Amattouch M R First
email: amattouch36@gmail.com

An extended deep learning method for the Navier Equation

Keywords: Navier equations, schwarz domain decomposition method, Artificial intelligence methods

This article deals with the Navier equation for simulating the elastic behavior of solids. We propose to solve this equation using a combination of domain decomposition method and meshless method trained with artificial neural networks. The domain decomposition technique employed to solve the Navier partial differential equation is the Schwarz wave relaxation method. This method involves a parallel implementation of the meshless method and will be trained using a specific neural network approach. Finally, we present several numerical test cases to validate the effectiveness of our methods.

Introduction

Linear elasticity plays a crucial role in modeling the deformation behavior of materials under mechanical loads. In the absence of body forces, the vector equation of equilibrium, often referred to as the Navier equations, governs the displacement field. Specifically, for the displacement vector u, the Navier equations are given by:

   div(∇u) + 1 1 -2ν ∆u = 0 Boundary Conditions (1)
Here, u represents the displacement vector, and ν denotes the Poisson ratio. In practical scenarios, accurately computing the displacement field and integrating the deformation and constraint fields is often more suitable. To address these equations, a widely adopted approach is the finite element method, with numerous references converging towards its use in elasticity models (e.g., [START_REF] Fenner | Finite element methods for engineers[END_REF][START_REF] Axelsson | A class of iterative methods for finite element equations[END_REF] and [START_REF] Arnold | A new mixed formulation for elasticity[END_REF][START_REF] Brenner | Linear Finite Element Methods for Planar Linear Elasticity[END_REF]).

While effective for simple geometries like cylinders and tubes, finite element methods encounter challenges in complex geometries, requiring fine mesh discretization for convergence. However, memory processing limitations hinder their application in such cases. Spectral methods (e.g., [START_REF] Louër | A high order spectral algorithm for elastic obstacle scattering in three dimensions[END_REF][START_REF] Ganesh | A high-order tangential basis algorithm for electromagnetic scattering by curved surfaces[END_REF] and [START_REF] Chen | A direct spectral collocation Poisson solver in polar and cylindrical coordinates[END_REF][START_REF] Fornberg | The pseudospectral method: comparisons with finite differences for the elastic wave equation[END_REF]) offer an alternative, demonstrating enhanced accuracy for certain scenarios, but present challenges in selecting appropriate collocation points or basis functions for complex domains.

A novel attempt to address domains with intricate geometries is through meshless methods. These methods, such as meshless schemes [START_REF] Larsson | A least squares radial basis function partition of unity method for solving pdes[END_REF][START_REF] Piret | Fast rbf ogr for solving pdes on arbitrary surfaces[END_REF][START_REF] Atluri | The Meshless Local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics[END_REF], employ a distribution of nodes to approximate solutions for partial differential equations. Unlike finite element and volume methods, they exclusively rely on node distributions. However, handling boundary conditions remains a challenge. As a solution, [START_REF] Amattouch | An Heuristic Scheme for a Reaction Advection Diffusion Equation[END_REF] proposed converting the boundary problem into an optimization problem, leveraging metaheuristic or evolutionary algorithms to find optimal solutions.

Recent advancements have seen the application of artificial neural networks, such as the Physics-Informed Neural Network (PINN) [13?], to solve PDEs. This approach was further extended in [START_REF] Ameya | Extended physics-informed neural networks (XPINNs) : A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[END_REF], incorporating domain decomposition methods to expedite convergence. Despite their promise, these methods often demand an extensive number of collocation points, leading to slow and inefficient convergence.

In this article, we propose a methodology to alleviate the data burden associated with collocation points while solving the Navier equations. Our approach formulates problem 1 as a global optimization task, akin to the work in [START_REF] Amattouch | An Heuristic Scheme for a Reaction Advection Diffusion Equation[END_REF], by approximating solutions within a Fourier basis. Importantly, we employ node meshes exclusively at the boundary, rather than across the entire domain. To enhance convergence, we integrate the Schwarz domain decomposition method, employing fractional transmission conditions at sub-domain interfaces. This results in a reformulated optimization problem, which we train to determine the general solution.

The structure of this article is as follows: we commence by presenting our domain decomposition method in both 2D and 3D, considering Cartesian (and can be reformulated to cylindrical coordinates). Subsequently, we introduce our meshless method, featuring an artificial neural network solver. Finally, we present numerical results, comparing them against analytical solutions. Through simulation tests, we demonstrate the effectiveness of our proposed method.

2 The Waveform Relaxation Domain Decomposition Method

Domain Decomposition in 2D

The equations 1 can be expressed in 2D as follows:

             2 1 -ν 1 -2ν ∂ 2 u ∂x 2 + 1 1 -2ν ∂ 2 u ∂y 2 + ∂ 2 v ∂x∂y = 0 on Ω 2 1 -ν 1 -2ν ∂ 2 v ∂y 2 + 1 1 -2ν ∂ 2 v ∂x 2 + ∂ 2 u ∂x∂y = 0 on Ω +BC on ∂Ω (2)
Here, u = u v , and Ω represents our boundary domain.

In the following sections, we present the principles of our Schwarz domain decomposition method. To illustrate, let's consider a scenario where our domain Ω is divided into two sub-domains: Ω 1 and Ω 2 , separated by an interface Γ (refer to figure 1). By conducting calculations (for detailed derivations, refer to [START_REF] Amattouch | An Heuristic Scheme for a Reaction Advection Diffusion Equation[END_REF][START_REF] Amattouch | A modified fixed point method for The Perona Malik equation[END_REF][START_REF] Amattouch | Combined Optimized Domain Decomposition Method and a Modified Fixed Point Method for Non Linear Diffusion Equation[END_REF]), we find that the eigenvalues of the operator associated with equations 2 are given by:

λ ± = -ik ± k ν(3 -ν) (1 -2ν) 2
It's important to note that, in general, 1 -2ν > 0 (-1 < ν < 0.5 for most materials). This insight leads us to develop a novel domain decomposition method. We establish two sequences, u p 1 and u p 2 (p=1,2), as follows: Starting with initial functions u 0 1 and u 0 2 defined on Ω 1 and Ω 2 respectively, we iteratively compute u p 1 and u p 2 by solving auxiliary problems:

   L(u p+1 1) = 0 on Ω 1 BC for u p+1 1 on ∂Ω B 1 (u p+1 1) = B 2 (u p 2) on Γ (3)
and

   L(u p+1 2) = 0 on Ω 2 BC for u p+1 2 on ∂Ω B 2 (u p+1 2) = B 1 (u p 1) on Γ (4)
where

L(u) =     2 1 -ν 1 -2ν ∂ 2 u ∂x 2 + 1 1 -2ν ∂ 2 u ∂y 2 + ∂ 2 v ∂x∂y 2 1 -ν 1 -2ν ∂ 2 v ∂y 2 + 1 1 -2ν ∂ 2 v ∂x 2 + ∂ 2 u ∂x∂y     (5) B 1 (u) =     ∂u ∂x + ∂u ∂y ∂ 2 u ∂y     (6)
and

B 2 (u) =     ∂u ∂x + ∂u ∂y - ∂u ∂y     (7)
We prove the convergence of our algorithms 3 and 4 within two iterations. These algorithms are independent and can be executed in parallel. We also extend this method to splitting into multiple sub-domains. In figure 2, we illustrate the division of the domain into 2n sub-domains Ω i , where Γ i denotes the interface between the sub-domains Ω i and Ω i+1 . For i = 1 to 2n, we construct sequences u p i (p=1,2) as follows: Starting with initial functions u 0 i defined on Ω i , we iteratively compute u p 1 and u p 2 by solving auxiliary problems:

       L(u p+1 i) = 0 on Ω i BC for u p+1 i on ∂Ω ∩ Ω i B 1 (u p+1 i) = B 2 (u p i+1) on Γ i B 2 (u p+1 i) = B 1 (u p i-1) on Γ i-1 (8)

Domain Decomposition in 3D Cartesian Coordinate

The equations 1 can be extended to 3D as follows:

     2 1 -ν 1 -2ν ∂ 2 u ∂x 2 + 1 1 -2ν ∂ 2 u ∂y 2 + ∂ 2 u ∂z 2 + ∂ 2 v ∂x∂y + ∂ 2 w ∂x∂z = 0 On Ω 2 1 -ν 1 -2ν ∂ 2 v ∂y 2 + 1 1 -2ν ∂ 2 v ∂x 2 + ∂ 2 v ∂z 2 + ∂ 2 u ∂x∂y + ∂ 2 w ∂y∂z = 0 On Ω 2 1 -ν 1 -2ν ∂ 2 w ∂z 2 + 1 1 -2ν ∂ 2 w ∂y 2 + ∂ 2 w ∂x 2 + ∂ 2 v ∂z∂y + ∂ 2 u ∂x∂z = 0 On Ω + BC On ∂Ω (9)
Here, u =   u v w   . In the following sections, we outline the principles of our Schwarz domain decomposition method for 3D Cartesian coordinates. To illustrate, let's consider a scenario where our domain Ω is divided into two sub-domains: Ω 1 and Ω 2 , separated by an interface Γ (refer to figure 3). Through computations, we determine the eigenvalues of the operator associated with equations 9 as follows:

λ ± = -i(k + l) ± ∆ ν(3 -ν) (1 -2ν) 2 where ∆ = -(k + l) 2 + 8 1 -ν (1 -2ν) 2 (k 2 + l 2)
Here, k (respectively l) is the frequency associated with the variable y (respectively z). We can further express ∆ as

∆ = -(k + l) 2 + γ(k 2 + l 2) = (c 1 l + c 2 k)(c 3 l + k) with c 1 = -1 + 1 + (γ -1) 2 , c 2 = γ -1, and c 3 = γ -1 -1 + 1 + (γ -1) 2 It's important to note that ∆ > 0 in general (-1 < ν < 0.5 < √ 3
2). Based on these insights, we develop a novel domain decomposition method. We establish two sequences, u p 1 and u p 2 (p=1,2), as follows: Starting with initial functions u 0 1 and u 0 2 defined on Ω 1 and Ω 2 respectively, we iteratively compute u p 1 and u p 2 by solving auxiliary problems:

   L(u p+1 1) = 0 on Ω 1 BC foru p+1 1 on ∂Ω B 1 (u p+1 1) = B 2 (u p 2) on Γ (10) and 
  L(u p+1 2) = 0 on Ω 2 BC foru p+1 2 on ∂Ω B 2 (u p+1 2) = B 1 (u p 1) on Γ (11
)
where L is the operator associated with equation 9

B 1 (u) = ∂u ∂x -D 1 2 c1k+c2j D 1 2 c3k+j (u) (12)
and

B 2 (u) = ∂u ∂x + D 1 2 c1k+c2j D 1 2 c3k+j (u) (13)
Here, D) can be expressed as

F(D 1 2 c1k+c2j)(u)(k, l) = i(c 1 k + c 2 l)F(u)(k, l) and F(D 1 2 c3k+j)(u)(k, l) = i(c 3 k + l)F(u)(k, l)
Consequently, we demonstrate that the two algorithms 10 and 11 converge within two iterations. The same approach is extended to constructing a multiple domain decomposition method in 3D as presented for 2D in section 2.1.

Artificial Neural Intelligence Method

In this section, we seek an approximation u approx for the solution of problems 3 and 10 in the Fourier basis.

In 2D, we seek coefficients a l ij , b l ij , c l ij , d l ij , for i, j = 1, . . . , N and l = 1, 2, such that:

u approx = N i=0 N j=0 a 1 ij cos(iπ x L) cos(jπ y L) + b 1 ij cos(iπ x L) sin(jπ y L) + c 1 ij sin(iπ x L) cos(jπ y L) + d 1 ij sin(iπ x L) sin(jπ y L)
and similarly for v approx . For simplicity, we can write:

u approx = M i=0 a 1 i Θ i v approx = M i=0 a 2 i Θ i
where (Θ i) i represents the Fourier basis.

The coefficients u approx minimize the objective function:

ϵ = ∥L(u approx)∥ + ∥B 1 (u approx) -B 2 (u prec)∥ + ∥BC(u approx)∥ = ϵ 1 + ϵ 2 + ϵ 3
Here, u prec = M i=0 ap 1 i Θ i M i=0 ap 2 i Θ i u prec represents the initial condition (which can be null) or the last obtained value from 4.

For the first and second parts of the objective function (ϵ 1 and ϵ 2), we define the norms as:

∥u approx ∥ = M i=0 (a 1 i) 2 + (a 2 i) 2
By hand calculation, we determine L(u approx) and B 1 (u approx) -B 2 (u prec) and compute the two norms:

ϵ 1 = ∥L(u approx)∥ and ϵ 2 = ∥B 1 (u approx) -B 2 (u prec)∥
It's important to note that the norms ϵ 1 and ϵ 2 are quadratic functions of the coefficients a i and are convex, ensuring that the stochastic gradient can be effectively used and converge.

The norm ϵ 3 associated with the boundary condition is approximated as follows: We discretize the boundary of the sub-domain Ω i with distributed nodes (refer to figures 4 and 5). After defining the nodes x j i (j = 1, . . . , N N) on the boundary of the sub-domain Ω i , we compute the norm ϵ 3 :

ϵ 3 = N N i=0 |BC(u approx)(x j)|
The boundary condition BC consists of general Dirichlet, Neumann conditions, or other differential conditions, typically written as BC(u approx) = 0 in equations 3 or 10.

This entire loss function ϵ is then used to train an Artificial Neural Network (ANN), as described in [START_REF] Ameya | Extended physics-informed neural networks (XPINNs) : A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[END_REF] and [START_REF] Jagtap | Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks[END_REF]. The method is summarized in figure 6. The training data x i is quasi-uniformly selected and contains the common interface points in the subdomain Ω i . The loss function is defined subdomain-wise and includes the interface conditions to stitch the sub-domains together at the boundary.

The optimization problem of this ANN is guaranteed to be convergent with the gradient descent method due to the convex nature of the loss function.

Numerical Simulations

To evaluate the efficiency of our proposed method, we compare the simulation results of our equation with established finite element benchmarks like FreeFEM++ [START_REF] Hecht | New development in FreeFem++[END_REF] and FEniCS [START_REF] Petter Langtangen | Solving PDEs in Python, The FEniCS Tutorial[END_REF]. We provide four examples of different domains for demonstration.

First Example: Consider a polygonal domain Ω (see Figure 7). The bottom and right boundaries Γ D have fixed conditions, while a linear loading f is applied to the left upper edge of the plate Γ N .

The problem is governed by the same boundary value formulation as before: Second Example: Consider the same polygonal domain Ω (see Figure 9). The bottom and right boundaries Γ D have fixed conditions, and a linear loading f is applied to the left edge of the plate Γ N . Third Example: Consider a rectangular domain Ω with a central circular hole of radius R (see Figure 11). The bottom boundary Γ D has fixed conditions, and a linear loading f is applied to the upper edge of the plate Γ N . The problem aims to study the shape deformation of the circle and stress concentration around its circumference. The problem formulation remains the same:

   div(∇u) + 1 1-2ν ∆u = 0 on Ω σ.n = 0 on Γ D u = 0 on Γ N (16)
The Young's modulus E = 69000 Pa, Poisson's ratio ν = 0.346, and the load is f = 200 MPa. The simulation results are presented in Figure 12.

Simulation of u

Simulation of v Last Example: Now, we extend the domain to 3 dimensions (Figure 13). We consider the same equation with the same boundary conditions as in problem 16. The result of a simulation on the surface of the domain is shown in Figure 14.

Conclusion

In this article, we have introduced a novel approach to solving the elasticity model that combines three distinct methods: a meshless method, a fast domain decomposition method, and an artificial neural network approach. The integration of these methods offers several advantages in terms of efficiency and accuracy.

Our proposed method operates primarily on the boundary of the domain and leverages wave relaxation techniques along with artificial neural networks to accelerate convergence. By focusing on the domain's boundary and employing advanced computational tools, we achieve notable improvements in the efficiency of the solution process.

To validate the effectiveness of our method, we conducted numerical simulations and compared the results with established benchmarks such as FreeFEM. The obtained accuracies for various basic geometries showcased the method's capabilities.

One of the key strengths of our approach is its adaptability to complex simulations involving intricate domains, particularly in higher dimensions. By reducing the need for extensive collocation points and utilizing domain decomposition techniques, our method can efficiently accommodate parallelized computation.

In the future, we intend to extend this approach to more complex scenarios, including applications to the Navier-Stokes equation and other nonlinear mechanical models. The combination of innovative techniques presented here has the potential to significantly enhance the accuracy and efficiency of simulations in various scientific and engineering domains.

Fig. 1

 1 Fig. 1 Domain split into two sub-domains

Fig. 2

 2 Fig. 2 Domain split into 2n sub-domains

Fig. 3

 3 Fig. 3 Domain split into two sub-domains

1 2 c1k+c2j (and D 1 2 c3k+j

 122) represents the Caputo derivative of a function f in the direction c 1 k + c 2 j (and c 3 k + j). It's worth noting that the Fourier transform of D

Fig. 4 Fig. 5

 45 Fig. 4 Nodes on the boundary of the domain in 2D

Fig. 6

 6 Fig. 6 Schematic of our ANN method employed in a subdomain

Fig. 7 Fig. 8

 78 Fig. 7 Domain Ω with load f

Fig. 9 Fig. 10

 910 Fig. 9 Domain Ω with load f

Fig. 11

 11 Fig. 11 Domain Ω with load f

Fig. 12

 12 Fig. 12 Displacement coordinates

Fig. 13

 13 Fig. 13 3D Domain Ω