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We present enumerations of inversion sequences that avoid 120, 210, and a pattern of length three. More precisely, we characterize the rules of generating trees and we write the corresponding function equations of these inversion sequences.

Introduction

An integer sequence e = e 0 e 1 • • • e n is called an inversion sequence of length n if 0 ≤ e i ≤ i for each 0 ≤ i ≤ n. We denote the set of inversion sequences of length n by I n . There is a bijection between I n and S n+1 , the set of permutations of length n + 1, then |I n | = (n + 1)!. Let σ = σ 1 σ 2 • • • σ n and ρ = ρ 1 ρ 2 • • • ρ n be two words of length n. We say that σ is orderisomorphic to ρ if for every pairs of indices 1 ≤ i, j ≤ n, σ i < σ j (σ i = σ j , σ i > σ j ) if and only if ρ i < ρ j (ρ i = ρ j , ρ i > ρ j ). An inversion sequence e = e 0 e 1 • • • e n ∈ I n is said to avoid the pattern τ if there does not exist 0

≤ i 1 < i 2 < • • • < i k ≤ n such that subsequence e i 1 e i 2 • • • e i k of e is order isomorphic to τ .
The systematic study of patterns avoidance in inversion sequences was initiated around 2015 by Mansour-Shattuck [START_REF] Mansour Andm | Pattern avoidance in inversion sequences[END_REF] and 2016 by Corteel et al. [START_REF] Corteel | Patterns in inversion sequences I[END_REF] for inversion sequences avoiding a single pattern of length 3, independently. Since then pattern-avoidance in inversion sequences has been extensively studied and obtained abundant results, see [1, 3, 5, 7-9, 11, 13] and references therein. Martinez and Savage [START_REF] Mansour Andm | Pattern avoidance in inversion sequences[END_REF] investigated the enumeration of inversion sequences avoiding a fixed triple of binary relations. Yan and Lin [START_REF] Yan | Inversion sequences avoiding pairs of patterns[END_REF] studied the inversion sequences avoiding two patterns of length 3 and solved some open questions by Martinez and Savage [START_REF] Mansour Andm | Pattern avoidance in inversion sequences[END_REF]. Recently, Kotsireas, Mansour, and Yıldırım [START_REF] Kotsireas | An algorithmic approach based on generating trees for enumerating pattern-avoiding inversion sequences[END_REF] introduced an algorithmic approach based on a generating tree method for enumerating the inversion sequence with various pattern-avoidance restrictions. In particular, they successfully solved some open cases presented in [START_REF] Yan | Inversion sequences avoiding pairs of patterns[END_REF]. Mansour [START_REF] Mansour | Five classes of pattern avoiding inversion sequences under one roof: generating trees[END_REF] presented enumerations of four classes of inversion sequences that avoid a pattern of length 4 and obtained explicit formulas. Callan, Jelínek, and Mansour [START_REF] Callan | Inversion sequences avoiding a triple of patterns of 3 letters[END_REF] studied the number of I-Wilf-equivalent classes among triples of patterns of length 3. In particular, they found an explicit formula for the generating function for the number of inversion sequences avoiding the triple patterns {120, 210, τ }, where τ ∈ {001, 012, 021}. Motivated by this, the aim of this paper is to study the generating function for the number of inversion sequences that avoid a triple patterns {120, 210, τ }, where τ is a pattern of length 3, see Table 1.

Generating trees were introduced by West in [START_REF] West | Permutations with forbidden subsequences and stack sortable permutations[END_REF] as a method to study the number of permutations of [n] 1. Enumerations Classes and powerful tool for enumeration the combinatorial objects. For each class of inversion sequences avoiding a fixed set of patterns, there is a corresponding generating tree that encodes the elements of the class as its vertices under some specific rules (see Section 2 of [START_REF] Kotsireas | An algorithmic approach based on generating trees for enumerating pattern-avoiding inversion sequences[END_REF] for the details). Each rule automatically gives a functional equation satisfied by the bivariate generating function that counts the inversion sequences by their length and the label of the corresponding node of the tree.

Let B be a set of patterns, and define I n (B) be the set of inversion sequences of length n that avoid pattern set B. Denote the set of all inversion sequences avoiding the pattern set B by I B = ∪ ∞ n=0 I n (B). The corresponding generating tree T (B) is a rooted, labeled, plane tree whose vertices are the elements of I B with the following properties: (i) each element of I B appears exactly once in the tree; (ii) element of size n appears at level n in the tree (the root has level 0); (iii) there is a set of succession rules that determine the number of children and their labels for each vertex. The tree T (B) will be empty if no inversion sequence of arbitrary length avoids the set B. Otherwise, the root's label of generating tree T (B) will always be 0, meaning that 0 ∈ T (B) for any nonempty tree T (B).

We construct the generating tree T (B) in a recursive way. Starting from the root at level 0, the n th level of the tree consists exactly the elements of I n (B), arranged in such a way that the parent of an inversion sequence e 0 e , then e appears on the left of e if i < j. Based on this initial tree T (B), we define an equivalence relation on the set of the nodes of this tree and obtain a second representation of the tree corresponding to the class I B which is more efficient for enumerating purposes. We relabel the vertices of the tree T (B) as follows. Let T (B; e) be the subtree of T (B) by retaining the inversion sequence e as the root and its descendants in T (B). We say that e is equivalent to e if and only if T (B; e) ∼ = T (B; e ) (in the sense of plan trees), denoted by e ∼ e . Let T [B] be the same tree T (B) where we replace each node e by the first node e ∈ T (B) from top to bottom and from left to right in T (B) such that T (B; e) ∼ = T (B; e ). Clearly, the generating tree T [B] has a root 0, for any B such that 0 ∈ B.

We will utilize the generating tree method throughout the paper. Now, we demonstrate the outline of the generating tree method:

(1) By the algorithm of [START_REF] Kotsireas | An algorithmic approach based on generating trees for enumerating pattern-avoiding inversion sequences[END_REF], we obtain the generating tree T [B] up to level 4 or more.

(2) According to the generating tree, we attempt to guess the succession rules of T [B].

We say that the set of the succession rules is regular if it is a finite set. Otherwise, we called non-regular. We proceed with (3) if we obtain the succession rules because the algorithm outputs either an accurate description or an ansatz. (3) By translating the rules of T [B] into a system of recurrence relations and solving the system, either through induction or the kernel method. Then, we can obtain the generating function or a system of function equations.

This paper is organized as follows. In Section 2, we present the succession rules of the generating tree and its corresponding function equations for I n (120, 210). In Section 3, we give the succession rules of the generating tree T [120, 210, τ ], where τ ∈ {001, 012, 021, 011, 102, 201}. Moreover, we derive an explicit formula for each case of τ . In Section 4, we study the remaining cases τ ∈ {000, 010, 100, 101, 110} and illustrate some further results.

2. The case I n (120, 210)

In this section, we give a proof for the succession rules for I n (120, 210) which was omitted in [START_REF] Kotsireas | An algorithmic approach based on generating trees for enumerating pattern-avoiding inversion sequences[END_REF]Section 4.6]. Additionally, we obtain the corresponding system of function equations. Definition 2.1. For any sequence of nodes a m and b m,j , we define A m (x), and B m,j (x) as the generating functions for the number of nodes in the subtrees T (B; a m ) and T (B; b m,j ), respectively. Moreover, we define the bivariate functions

A(x, v) = m≥1 A m (x)v m-1 , B(x, v, u) = m≥1 B m (x, u)v m-1 = m≥1 m j=1 B m,j (x)u m-j v m-1 .
For convenience, we let B = {120, 210}. Applying the algorithm of [START_REF] Kotsireas | An algorithmic approach based on generating trees for enumerating pattern-avoiding inversion sequences[END_REF], we obtain the rules for generating tree T [B].

Lemma 2.2. The generating tree T [B] is given by

• Root: a 1 , • Rules: a m a m+1 b m,1 • • • b m,m , b m,j b m+1,j b m,j-1 • • • b m+2-j,1 b m+1,j b m+1-j,1 • • • b m+1-j,m+1-j ,
where a m = 0 m with m ≥ 1 and b m,j = 0 m j with 1 ≤ j ≤ m.

Proof. We label the inversion sequence 0 ∈ I 0 (B) by a 1 . It is obviously that the children of

a m are a m+1 , b m,1 , . . . , b m,m . Thus, a m a m+1 b m,1 • • • b m,m . Thus, it remains to show that the children of b m,j are b m+1,j , b m,j-1 , . . . , b m+2-j,1 , b m+1,j , b m+1-j,1 , . . . b m+1-j,m+1-j .

By the definitions, the children of b

m,j ∈ I m (B) are b m,j i with i = 0, 1, . . . m + 1. Note that • T (B; b m,j i) ∼ = T (B; b m+1-i,j-i ) with i = 0, 1, . . . , j -1. Let π = 0 m jiπ ∈ I n (B).
Since π avoid B and 0 ≤ i ≤ j -1, we see that π does not contain any letter belong to the set {0, 1, . . . , i -1}. Removing i letters 0 and mapping each letter s ≥ i of jiπ to s -i. We write the result as 0 m+1-i (j -i)π . Hence, the inversion sequence π avoids B if and only if the inversion sequence 0 m+1-i (j -i)π avoids B;

• T (B; b m,j j) ∼ = T (B; b m+1,j ). This holds because 0 m jjπ ∈ I n (B) if and only if 0 m+1 jπ ∈ I n (B); • T (B; b m,j i) ∼ = T (B; b m+1-j,i-j ) with i = j + 1, . . . , m + 1. Let π = 0 m jiπ ∈ I n (B).
Since π avoids B and j + 1 ≤ i ≤ m + 1, we see that π does not contain any letter belong to the set {0, 1, . . . , j -1}. Removing j letters 0 and mapping each letters s ≥ j of jiπ to s -j. We write the result as 0 m+1-j (i -j)π . Hence, the inversion sequence π avoids B if and only if the inversion sequence 0 m+1-j (i -j)π avoids B.

This completes the proof. Now, by Definition 2.1, we translate the succession rules of T [B] into a system of function equations.

Lemma 2.3. We have

A(x, v) = x 1 -v + x v (A(x, v) -A(x, 0)) + xB(x, v, 1), (2.1) B(x, v, u) = x (1 -v)(1 -vu) + x(2 -v) uv(1 -v) (B(x, v, u) -B(x, v, 0)) + x 1 -v B(x, uv, 1). (2.2) Proof. From the rules of T [B] in Lemma 2.2, we get A m (x) = x + xA m+1 (x) + x m j=1 B m,j (x), m ≥ 1, (2.3) B m,j (x) = x + x j i=1 B m+1-j+i,i (x) + xB m+1,j (x) + x m+1-j i=1 B m+1-j,i (x), 1 ≤ j ≤ m. (2.4)
Then, by multiplying (2.3) by v m-1 and summing over m ≥ 1, we can obtain (2.1). By multiplying (2.4) by u m-j v m-1 and summing over 1 ≤ j ≤ m, we have (2.2), as claimed.

By applying Lemma 2.3, we get the first 20 terms of the generating function A(x, 0):

A(x, 0) = x + 2x 2 + 6x 3 + 23x 4 + 102x 5 + 499x 6 + 2625x 7 + 14601x 8 + 84847x 9 + 510614x 10 + 3161964x 11 + 20050770x 12 + 129718404x 13 + 853689031x 14 + 5701759424x 15 + 38574689104x 16 + 263936457042x 17 + 1824032887177x 18 + 12718193293888x 19 + 89386742081688x 20 + • • • .
Also, by applying the kernel method [START_REF] Hou | Kernel method and linear recurrence system[END_REF] with taking v = x into (2.1), we have the following result.

Theorem 2.4. The generating function n≥0 |I n (120, 210)|x n+1 is equal to x 1-x +xB(x, x, 1), where B(x, v, 1) satisfies

B(x, v, 1) = (2 -v)x 2 (1 -v)(v 2 -v + 2x) B x, (2 -v)x 1 -v , 1 + (v 2 -vx -v + 2x)x (1 -v)(1 -v + vx -2x)(v 2 -v + 2x) .
Proof. It is easy to verify that n≥0 |I n (120, 210)|x n+1 is equal to A(x, 0) by the definition of A(x, v). By (2.1) with v = x, we have A(x, 0) = x 1-x + xB(x, x, 1). Then, by (2.2) with u = 1, we get

B(x, v, 0) = v 2 -v + 2x (2 -v)x B(x, v, 1) + v (1 -v)(2 -v) . (2.5)
By substituting (2.5) into (2.2) and replacing u by (2-v)x

(1-v)v , we complete the proof.

The main results

In this section, we apply the algorithm introduced in [START_REF] Kotsireas | An algorithmic approach based on generating trees for enumerating pattern-avoiding inversion sequences[END_REF] to characterize the succession rules for generating tree within classes I n (120, 210, τ ), where τ ∈ {001, 012, 021, 011, 102, 201}. Furthermore, we derive an explicit formula for each of these cases. Since the succession rules and the function equations can be obtained using similar arguments as in the proof of Lemmas 2.2 and 2.3, we have omitted the proof for brevity.

3.1. Class I n (120, 210, 001). By using the algorithm, we obtain the rules of generating tree T [120, 210, 001] as below.

Lemma 3.1. The generating tree T [120, 210, 001] is given by root r 0 = 0 and the following rules 0 00, 01, 00 00, 01 00, 011, 01, 011 00, 011.

It is obvious that the set of the succession rules of T [120, 210, 001] is regular from Lemma 3.1, since it is a finite set. Now, we are ready to find an explicit formula for the generating function.

Theorem 3.2. The generating function R(x) = n≥0 |I n (120, 210, 001)|x n+1 is given by

R(x) = x(1 -x + x 2 ) (1 -x) 3 = 1 + 2x 2 + 4x 3 + 7x 4 + 11x 5 + 16x 6 + 22x 7 + 29x 8 + 37x 9 + 46x 10 + • • • .
Moreover, |I n (120, 210, 001)| = 1 2 (n 2 + n + 2) for all n ≥ 0. Proof. We use A w (x) to denote the generating function for the number of nodes in the subtree T (120, 210, 001; w). By the rules of T [120, 210, 001] in Lemma 3.1, we have R(

x) = x + xA 00 (x) + xA 01 (x), A 00 (x) = x + xA 00 (x), A 01 (x) = x + xA 011 (x) + xA 01 (x), and A 011 (x) = x + xA 00 (x) + xA 01 (x)
. By solving this system for R(x), we have

R(x) = x(1 -x + x 2 ) (1 -x) 3 = n≥1 1 2 (n 2 -n + 2)x n . (3.1)
Compare the coefficients of x n+1 in (3.1), we get that |I n (120, 210, 001)| = 1 2 (n 2 + n + 2), for all n ≥ 0, which completes the proof. Remark 3.3. Note that in [START_REF] Callan | Inversion sequences avoiding a triple of patterns of 3 letters[END_REF] shown that the succession rules and generating functions for avoiding triple pattern B ∈ {{120, 210, 001}, {120, 210, 012}, {120, 210, 021}} in inversion sequences. We only complete the proof of case I n (120, 210, 001), the other cases are analogous and therefore are omitted.

3.2.

Class I n (120, 210, 011). For convenience, we let B = {120, 210, 011}. First, we utilize the algorithm of [START_REF] Kotsireas | An algorithmic approach based on generating trees for enumerating pattern-avoiding inversion sequences[END_REF] to demonstrate the generating tree T [B].

Lemma 3.4. The generating tree T [120, 210, 011] is given by

• Root: a 1 ,
• Rules:

a m a m+1 b m,1 • • • b m,m , b m,j b m+1,j c m,j • • • c m+2-j,2 c m+1-j,2 • • • c m+1-j,m+2-j , c m,j c m,j-1 c m-1,j-2 • • • c m+3-j,2 c m+2-j,2 • • • c m+2-j,m+3-j ,
where a m = 0 m with m ≥ 1, b m,j = 0 m j with 1 ≤ j ≤ m and c m,j = 0 m 1j with 2 ≤ j ≤ m + 1.

To study the generating function n≥0 |I n (120, 210, 011)|x n+1 , we define C m,j (x) as the generating functions for the number of nodes in the subtrees T (B; c m,j ). We define the following bivariate function

C(x, v, u) = m≥1 m+1 j=2 C m,j (x)u m+1-j v m-1 .
Then, we translate the rules in Lemma 3.4 into a system of function equations. Lemma 3.5. Let C(x, v, u) be defined as above, and let A(x, v) and B(x, v, u) be defined as Definition 2.1. Then, we have

A(x, v) = x 1 -v + x v (A(x, v) -A(x, 0)) + xB(x, v , 1), (3.2) 
B(x, v, u) = x (1 -v)(1 -vu) + x uv (B(x, v, u) -B(x, v, 0)) + x u(1 -v) (C(x, v, u) -C(x, v, 0)) + x 1 -v C(x, uv, 1), (3.3) C(x, v, u) = x (1 -v)(1 -uv) + x u(1 -v) (C(x, v, u) -C(x, v, 0)) + x 1 -v C(x, uv, 1). (3.4)
Now, we are ready to solve the system of these function equations.

Theorem 3.6. The generating function n≥0 |I n (120, 210, 011)|x n+1 is given by

x(1 -2x + 2x 2 ) (1 -x) 2 (1 -2x) + x 4 1 -2x j≥0 α j (x) + 2(1 -2x)β j (x) (α j (x)) 2 (-x 2 ) j .
where

α j (x) = (1 -x[j + 2] x )(1 -x[j + 1] x ) j i=0 (1 -2x - x i+1 1 -x[i] x )
and

β j (x) = (2x[j + 1] x [j + 2] x -[j + 1] x [j + 2] x ) j i=0 (1 -2x - x i+1 1 -x[i] x ) + j k=0 x k (1 -x[j + 2] x )(1 -x[j + 1] x ) j i=0 (1 -2x -x i+1 1-x[i]x ) ((1 -2x)(1 -x[k] x ) -x k+1 )(1 -x[k] x )
.

Proof. By Lemma 3.5, the generating function n≥0 |I n (120, 210, 011)|x n+1 is given by A(x, 0). Now, we find an expression for C(x, v, u). By (3.4) with u = 1, we get

C(x, v, 0) = 1 1 -v - 1 -2x -v x C(x, v, 1), which, by (3.4) with u = x/(1 -v), implies C(x, v, 1) = - x 2 (1 -2x -v)(1 -v) C(x, vx 1 -v , 1) + (1 -x -v)x (1 -v)(1 -v -vx)(1 -2x -v)
.

Iterating an infinite number of times (here we assume that |x| < 1), we obtain

C(x, v, 1) = j≥0 (-1) j (1 -x -v)x 2j+1 (1 -v[j + 2] x )(1 -v[j + 1] x ) j i=0 (1 -2x -x i v 1-v[i]x )
,

where [j] x = (1 -x j )/(1 -x). Thus, C(x, v, 0) = 1 1 -v - j≥0 (-1) j (1 -2x -v)(1 -x -v)x 2j (1 -v[j + 2] x )(1 -v[j + 1] x ) j i=0 (1 -2x -x i v 1-v[i]x )
.

By substituting the expressions of C(x, v, 0) and C(x, v, 1) into (3.4), we have

C(x, v, u) = xu (1 -vu)(u(1 -v) -x) - x (1 -v)(u(1 -v) -x) + x u(1 -v) -x j≥0 (-1) j (1 -2x -v)(1 -x -v)x 2j (1 -v[j + 2] x )(1 -v[j + 1] x ) j i=0 (1 -2x -x i v 1-v[i]x ) + xu u(1 -v) -x j≥0 (-1) j (1 -x -vu)x 2j+1 (1 -vu[j + 2] x )(1 -vu[j + 1] x ) j i=0 (1 -2x -x i vu 1-vu[i]x ) . (3.5)
Secondly, by (3.3) with u = x/v, we have

B(x, v, 0) = x (1 -v)(1 -x) + v 1 -v (C(x, v, x v ) -C(x, v, 0)) + x 1 -v C(x, x , 1), which, by (3.3 
) with u = 1, implies B(x, v, 1) = x (1 -v) 2 (1 -x) + x (v -x)(1 -v) (vC(x, v, x v ) + xC(x, x, 1) -2vC(x, v, 1)). (3.6) 
To find B(x, x, 1), we take the limit at v → x in (3.6). Then, by L'Hôpital's rule we have

B(x, x, 1) = x (1 -x) 3 - x 1 -x (C(x, x, 1) + ∂ ∂u C(x, x, u)| u=1 + x ∂ ∂v C(x, v, 1)| v=x ).
By (3.5) we have

C(x, x, 1) = x(1 -2x) j≥0 (-x 2 ) j α j (x) , ∂ ∂u C(x, x, u)| u=1 = x (1 -x) 2 (1 -2x) + x 1 -2x j≥0 ((-5x 2 + 4x -1)α j (x) -x(1 -2x)β j (x))(-1) j x 2j (α j (x)) 2 and ∂ ∂v C(x, v, 1)| v=x = j≥0 (-α j (x) -(1 -2x)β j (x))(-1) j x 2j+1 (α j (x)) 2 .
Combine the above equations, then we have

B(x, x, 1) = x (1 -x) 2 (1 -2x) + x 3 1 -2x j≥0 α j (x) + 2(1 -2x)β j (x) (α j (x)) 2 (-x 2 ) j .
Finally, by (3.2) with v = x, we have A(x, 0) = x 1-x + xB(x, x, 1), which completes the proof.

By using Theorem 3.6, the first 20 terms of the generating function for the number of inversion sequences that avoid {120, 210, 011} are given by x + 2x 2 + 5x 3 + 14x 4 + 41x 

• Root: a 1 ,
• Rules:

a m a m+1 b m,1 • • • b m,m , b m,j c j c j-1 • • • c 1 b m+1,j b m+1-j,1 • • • b m+1-j,m+1-j , c m c m c m-1 • • • c 1 c m ,
where a m = 0 m with m ≥ 1, b m,j = 0 m j and c m = 0 m m0 with 1 ≤ j ≤ m. Now, we translate the rules in Lemma 3.7 into a system of function equations. We demonstrate the explicit formula of the generating function of the inversion sequence avoids {120, 210, 102}.

Theorem 3.8. The generating function n≥0 |I n (120, 210, 102)|x n+1 is given by

1 -6x + 10x 2 -5x 3 + 2x 4 + (x 3 -4x 2 + 4x -1) √ 1 -4x 2x 3 (1 -x) = x + 2x 2 + 6x 3 + 21x 4 + 76x 5 + 276x 6 + 1002x 7 + 3641x 8 + 13261x 9 + 48451x 10 + • • • .

Proof. By the rules of T [B] in Lemma 3.7, we obtain

A m (x) = x + xA m+1 (x) + x m i=1 B m,i (x), m ≥ 1, (3.7) B m,j (x) = x + x j i=1 C i (x) + xB m+1,j (x) + x m+1-j i=1 B m+1-j,i (x), 1 ≤ j ≤ m, (3.8) C m (x) = x + xC m (x) + x m i=1 C i (x), m ≥ 1, (3.9)
where the main goal is finding the generating function A 1 (x).

Let C(x; v) = m≥1 C m (x)v m-1 . Then, by multiplying (3.9) by v m-1 and summing over m ≥ 1, we get

C(x, v) = x 1 -2x -v + vx = m≥1 x(1 -x) m-1 (1 -2x) m v m-1 , which implies that C m (x) = x(1-x) m-1 (1-2x) m for all m ≥ 1. Define B m (x) = m j=1 B m,j (x)
. So, by (3.8), we have

B m,j (x) = x(1 -x) j (1 -2x) j + xB m+1,j (x) + xB m+1-j (x),
which, by iterating an infinite number of times (here we assume |x| < 1), we obtain

B m,j (x) = x(1 -x) j-1 (1 -2x) j + i≥1 x i B m+i-j (x).
By adding over j = 1, . . . , m, we have

B m (x) = m j=1 x(1 -x) j-1 (1 -2x) j + m j=1 i≥1
x i B m+i-j (x). Now, define B(x; t) = m≥1 B m (x)t m . Then, by multiplying the last recurrence by (xt) m , and summing over m ≥ 1, we obtain

B(x, xt) = x 2 t (1 -xt)(1 -2x -xt + x 2 t) + xt (1 -xt)(1 -t) (B(x, x) -B(x, xt)). (3.10) Let K(t) = 1 + xt (1-xt)(1-t) be the coefficient of B(x, xt) in (3.10). The power series solution of K(t) = 0 is t 0 = 1- √ 1-4x 2x
. Hence, by taking (3.10) with t = t 0 , we have

B(x, x) = 1 -2x - √ 1 -4x 1 -3x + (1 -x) √ 1 -4x .
On the other hand, by iterating (3.7) infinity number of times, we have that

A m (x) = x 1 -x + i≥1 B m+i-1 (x)x i .
Hence,

A 1 (x) = x 1 -x + B(x, x) = 1 -6x + 10x 2 -5x 3 + 2x 4 + (x 3 -4x 2 + 4x -1) √ 1 -4x 2x 3 (1 -x) ,
as required. Lemma 3.9. The generating tree T [120, 210, 201] is given by

• Root: a 1 ,
• Rules:

a m a m+1 b m,1 • • • b m,m , b m,j (b m+2-j,1 ) j b m+1,j b m+1-j,1 • • • b m+1-j,m+1-j ,
where a m = 0 m with m ≥ 1, b m,j = 0 m j with 1 ≤ j ≤ m. Now, by translating Lemma 3.9 into a system of function equations and solving it, we can derive the explicit formula of the generating function for the number of inversion sequences that avoid {120, 210, 201}.

Theorem 3.10. The generating function n≥0 |I n (120, 210, 201)|x n+1 is given by

x 1 -x - (t 2 -1)(t 1 -1)(t 2 t 1 x 2 -t 1 x -t 2 x + x + 1) (1 -x)(1 -t 2 x)(1 -t 1 x)(t 2 t 1 -t 2 -t 1 + 2) = x + 2x 2 + 6x 3 + 23x 4 + 101x 5 + 484x 6 + 2468x 7 + 13166x 8 + 72630x 9 + 411076x 10 + • • • ,
where

t 1 = 1 -x 2 -x 3 + 2x 4 + • • • and t 2 = 2 + 2x + 10x 2 + 42x 3 + 194x 4 + • • • are the power series roots of the polynomial t 4 x 2 -2t 3 x 2 -2t 3 x + 5t 2 x + t 2 -3tx -3t + 2.
Proof. Define B m (x) = m j=1 B m,j (x) and let |x| < 1. By the rules of T [B] in Lemma 3.9, we can obtain the following function equations

A m (x) = x + xA m+1 (x) + xB m (x), m ≥ 1, (3.11) B m,j (x) = x + jxB m+2-j,1 (x) + xB m+1,j (x) + xB m+1-j (x), 1 ≤ j ≤ m. (3.12)
By (3.12) with j = 1, we have

B m,1 (x) = x + 2xB m+1,1 (x) + xB m (x), which implies B m,1 (x) = x 1 -2x + x j≥0 2 j x j B m+j (x).
Thus, by (3.12), we have

B m,j (x) = x + jx   x 1 -2x + x i≥0 2 i x i B m+2-j+i (x)   + xB m+1,j (x) + xB m+1-j (x), (3.13) 
for all 1 ≤ j ≤ m. By using (3.13) an infinite number of times, we obtain

B m,j (x) = x 1 -x + jx 2 (1 -x)(1 -2x) + jx i≥1 (2 i -1)x i B m+1-j+i (x) + i≥1 B m+i-j (x)x i ,
which, by summing over j = 1, 2, . . . , m, leads to

B m (x) = mx 1 -x + m(m + 1)x 2 2(1 -x)(1 -2x) + m j=1 i≥1 j(2 i -1)x i+1 B m+1-j+i (x)+ m j=1 i≥1 B m+i-j (x)x i . Define B(x; t) = m≥1 B m (x)t m .
Then, by multiplying the last recurrence by (xt) m and summing over m ≥ 1, we obtain

B(x; xt) = x 2 t (1 -x)(1 -tx) 2 + x 3 t (1 -x)(1 -2x)(1 -tx) 3 + xt (1 -tx)(1 -t) (B(x; x) -B(x; xt)) + xt (1 -tx) 2 (1 -t)(2 -t) B(x; xt) + (2 -t)B(x; 2x) + (t -1)B(x; x) . Let K(t) = -t 4 x 2 -2t 3 x 2 -2t 3 x+5t 2 x+t 2 -3tx-3t+2 (2-t)(1-tx) 2 (1-t)
be the coefficient of B(x; xt) in this equation. Let t 1 , t 2 , t 3 , t 4 be the solutions for K(t) = 0. Note that

t 1 = 1 -x 2 -x 3 + 2x 4 + • • • , t 2 = 2 + 2x + 10x 2 + 42x 3 + 194x 4 + • • • , t 3 = 1 x - 1 2 (1 + √ 5) - 1 5 (5 + 4 √ 5)x + • • • , t 4 = 1 x - 1 2 (1 - √ 5) - 1 5 (5 -4 √ 5)x + • • • .
Thus by substituting t = t 1 and t = t 2 into the equation and solving for B(x; x) and B(x; 2x), we obtain

B(x; x) = - (t 2 -1)(t 1 -1)(t 2 t 1 x 2 -t 1 x -t 2 x + x + 1) (1 -x)(1 -t 2 x)(1 -t 1 x)(t 2 t 1 -t 2 -t 1 + 2) .
On the another hand, let us define A(x, v) as in Definition 2.1. Then, by multiplying (3.11) by v m-1 and summing over m ≥ 1, we have

A(x, v) = x 1 -v + x v (A(x, v) -A(x, 0)) + x m≥1 B m (x)v m-1 = x 1 -v + x v (A(x, v) -A(x, 0)) + x v B(x; v). (3.14) 
Thus by replacing v with x in (3.14) gives

A(x, 0) = x 1 -x + B(x; x),
which completes the proof.

Further results

In this section, we use the same algorithm to illustrate the remaining cases I n (120, 210, τ ) with τ ∈ {000, 010, 100, 110, 101}. We characterize the succession rules of generating trees and corresponding function equations, but we do not have an explicit formula for the corresponding generating function. The proof of rules and function equations are analogous to Lemma 2.2 and 2.3 and are therefore omitted. 4.1. Class I n (120, 210, 000). Let B = {120, 210, 000}. First, we give the generating tree T [B] by using the same algorithm as before.

Lemma 4.1. The generating tree T [120, 210, 000] is given by root r 0 = 0 and the following rules

• Root: r 0 ,
• Rules: To find the generating functions, we define F m,j (x) as the generating functions for the number of nodes in the subtrees T (B; f m,j ), where f ∈ {a, b, c, d}, F ∈ {A, B, C, D}. Moreover, we define the bivariate functions

r 0 a 0,0 d 0,1 , a m,j c m,j c m-1,j-1 • • • c m+1-j,1 b m-j,1 b m-j,2 • • • b m-j,m+2-j , b m,j d m+1,j-1 d m,j-2 • • • d m+3-j,1 a m+1,j-1 d m+2-j,1 • • • d m+2-j,m+3-j , c m,j a m+1,j-1 c m,j-1 c m-1,j-2 • • • c m+2-j,1 b m+1-j,1 • • • b m+1-j,m+3-j , d m,j b m,j d m,j-1 d m-1,j-2 • • • d m+2-j,1 c m,j d m+1-j,1 • • • d m+1-j,m+2-j ,
A(x, v, u) = m≥0 A m (x, u)v m = m≥0 m j=0 A m,j (x)u m-j v m , B(x, v, u) = m≥0 B m (x, u)v m = m≥0 m+2 j=1 B m,j (x)u m+2-j v m , G(x, v, u) = m≥0 G m (x, u)v m = m≥0 m+1 j=1 G m,j (x)u m+1-j v m ,
where G ∈ {C, D}. From the generating tree's succession rules of T [B] in Lemma 4.1, we have the function equations.

Theorem 4.2. The generating function R(x) for the number of inversion sequences of length n that avoid {120, 210, 000} is given by x + xA(x, 0, 0) + xD(x, 0, 0), where A(x, v, u) and D(x, v, u) satisfy 

A(x, v, u) = x (1 -v)(1 -uv) + x u(1 -v) (C(x, v, u) -C(x, v, 0)) + x 1 -v B(x, uv, 1), B(x, v, u) = x(1 + u -uv) (1 -v)(1 -uv) + x uv(1 -v) (D(x, v, u) -D(x, v, 0)) + x v (A(x, v, u) -A(x, 0, 0)) + x v(1 -v) D(x, uv, 1) - x v D(x, 0, 0) C(x, v, u) = x (1 -v)(1 -uv) + x uv (A(x, v, u) -A(x, v, 0)) + x u(1 -v) (C(x, v, u) -C(x, v, 0)) + x 1 -v B(x, uv, 1), D(x, v, u) = x (1 -v)(1 -uv) + x u (B(x, v, u) -B(x, v, 0)) + x u(1 -v) (D(x, v, u) -D(x, v, 0)) + xC(x, v, u) + x 1 -v D(x,
• Root: a 1 ,
• Rules:

a m a m+1 a m b m,2 • • • b m,m , b m,j c m,j c m-1,j-1 • • • c m+2-j,2 b m+1,j a m+1-j b m+1-j,2 • • • b m+1-j,m+1-j , c m,2 c m+1,2 a m+1 a m b m,2 • • • b m,m , c m,j c m+1,j c m,j-1 • • • c m+3-j,2 b m+1,j-1 a m+2-j b m+2-j,2 • • • b m+2-j,m+2-j ,
where a m = 0 m with m ≥ 1 and b m,j = 0 m j with 2 ≤ j ≤ m, c m,2 = 0 m 21 with m ≥ 2 and c m,j = 0 m j1 with 3 ≤ j ≤ m.

Define A m (x), B m,j (x) and C m,j (x) as the generating functions for the number of nodes in the subtrees T (B; a m ), T (B; b m,j ) and T (B; c m,j ) respectively. And we define

A(x, v) = m≥1 A m (x)v m-1 , B(x, v, u) = m≥2 m j=2 B m,j (x)u m-j v m-2 , C 2 (x, v) = m≥2 C m,2 (x)v m-2 , C(x, v, u) = m≥2 m j=2 C m,j (x)u m-j v m-2 .
As before, from the generating tree's succession rules of T [B] in Lemma 4.3, we obtain the generating function equations as follows.

Lemma 4.4. We have 

A(x, v) = x 1 -v + x v (A(x, v) -A(x, 0)) + xA(x, v) + xvB(x, v, 1), B(x, v, u) = x (1 -v)(1 -vu) + x 1 -v C(x, v, u) + x vu (B(x, v, u) -B(x, v, 0)) + x 1 -v A(x, uv) + xuv 1 -v B(x, uv, 1), C 2 (x, v) = x 1 -v + x v (C 2 (x, v) -C 2 (x, 0)) + x v (A(x, v) -A(x, 0)) + x v 2 (A(x, v) -A(x, 0) - v x ((1 -x)A(x, 0) -x)) + xB(x, v, 1), C(x, v, u) = C 2 (x, uv) + xv (1 -v)(1 -vu) + x vu(1 -v) (C(x, v, u) -C(x, v, 0)) - x vu (C 2 (x, uv) -C 2 (x, 0)) + x u(1 -v) (A(x, vu) -A(x, 0)) + x vu 2 (B(x, v, u) -B(x, v, 0) -u ∂ ∂u B(x, v, u) | u=0 ) + xv 1 -v B(x,
+ 1721096279910x 20 + • • • .
Then by applying the kernel method by taking v = x 1-x into lemma 4.4, we have the following results.

Theorem 4.5. The generating function n≥0 |I n (120, 210, 010)|x n+1 is given by [START_REF] Callan | Inversion sequences avoiding a triple of patterns of 3 letters[END_REF] shown that {120, 210, 100} ∼ {120, 210, 110}, so it is sufficient to show that the case I n (120, 210, 100). Let B = {120, 210, 100}. Firstly, we show that all the set of succession rules of T [B].

A(x, 0) = x 1 -2x + x 2 (1 -x) 2 B(x, x 1 -x , 1 
Lemma 4.6. The generating tree T [120, 210, 100] is given by

• Root: a 1 ,
• Rules:

a m a m+1 b m,1 • • • b m,m , b m,j b m,j-1 b m-1,j-2 • • • b m+2-j,1 a m+2-j b m+1,j b m+1-j,1 • • • b m+1-j,m+1-j ,
where a m = 0 m with m ≥ 1 and b m = 0 m j with 1 ≤ j ≤ m.

From the succession rules of T [B], we obtain the generating function equations.

Lemma 4.7. Let A(x, v) and B(x, v, u) be defined as Definition 2.1. Then we have Then, by applying the kernel method by taking v = x into (4.1), we have the following results. where

A(x, v) = x 1 -v + x v (A(x, v) -A(x, 0)) + xB(x, v, 1), (4.1) B(x, v, u) = x (1 -v)(1 -uv) + x uv(1 -v) (B(x, v, u) -B(x, v, 0 
B(x, v, 1) = x 2 (v -x) v(1 -v)(v 3 -v 2 + 2xv -x 2 ) B(x, x 1 -v , 1) + x 2 (v 2 -v + x) v(v 3 -v 2 + 2xv -x 2 )
B(x, x, 1)

+ x(v -x)(v 2 -v + x) (1 -v -x)(1 -x)(1 -v)(v 3 -v 2 + 2xv -x 2 )
.

Proof. By the definition of A(x, v) we can easy to verify n≥0 |I n (120, 210, 100)|x n+1 is equal to A(x, 0).

Note that, by (4.1) with v = 1, we have A(x, 0) = x 1-x + xB(x, x, 1). So, it is sufficient to show that the expression of B(x, v, 1). By solving (4.1) and (4.2), we can obtain the expression of A(x, v) and B(x, v, 0), i.e.,

A(x, v) = vx v -x B(x, v, 1) + x x -v A(x, 0) + vx (1 -v)(v -x) , B(x, v, 0) = x(1 + v) + v(1 -v) x B(x, v, 1) + A(x, v) -A(x, 0) + v 1 -v .
Then, by substituting the expression of A(x, v) and B(x, v, 0) into (4.2) and replace u by

x (1-v)x we have

B(x, v, 1) = (v 2 -v + x)x v(v 3 -v 2 + 2vx -x 2 ) A(x, 0) + (v -x)x 2 v(v 3 -v 2 + 2vx -x 2 )(1 -v) B(x, x 1 -v , 1). (4.3) 
Recall that A(x, 0) = x 1-x +xB(x, x, 1), substituting it into (4.3), we can obtain the expression of B(x, v, 1). Which completes the proof. Then, by translating the rules in Lemma 4.9 into a system of recurrence relations, we can obtain the following function equations. 

  • • e n ∈ I n (B) is the unique inversion sequence e 0 e 1 • • • e n-1 ∈ I n-1 (B). We obtain the children of e 0 e 1 • • • e n-1 ∈ I n-1 (B) from the set {e 0 e 1 • • • e n-1 e n | e n = 0, 1, . . . , n} by obeying the restrictions of the patterns in B. Arranging the nodes from left to right so that if e = e 0 e 1 • • • e n-1 i and e = e 0 e 1 • • • e n-1 j are children of the same parent e 1 • • • e n-1

3. 3 .Lemma 3 . 7 .

 337 Class I n (120, 210, 102). Let B = {120, 210, 102}. We use the same algorithm as before to present the generating tree T [B]. The generating tree T [120, 210, 102] is given by

3. 4 .

 4 Class I n (120, 210, 201). Let B = {120, 210, 201}. By utilizing the same algorithm as before, we can obtain the generating tree T [B].

  where a m,j = 0011 . . . (m-1)(m-1)(m+j)(m+j) with 0 ≤ j ≤ m, b m,j = 0011 . . . mm(m+j) with 1 ≤ j ≤ m + 2, m ≥ 0, c 0,1 = 011, c m,j = 0011 . . . m(m + j)(m + j) and d 0,1 = 01, d m,j = 0011 . . . m(m + j) with 1 ≤ j ≤ m + 1, m ≥ 0.

4. 2 .Lemma 4 . 3 .

 243 Class I n (120, 210, 010). Let B = {120, 210, 010}. We present the generating tree T [B] along with the corresponding function equations in the following. The generating tree T [120, 210, 010] is given by

  x, uv) -A(x, 0)) + x 1 -v B(x, uv, 1). (4.2) By Lemma 4.7, the first 15 terms of A(x, 0) are A(x, 0) = x + 2x 2 + 6x 3 + 22x 4 + 91x 5 + 409x 6 + 1953x 7 + 9763x 8 + 50583x 9 + 269697x 10 + 1472080x 11 + 8193306x 12 + 46359256x 13 + 266023710x 14 + 1545165168x 15 + • • • .

Theorem 4 . 8 .

 48 The generating function n≥0 |I n (120, 210, 100)|x n+1 is equal to A(x, 0) that satisfies the following function equationA(x, 0) = x 1 -x + xB(x, x, 1),

4. 4 .

 4 Class I n (120, 210, 101). Let B = {120, 210, 101}. We show that the generating tree T [B] and the function equations in the following.

Lemma 4 . 9 .

 49 The generating tree T [120, 210, 101] is given by• Root: a 1 ,• Rules:a m a m+1 b m,1 • • • b m,m , b m,j c m,j c m-1,j-1 • • • c m+1-j,1 b m+1,j b m+1-j,1 • • • b m+1-j,m+1-j , c m,j c m+1,j c m,j-1 • • • c m+2-j,1 a m+2-j b m+1-j,1 • • • b m+1-j,m+1-j ,where a m = 0 m with m ≥ 1, b m,j = 0 m j and c m,j = 0 m j0 with 1 ≤ j ≤ m.

Lemma 4 . 10 .

 410 Let A(x, v), B(x, v, u) and C(x, v, u) be defined as Definition 2.1. Then we haveA(x, v) = x 1 -v + x v (A(x, v) -A(x, 0)) + xB(x, v, v, u) = x (1 -v)(1 -uv) + x uv(1 -v) (C(x, v, u) -C(x, v, 0)) + x uv(1 -v) (A(x, uv) -A(x, 0)) + x 1 -v B(x,vu, 1). (4.6)

  satisfying certain set of conditions. Generating tree has become a useful

	τ	Rules of	System of functional Generating function
		T (120, 210, τ ) equations	n≥0 |I n (120, 210, τ )|x n+1
	∅	Lemma 2.2	Theorem 2.4	Open
	001	Lemma 3.1	Theorem 3.2	Theorem 3.2
	012, 021 Table 1 in [2] Table 1 in [2]	Table 1 in [2]
	011	Lemma 3.4	Lemma 3.5	Theorem 3.6
	102	Lemma 3.7	Theorem 3.8	Theorem 3.8
	201	Lemma 3.9	Theorem 3.10	Theorem 3.10
	000	Lemma 4.1	Theorem 4.2	Open
	010	Lemma 4.3	Lemma 4.4	Open
	100, 110 Lemma 4.6	Lemma 4.7	Open
	101	Lemma 4.9	Lemma 4.10	Open
			Table	

  5 + 123x 6 + 375x 7 + 1156x 8 + 3590x 9 + 11202x 10 + 35057x 11 + 109900x 12 + 344826x 13 + 1082256x 14 + 3396343x 15 + 10654187x 16 + 33401696x 17 + 104639260x 18 + 327534093x 19 + 1024297553x 20 + • • • .

  uv, 1).

	By applying Theorem 4.2, we obtain that
	R(x) = x + 2x 2 + 5x 3 + 15x 4 + 50x 5 + 183x 6 + 715x 7 + 2944x 8 + 12642x 9 + 56202x 10
	+ 257120x 11 + 1205107x 12 + 5766033x 13 + 28083732x 14 + 138915127x 15
	+ 696516516x 16 + 3534352050x 17 + 18126103300x 18 + 93847639653x 19
	+ 490056441001x 20 + • • • .

  uv, 1). + 5x 3 + 15x 4 + 52x 5 + 200x 6 + 830x 7 + 3654x 8 + 16869x 9 + 80963x 10 + 401300x 11 + 2043610x 12 + 10649335x 13 + 56604706x 14 + 306101789x 15 + 1680515427x 16 + 9350151066x 17 + 52644525981x 18 + 299573440044x 19

	By applying Lemma 4.4, the first 20 terms are given by
	x + 2x 2

  Case I n (120, 210, 100) and I n (120, 210, 110). We say that two sets of patterns P and Q are I-Wilf-equivalent if |I n (P )| = |I n (Q)| for every n, denoted by P ∼ Q. And they share the same succession rules and generating functions. Note that in

	),
	where B(x, v, u) satisfies Lemma 4.4.
	4.3.

Then, by Theorem 4.10, we have the first 19 terms of A(x, 0) as A(x, 0) = x + 2x 2 + 6x 3 + 22x 4 + 89x 5 + 384x 6 + 1743x Then by applying the kernel method by taking v = x into (4.4), we have the following results.

Theorem 4.11. The generating function n≥0 |I n (120, 210, 101)|x n+1 is equal to A(x, 0) that satisfies the following function equation

where B(x, v, u) satisfied Lemma 4.10

We conclude this paper with a remark. In this paper, we provide explicit formulas for cases I n (120, 210, τ ) where τ ∈ {001, 011, 012, 021, 102, 201}. We only characterize the rules of generating tree and function equations for cases I n (120, 210) and I n (120, 210, τ ) where τ ∈ {010, 100, 101, 110} and do not succeed in deriving an explicit formula. From this, we observe that solving functional equations that translate from the rules of generating trees is not always successful. Maybe we need more powerful tools to solve such equations. We leave it for future study.