ n , P n ) is non-parametric efficient.

Let P 0 be the distribution obtained by sampling the j-th coordinate of x from the conditional distribution of q 0 (x j |x -j ), obtained after marginalizing over y: q 0 (x j |x -j ) = P 0 (x, y)dy P 0 (x, y)dx j dy P 0 (x, y) = q 0 (x j |x -j ) P 0 (x, y)dx j . Similarly, let P n denote its finite-sample counterpart. It turns out from the definition of mj CP I in Eq. 4 that mj CP I = l(μ n , P n ) -l(μ n , P n ). It is thus the final-sample estimator of the population quantity m j CP I = l(μ 0 , P 0 ) -l(μ 0 , P 0 ). Given that mj CP I = l(μ n , P n ) -l(μ 0 , P 0 ) -(l(μ n , P n ) -l(μ 0 , P 0 )) + l(μ 0 , P 0 ) -l(μ 0 , P 0 ), the estimator mj CP I is asymptotically linear and non-parametric efficient. The crucial observation is that under the j-null hypothesis, y is independent of x j given x -j . Indeed, in that case P 0 (x, y) = q 0 (x j |x -j )P 0 (y|x -j )P 0 (x -j ) and P 0 (x j |x -j , y) = P 0 (x j |x -j ), so that P 0 = P 0 . Hence, mean/variance of mj CP I 's distribution provide valid confidence intervals for m j CP I

and mean( mj CP I ) → n→∞ 0. Thus, the Wald statistic ẑj CP J defined in section (4.2) converges to a standard normal distribution, implying that the ensuing test is valid.

In practice, hypothesis (B3), which is likely violated, is avoided by the use of cross-fitting as discussed in [START_REF] Williamson | A General Framework for Inference on Algorithm-Agnostic Variable Importance[END_REF]: as stated in the main text, variable importance is evaluated on a set of samples not used for training. An interesting impact of the cross-fitting approach is that it reduces the hypotheses to (A1) and (A2), plus the following two: (B'1) (Minimum rate of convergence) μn -µ 0 F = o P (n -1/4 ) on each fold of the sample splitting scheme. (B2') (Weak consistency) g n (z) 2 dP 0 (z) = o P (1) on each fold of the sample splitting scheme. 

G Supplement Experiment 5.2 -Models

Classification The signal Xβ main is turned to binomial variables using the probit function Φ. β main and β quad are the two vectors with different lengths of regression coefficients having only n signal = 20 non-zero coefficients, the true model. β main is used with the main effects while β quad is involved with the interaction effects. Following [START_REF] Janitza | A computationally fast variable importance test for random forests for high-dimensional data[END_REF], the β values ∈ {β main , β quad } are drawn i.i.d. from the set B = {±3, ±2, ±1, ±0.5}. In Fig. E7, we compared the distribution of the importance scores of a random picked non-significant variable using CPI-DNN and Permfit-DNN through histogram plots, and we can emphasize that the normal distribution assumption holds in practice.

Also, in Fig. E6, we plot the distribution of the p-values provided by CPI-DNN and Permfit-DNN vs the uniform distribution through QQ-plot. We can see that the p-values for CPI-DNN are well calibrated and slightly deviated towards higher values. However, with Permfit-DNN the p-values are not calibrated.

Figure 1 :

 1 Figure 1: CPI-DNN vs Permfit-DNN: Performance at detecting important variables on simulated data with n = 300 and p = 100. (A): The type-I error quantifies to which extent the rate of low p-values (p < 0.05) exceeds the nominal false positive rate. (B): The AUC score measures to which extent variables are ranked consistently with the ground truth. Dashed line: targeted type-I error rate. Solid line: chance level.

Figure 2 :

 2 Figure 2: Model comparisons across data-generating scenarios: The (A) type-I error and (B) AUC scores of Permfit-DNN and CPI-DNN are plotted as function of sample size for five different settings. The number n of samples increased from 100 to 1000 with a step size of 100. The number of variables p was set to 50. Dashed line: targeted type-I error rate. Solid line: chance level.

Figure 3 :

 3 Figure 3: Extended model comparisons: CPI-DNN and Permfit-DNN were compared to baseline models (outer columns) and competing approaches across data-generating scenarios (inner columns). Prediction tasks were simulated with n = 1000 and p = 50. (A): Type-I error. (B): AUC scores. Dashed line: targeted type-I error rate. Solid line: chance level.

Figure 4 :

 4 Figure 4: Real-world empirical benchmark: Prediction of personal characteristics (age, cognition, mood) and life-style habits (alcohol consumption, sleep, exercise & smoking) from various sociodemographic and brain-imaging derived phenotypes in a sample of n = 8357 volunteers from the UK Biobank. (A) plots variable rankings for Permfit-DNN (x axis) versus CPI-DNN (y axis) across all outcomes. Color: variable domain (brain versus social). Shape: variables classified by both methods as important (squares), unimportant (crosses) or by only one of the methods, i.e., CPI-DNN (circles) or Permfit-DNN (triangles). (B) presents a detailed breakdown of percentage and counts of variable classification split by variable domain.

Figure E1 :

 E1 Figure E1: CPI-DNN's constructions: Constructing the variable of interest xj is done either (1) by the additive construction (top block) where a shuffled version of the residuals is added to the predicted version using the remaining predictors with the mean of a random forest (RF) or (2) by the sampling construction (bottom block) using a random forest (RF) model to fit x j from X -j and then sample the prediction within the leaves of the RF.

F

  Figure 1 -S1: Permfit-DNN vs CPI-DNN: Performance at detecting important variables on simulated data under the setting of experiment 1, with n = 300 and p = 100. (A): The power reports the average proportion of informative variables detected (p-value < 0.05). (B): The computation time is in seconds with (log10 scale) per core on 100 cores.

  Figure 3 -S2: Extended model comparisons: CPI-DNN and Permfit-DNN were compared to baseline models (outer columns) and to competing approaches across data-generating scenarios (inner columns). Convention about power as in Fig. 1 -S1. Prediction tasks were simulated with n = 1000 and p = 50.Based on the power computation, Permfit-DNN and CPI-DNN outperform the alternative methods. Thus, the use of the right learner leads to better interpretations.

Figure 3 -

 3 Figure 3 -S3: Extended model comparisons: The computation times for the different methods (with and without statistical guarantees in terms of p-values) are reported in seconds with (log10 scale) per core on 100 cores. Prediction tasks were simulated with n = 1000 and p = 50. The computation time of the different methods mentioned in this work (with and without statistical guarantees) is presented in Fig. 3 -S3 in seconds with (log10 scale). First, we compare CPI-RF, cpi-knockoff and LOCO based on a Random Forest learner with p=50. We see that cpi-knockoff and LOCO are faster than CPI-DNN. A possible reason is that CPI-DNN uses an inner 2-fold internal validation for hyperparameter tuning (learning rate, L1 and L2 regularization) unlike the alternatives. Next, The DNN-based methods (CPI-DNN and Permfit-DNN) are competitive with the alternatives that control type-I error (d 0 CRT , cpi-knockoff and LOCO) despite the use of computationally lean learners in the latter.

Figure E6 :

 E6 Figure E6: CPI-DNN vs Permfit-DNN p-values calibration: Q-Q plot for the distribution of the p-values vs the uniform distribution with n = 1000 and p = 50.

Figure E7 :

 E7 Figure E7: Normal distribution assumption: Histogram plots of the distribution of the importance scores of a random picked non-significant variable with n = 1000 and p = 50.
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D Computational scaling of CPI-DNN and leanness

Computationally lean refers to two facts: (1) there is no need to refit the costly MLP learner to predict y unlike LOCO-DNN (A removal-based method provided with our learner) as seen in Fig. E2. Both CPI-DNN and LOCO-DNN achieved a high AUC score and controlled the Type-I error in a highly correlated setting (ρ=0.8). However, in terms of computation time, CPI-DNN is far ahead of LOCO-DNN, which validates our use of the permutation scheme. (2) The conditional estimation step involved for the conditional permutation procedure is done with an efficient RF estimator, leading to small time difference wrt Permfit-DNN; Overall we obtain the accuracy of LOCO-type procedures for the cost of a basic permutation scheme.

E Evaluation Metrics

AUC score [START_REF] Bradley | The use of the area under the ROC curve in the evaluation of machine learning algorithms[END_REF]: The variables are ordered by increasing p-values, yielding a family of p splits into relevant and non-relevant at various thresholds. AUC score measures the consistency of this ranking with the ground truth (p signals predictive features versus p -p signals ).

Type-I error : Some methods output p-values for each of the variables, that measure the evidence against each variable being a null variable. This score checks whether the rate of low p-values of null variables exceeds the nominal false positive rate (set to 0.05).

Power : This score reports the average proportion of informative variables detected (when considering variables with p-value < 0.05).

Computation time : The average computation time per core on 100 cores.

Prediction Scores : As some methods share the same core to perform inference and with the data divided into a train/test scheme, we evaluate the predictive power for the different cores on the test set.

Main effects with Interactions

We combine both Main and Interaction effects. The magnitude σ of the noise is set to

H Supplement Figure 3 -Extended model comparisons

We also benchmarked the following methods deprived of statistical guarantees:

• Knockoffs [START_REF] Candes | Panning for Gold: Model-X Knockoffs for High-dimensional Controlled Variable Selection[END_REF][START_REF] Nguyen | Aggregation of Multiple Knockoffs[END_REF]: The knockoff filter is a variable selection method for multivariate models that controls the False Discovery Rate. The first step of this procedure involves sampling extra null variables that have a correlation structure similar to that of the original variables. A statistic is then calculated to measure the strength of the original variables versus their knockoff counterpart. We call this the knockoff statistic w = {w j } p j=1 that is the difference between the importance of a given feature and the importance of its knockoff. The results for computing the prediction accuracy using the underlying learners of the different methods are reported in Fig. 3 -S4. Marginal inference, performs poorly, as it is not a predictive approach. Linear models based on Lasso show a good performance in the no-interaction effect scenario. Non-linear models based on Random Forest and BART improve on the lasso-based models. Nevertheless, they fail to achieve a good performance in scenarios with interaction effects. The models equipped with a deep learner outperform the other methods. O Random Forest for modeling the conditional distribution and resulting calibration 

L Large scale simulations