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Abstract

Particle shape variability is a key to understanding the rich behavior of granular materials. Polyhedra
are among the most common particle shapes due to their ubiquitous origins in nature such as rock
fragmentation and mineral crystallisation. Because of their faceted shape, polyhedral particles tend
to assemble in jammed structures in which face-face and face-edge contacts between particles control
the packing-level properties. In this paper, we use tri-periodic particle dynamics simulations to derive
for the first time a generic analytical expression of the elastic moduli of polyhedral and spherical
particle packings subjected to triaxial compression as a function of two contact network variables:
1) a “constraint number” that accounts for the face-face and edge-face contacts between polyhedra
and is reduced to the coordination number in the case of spherical particles, and 2) the contact
orientation anisotropy induced by compression. This expression accurately predicts the simulated
evolution of elastic moduli during compression, revealing thereby the origins of the higher elastic
moduli of polyhedral particle packings. We show that particle shape affects the elastic moduli through
its impact on the contact network and the level of nonaffine particle displacements is the same for the
simulated shapes. Its nearly constant value during compression underlies the constant values of our
model parameters. By connecting the elastic moduli to the contact network through parameters that
depend on particle shape, our model makes it possible to extract both the connectivity and anisotropy
of granular materials from the knowledge of particle shape and measurements of elastic moduli.

Keywords: Granular materials, Particle dynamics method, Polyhedral particles, Elastic moduli, Effective
Medium Theory, Triaxial compression, Connectivity, Contact orientation anisotropy

1 Introduction

Granular materials have been at the focus of
extensive research for their rich and complex prop-
erties rooted in dissipative particle interactions,

disordered microstructure, and particle character-
istics such as shape and size distribution [1–3].
Although hard-sphere packing has often been used

1



as a model of granular materials, aspherical par-
ticle shape is omnipresent in nature and industry.
The crucial role of realistic particle shape for
quantitative prediction of the strength and space-
filling properties of granular materials has been
clearly evidenced by recent simulations and exper-
iments [4–18]. For example, packings composed of
particles slightly deviating from spherical shape
are more compact than sphere packings whereas
larger deviations towards more elongated or platy
shapes lead to significantly lower packing fraction
[4, 7, 9].

Among diverse particle shapes, regular and
irregular polyhedral particles are quite common
due to their ubiquitous origins such as rock frag-
mentation and mineral crystallisation. Their spe-
cific feature is to assemble in structures involving
face-face and edge-face contacts which, in contrast
to simple contact points between spheres, pro-
vide a finite support for the contact force. Particle
dynamics simulations have shown that such con-
tacts in packings of polyhedral particles are less in
number but they capture strong force chains and
carry thereby a much higher average force than
simple contacts [6, 10]. The microstructure has
also been analyzed as a function of the number
of facets in relation to shear strength [10, 11, 15].
However, we are aware of no published work on the
elastic properties of polyhedral particle packings.

Past work on granular elasticity has essentially
focussed on isotropic sphere packings [19–22]. The
bulk and shear moduli are proportional to kn/d,
where kn is the normal contact stiffness and d
is mean particle diameter. The moduli depend
also on the number of contacts per unit volume,
and stiffness ratio kt/kn, where kt is the tan-
gential contact stiffness [21–25]. It is well known
that, because of its failure to account for the non-
affine nature of particle displacements in granular
media, the effective medium theory (EMT) over-
estimates the elastic moduli [26, 27]. The origins
of elastic moduli in the general case of anisotropic
sheared media and the effects of particle shape
mediated by microstructure and nonaffine dis-
placements are therefore widely open issues.

We report in this paper on a detailed investi-
gation of the elastic moduli of dodecahedral (12
faces), icosahedral (20 faces), and spherical parti-
cle packings by means of extensive particle dynam-
ics simulations based on the discrete element

method (DEM) with a proper treatment of the
contact interactions between polyhedral particles.
In particular, each face-face interaction is reduced
to a set of elastic/frictional contacts between the
edges composing the two faces. This allows the
geometrical constraints associated with rigid faces
to be imposed and the overlaps between the edges
are used to compute point forces according to a
linear dashpot-spring force law.

Initially isotropic random close packings were
prepared by isotropic compaction at zero friction,
representing the unique reproducible densest state
of each shape. Subjecting then each packing to
quasi-static triaxial compression with tri-periodic
boundary conditions and a non-zero friction coef-
ficient between particles, we calculated their five
orthotropic elastic moduli at regular strain inter-
vals together with contact network variables such
as connectivity and contact anisotropy. A key find-
ing is that the elastic moduli can be fully expressed
as a function of connectivity and anisotropy with
a functional form that does not depend on parti-
cle shape, but involve coefficients that depend on
particle shape. Accurate determination of these
coefficients makes it therefore possible to nicely
predict the evolution of elastic moduli with strain.
These expressions also reveal how the face-face
and face-edge contacts enhance the elastic moduli
compared to sphere packings.

In the following, we first introduce numeri-
cal procedures. Then, we discuss in Section 3 the
evolution of sample-level variables during triaxial
compression. The evolution of elastic moduli will
be presented in Section 4. In Section 5, we con-
sider the evolution of microstructural variables. In
Section 6, we introduce our expression of elastic
moduli as a function of microstructural variables
by a detailed comparison between the predic-
tions of EMT and our numerical data. Finally, we
discuss the most salient results of this paper.

2 Numerical procedures

The simulations were carried out by means of an
in-house code based on DEM [28–30]. The inter-
actions between polyhedral particles need a model
for face-face and face-edge contacts. The vertex-
face and edge-edge interactions involve a single
contact point, which can be treated in the same
way as the contacts between spherical or smooth
convex particles. Such simple contacts represent a
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single unilateral constraint, which is treated either
by a penalty approach, i.e. introducing a repulsive
force depending on the overlap, or by means of
Lagrange multipliers as in the Contact Dynamics
method [31–33]. In contrast, in the case of a face-
face interaction, there are three steric constraints
that must be correctly treated to avoid interpen-
etration between the two particles as a result of
their relative normal displacement or rotations
around the two other axes.

For rigid polyhedral particles with their finite
faces defined by their contours composed of sev-
eral edges, a face-face interaction can be reduced
to interactions between edges composing the two
faces or between a vertex and one of the faces [28].
This means that a face-face interaction is reduced
to a set of contact points, as shown in Fig. 1(a).
If a penalty approach is applied to all contact
points, the three constraints will be fully satis-
fied. It is noteworthy that, the number of contact
points can be large depending on the number of
edges, but the number of independent constraints
is always 3 due to the rigidity of the particles.
Similar considerations apply as well to edge-face
interactions, which involve two independent steric
constraints; see Fig. 1(b). We may thus refer to
the face-face and face-edge interactions as triple
and double contacts, respectively.

Fig. 1 Different types of contacts between two polyhedra:
(a) face to face, (b) face to edge, (c) vertex to face.

The contact points between polyhedral par-
ticles are detected by considering separately the
sub-elements (vertices, edges and faces). At each
contact point, either a linear or a nonlinear force
law is implemented. As for Hertz contacts, the
nonlinear interactions arise from the curvature of
the surface at the contact points (e.g. between
two edges modeled as cylinders). However, in this
paper we are interested in the effects of particle

shape and contact network anisotropy, and there-
fore we used linear contact laws to reduce compu-
tational cost. The normal force law is defined as
follows [2, 33–35]:

fn =

{
0, f̃n ≤ 0,

f̃n, f̃n > 0,
(1)

where f̃n = −knδn−γδ̇n, kn is normal stiffness, δn
is overlap (with sign convention that δn < 0 when
two particle overlap), δ̇n is the relative normal
velocity, and γ is the viscous damping coefficient.
The tangential force is governed by the Coulomb
friction law given by

ft = −min{ktδt, µsfn}sgn(δ̇t), (2)

where kt is tangential stiffness, δt is cumulative
tangential displacement, δ̇t is relative tangen-
tial velocity, and µs is the interparticle friction
coefficient.

3 Triaxial compression

We prepared three samples composed of monodis-
perse particles of dodecahedral, icosahedral, and
spherical shapes enclosed in a 3-periodic cubic cell
[36–38]. They had exactly the same number of par-
ticles (8000), values of parameters, and boundary
conditions. We first applied an isotropic compres-
sion with zero friction between particles, leading
to dense isotropic states corresponding to a ran-
dom closed packing (RCP) of solid fraction Φ ≃
0.648 for dodecahedral particles, Φ ≃ 0.632 for
icosahedral particles, and Φ ≃ 0.637 for spherical
particles.
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Fig. 2 A snapshot of the sample of dodecahedral particles
in the isotropic state.
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The isotropic samples were sheared by triaxial
compression for four values of friction coefficient
µs = 0.1, 0.2, 0.3, and 0.4 between particles.
The compression was applied along the z axis by
imposing a constant strain rate ε̇z while keep-
ing the same stress p in lateral directions x and
y. The simulation box can expand along these
directions to accommodate the applied compres-
sion. Since the material is in an initially dense
state, the packing dilates and the packing fraction
declines towards a stead-state value in all simula-
tions. The inertial number I = ε̇zd(ρ/p)

1/2, where
ρ is the particle density and d is the mean par-
ticle diameter, is low enough (< 10−3) to qualify
the compression as quasi-static [33, 39, 40]. By
symmetry, the principal stresses and strain rates
coincide with the three space directions with σ1

and ε1 along the z direction, σ2 = σ3 = p, and
ε2 ≃ ε3.

Figure 3 shows the evolution of stress ratio
q/p, where q = (σ1 − σ2)/3 is stress deviator
and p = (σ1 + σ2 + σ3)/3 is mean stress, as
well as the packing fraction Φ as a function of
shear strain εq = εz − εx for dodecahedral and
spherical particle packings (the trends being sim-
ilar for icosahedral particles). Due to the initially
high value of packing fraction, the samples yield
only when q/p reaches a threshold where plastic
deformation can begin as a result of particle rear-
rangements and dilation. Beyond this point, q/p
continues to increase to a peak value before slowly
decreasing towards a residual plateau at ∼ 60% of
shear strain. The peak value reflects therefore the
initially high packing fraction although no shear
bands develop in our system due to three-periodic
boundary conditions. The peak value increases
with µs. In polyhedra packings the peak stress
ratio is higher and the effect of friction coefficient
is more pronounced as compared to sphere pack-
ings. Since the initial packing fraction is high, Φ
decreases gradually before reaching a nearly con-
stant value. The reduction of Φ increases when µs

is larger. This effect is more pronounced in the
case of polyhedral particle packing.

4 Evolution of elastic moduli

Due to axial symmetry, there are 5 independent
moduli Cij , defined as follows, based on the Voigt
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Fig. 3 Stress ratio q/p (a), and packing fraction Φ (b)
versus shear strain εq for packings of spherical and dodec-
ahedral particles with four values of friction coefficient µs.
The dashed and solid lines join data points for spheres and
dodecahedra, respectively. The symbols represent instances
where strain probes are applied.

notation [41, 42]:


δσ11

δσ22

δσ33

δσ23

δσ31

δσ12

 =


C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C55 0
0 0 0 0 0 2C55




δε11
δε22
δε33
δε23
δε31
δε12


(3)

The elements C11 and C22 are the longitudi-
nal moduli, C44 and C55 are the shear mod-
uli, and C12 and C23 are the off-diagonal mod-
uli. The bulk modulus K is given by K =
(C11 + 4C12 + 2C22 + 2C23)/9. To determine the
moduli, we applied two distinct strain probes in
two different directions.

To compute the elastic moduli, we used the
sheared samples at 16 instances of their evolution
and applied a small strain increment δεij to obtain
the corresponding stress response δσij , from which
the elastic moduli were extracted. The sample
was allowed to relax to a fully static state before
the application of the strain probe. The response
is elastic if there are no particle rearrangements,
and, as we shall see below, this is the case when
δεij < 10−5.

To determine all elastic moduli, two distinct
strain probes in two different directions were
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applied at a given stage of evolution of the sys-
tem. For the first probe, a small strain rate ε̇
was imposed along the z direction while a con-
stant pressure was applied along the directions x
and y. Due to axial symmetry, we have ε22 ≃ ε33
and δσ22 = δσ33 = 0. Hence, from the general
stress-strain relation, we have

C11ε11 + 2C12ε22 = δσ11,

2C55ε12 = δσ12,

C12ε11 + (C22 + C23)ε22 = 0.

(4)

For the second probe, ε̇ was imposed along
the y direction while keeping a constant pres-
sure along z and x directions. Therefore, we have
δσ′

11 = δσ′
33 = 0 and the stress-strain relations are
C12ε

′
11 + C22ε

′
22 + C23ε

′
33 = δσ′

22,

2C44ε
′
23 = δσ′

23,

C11ε
′
11 + C12ε

′
22 + C12ε

′
33 = 0,

C12ε
′
11 + C23ε

′
22 + C22ε

′
33 = 0.

(5)

From the applied stress and strain increments,
we use Eqs. (4) and (5) to calculate all elastic mod-
uli. Note that there are only 5 independent moduli
while we have 7 equations. The consistency of the
values obtained in this way for the six moduli was
verified by checking the following relation imposed
by axial symmetry:

C22 − C23 = 2C44. (6)

In all cases, we find that this relation holds within
an error of 1% in the initially fully elastic regime
and up to 10% around the stress peak, where the
response to the applied strain probe may involve
a plastic component due to softening and unstable
particle rearrangements.

It is noteworthy that, since the simulations are
based on linear contact laws with constant stiff-
ness parameters kn and kt, our packings have an
inherent stress scale E∗ = kn/d with which all
moduli are expected to scale. In the rigid-particle
limit, the condition p/E∗ ≪ 1 should be satisfied.
In our simulations, we have p/E∗ ≃ 4.10−6. The
normalized elastic moduli depend also on the stiff-
ness ratio αt = kt/kn [19, 21, 43]. In this work, we
set αt = 0.8 in all simulations.

Figures 4, 5, and 6 display the evolution of
the longitudinal moduli C11 and C22, off-diagonal

moduli C12 and C23, the shear moduli C44 and
C55, and the bulk modulus K for packings of
spherical and dodecahedral particles together with
theoretical predictions that will be discussed in
Section 6. The moduli of the polyhedral particle
packings at each instance of shear are generally
above those of spherical particle packings. They
are constant and independent of µs at very small
shear strains (< 10−5), but they change signifi-
cantly at larger strains when slip events at per-
sistent contacts increase in number and intensity;
see Fig. 7.
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Fig. 4 Normalized longitudinal elastic moduli (a) C11/E∗

and (b) C22/E∗, as a function of shear strain εq for pack-
ings of spherical and dodecahedral particles with different
values of friction coefficient µs. The dashed and solid
lines are theoretical predictions (Eq. (29)) for packings of
spheres and dodecahedra, respectively.

The behavior beyond this elastic limit is rather
complex. All moduli first decline to values all the
more small that the friction coefficient is large.
Then, they increase again or continue to decrease
slightly depending on particle shape and µs, fol-
lowed by a slight increase or decrease for εq > 0.1.
Note that the ratio C11/C22 increases to values as
large as 4 before decreasing to ∼ 2, a value previ-
ously reported for dense granular materials with
low coordination number [23, 44].

5 Evolution of microstructure

The evolution of elastic moduli reflects that
of the granular microstructure encoded in the
force-bearing contact network. The lowest-order
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Fig. 5 Normalized elastic moduli: off-diagonal moduli, (a)
and (b), and shear moduli, (c) and (d), as a function of
shear strain εq for packings of spherical and dodecahedral
particles with different values of friction coefficient µs. The
lines are predictions by our proposed expression (29).

descriptors of granular microstructure are the
coordination number Z and contact orientation
anisotropy ac [45, 46]. The latter can be obtained
from the fabric tensor defined as

Fij = ⟨ninj⟩, (7)

where n⃗ is the unit contact normal. By definition,
we have tr(F ) = 1, and the largest eigenvalue F1

occurs along the compression axis. The two other
eigenvalues are F2 = F3 = (1 − F1)/2. We define
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Fig. 6 Normalized bulk modulus as a function of shear
strain εq for packings of spherical and dodecahedral parti-
cles with different values of friction coefficient µs. The lines
are predictions by our proposed expression (29).

the contact anisotropy as [10, 47, 48]

ac = 5(F1 − F2)/2. (8)

The fabric tensor can be evaluated from the
probability distribution P (n⃗) of the unit con-
tact normal n⃗. In 3D, the contact normal n⃗ is
parametrized by two angles θ ∈ [0;π] and ϕ ∈
[0; 2π]. The probability density function P (Ω) of
contact normals provides a detailed statistical
information about the fabric, where Ω = (θ, ϕ) is
the solid angle, with dΩ = sin θdθdϕ. The fabric
tensor can then be expressed as [10, 45, 49, 50]:

Fij =

∫
Ω

ninjP (Ω)dΩ =
1

Nc

∑
c∈V

nc
in

c
j , (9)

where i and j design the components in a refer-
ence frame, and Nc is the total number of contacts
in the control volume V . Under axi-symmetric
conditions, the probability density function is
independent of the azimuth angle ϕ. So, within a
second-order harmonic approximation, we have

P (Ω) =
1

4π

[
1 + ac(3 cos

2 θ − 1)
]
. (10)

From Eqs. (9) and (10), and given the unit con-
tact normal n⃗ = (cos θ, sin θ cosϕ, sin θ sinϕ), the
eigenvalues of the fabric tensor are given by

F1 =

∫
Ω

n2
1P (Ω)dΩ =

5 + 4ac
15

, (11a)

F2 = F3 =

∫
Ω

n2
2P (Ω)dΩ =

5− 2ac
15

. (11b)

While the definitions of Z and ac are straight-
forward in the case of spherical particles, we need
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to consider the contact types for polyhedral par-
ticles, as discussed in Section 2. We generalize
the coordination number by attributing different
weights to different contact types. In particular,
we define here a constraint number Zc by weighing
each contact type by the number of constraints it
represents:

Zc = 2(Ns + 2Nd + 3Nt)/Np, (12)

where Ns, Nd, and Nt are the numbers of simple,
double, and triple contacts, respectively, and Np

is the total number of particles. The constraint
number is reduced to the coordination number in
the case of spherical particles.

A packing of frictionless particles is isostatic so
that the number of degrees of freedom per parti-
cle must be equal to the number of constraints per
particle Zc/2. The number of degrees of freedom
is 3 per particle in the case of frictionless spheres
(the rotations being ineffective), whereas polyhe-
dra have 6 degrees of freedom per particle both
with and without friction. Hence, the constraint
number for packings of spheres and polyhedra is
6 and 12, respectively. We find Zc ≃ 6.03 for
spheres and Zc ≃ 12.05 for polyhedra at the end
of isotropic compaction, both remarkably close to
the expected values. The small difference is due to
the finite stiffness and overlaps between particles.
This suggests that Zc is the relevant connectiv-
ity parameter for polyhedral particle packings, in
contrast to Z which has a lower value (≃ 8) in
the isostatic state. The same remarks apply to the
definition of fabric tensor for polyhedra by con-
sidering that face-face contacts are equivalent to 3
contact points and edge-face contacts to 2 contact
points.

Figure 7 displays the evolution of Zc and ac
during compression. Consistently with the elastic
moduli, at small shear strains (< 10−5), both Zc

and ac ≃ 0 (initially isotropic state) are constant
and independent of µs due to the stability of the
contact network. With the onset of particle rear-
rangements, Zc decreases and tends to a constant
value whereas ac initially increases as a result of
the loss of contacts perpendicular to the compres-
sion axis [6, 51]. The fabric anisotropy is larger
in packings of polyhedral particles compared to
spheres, and its peak value increases with µs.

The microstructure evolves also in terms of the
distribution of different types of contacts. Fig. 8

displays a snapshot of force chains in the isotropic
(initial) state and near the stress peak with dif-
ferent colors for different contact types. The pro-
portions Nt/Nc of face-face contacts declines from
0.14 in the isotropic state to 0.1 in the peak state
although we distinctly observe columnar force
chains of face-face contacts along the compres-
sion axis in the peak state. In a similar vein, the
proportion Nd/Nc of edge-face contacts declines
during compression. Hence, the larger proportion
of single contacts near the stress peak is the neces-
sary condition for the stability of columnar force
chains [52].
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Fig. 7 Constraint number Zc (a) and fabric anisotropy ac
(b) as a function of shear strain εq for packings of spherical
and dodecahedral particles and different values of friction
coefficient µs. The dashed and solid lines are for pack-
ings of spheres and dodecahedra, respectively. The symbols
represent instances where strain probes were applied.

6 Relation between elastic
moduli and microstructure

The central issue that we address here is whether
the values of elastic moduli shown in Figs. 4, 5, and
6 can be univocally expressed in terms of Zc and
ac. The connection between elasticity and granular
microstructure has been previously investigated in
the case of isotropic packings of spherical parti-
cles and compared with the predictions of EMT
[19, 23, 26, 43]. We first derive analytical expres-
sions of elastic moduli in the EMT framework
for anisotropic media with orthotropic symmetry.
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(a)

(b)

Fig. 8 Snapshot of the normal force network of a dodec-
ahedral particle packing at isotropic state (a), and near
stress peak (b) with friction coefficient µs = 0.1. Line thick-
ness is proportional to normal force. Single contacts are
in white, double contacts in blue, and triple contacts in
brown. The compression axis is along the vertical direction.
At isotropic state, the fractions of single, double and triple
contacts are 0.5, 0.36, and 0.14, respectively. At stress peak
state, they are 0.59, 0.31, and 0.1, respectively.

Then, we compare our simulation data with its
predictions to propose a general expression which
correctly predicts the evolution of elastic moduli
all along triaxial compression from the isostatic
state up to the stress peak state.

6.1 Elastic moduli from EMT

The medium is assumed to behave as a contin-
uum with particle centers moving according to the
applied strain field (affine assumption). Hence, in
response to an incremental strain δεij , the normal
and tangential displacements at each contact are
simply given by

δn = δεijninj , (13)

δt = δεijnitj , (14)

where t⃗ represents a tangential unit vector. The
contact forces can therefore be obtained from
these displacements and the force laws (1) and (2).

Let (n⃗′, t⃗′, s⃗′) be a local frame associated with

the branch vector ℓ⃗ = ℓn⃗′ joining the centers of
two touching particles. In spherical coordinates,
we have

n⃗′ =(cos θ, sin θ cosϕ, sin θ sinϕ),

t⃗′ =(− sin θ, cos θ cosϕ, cos θ sinϕ),

s⃗′ =(0,− sinϕ, cosϕ),

(15)

where ϕ is the azimuth and θ is the latitude.
By affine assumption, the variation of ℓ is given

by

δℓ⃗ = ℓεn⃗′. (16)

This variation leads to relative displacements δn,
δt, and δs at any contact point between the two
particles with its associated frame (n⃗, t⃗, s⃗), n⃗ being
normal unit vector to the contact plane. For spher-
ical particles, this frame exactly coincides with
the frame associated with the branch vector. Due
to disorder, this property holds also on average
in the case of two convex particles. Indeed, we
checked that in our samples, we have n⃗·n⃗′ ≃ 1. For
this reason, we can use the contact frame together
with the branch vector length to approximate the
relative displacements at contact points:

δn = ℓεn⃗ · n⃗,
δt = ℓεn⃗ · t⃗,
δs = ℓεn⃗ · s⃗.

(17)

From the contact displacements, we write
down the elastic energy per unit volume ∆We as
a function of the strain tensor ε. Let kn and kt
be the normal stiffness and tangential stiffness,
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respectively, and nc = Nc/V the contact num-
ber density in a volume V containing Nc contacts.
Then, we have

∆We =
nckn
2

⟨δ2n⟩+
nckt
2

⟨δ2t ⟩+
nckt
2

⟨δ2s⟩

=
nc

2
⟨ℓ2⟩[kn⟨(εn⃗ · n⃗)2⟩+ kt⟨(εn⃗ · t⃗)2⟩+ kt⟨(εn⃗ · s⃗)2⟩],

(18)
where it has been assumed that the branch vector
length ℓ and contact orientation n⃗ are not corre-
lated. Indeed, we checked that in our samples, we
have ⟨ℓ cos2 θ⟩ ≃ ⟨ℓ⟩⟨cos2 θ⟩.

In the frame of the principal axes of the strain
tensor ε, we have


εn⃗ · n⃗ =ε11 cos

2 θ + ε22 sin
2 θ cos2 ϕ+ ε33 sin

2 θ sin2 ϕ,

εn⃗ · t⃗ =1

2
sin 2θ(−ε11 + ε22 cos

2 ϕ+ ε33 sin
2 ϕ),

εn⃗ · s⃗ =1

2
sin θ sin 2ϕ(ε33 − ε22).

(19)
The average values ⟨(εn⃗·n⃗)2⟩, ⟨(εn⃗· t⃗)2⟩, and ⟨(εn⃗·
s⃗)2⟩ are evaluated by integrating their expressions
from Eq. (19) over the angles θ and ϕ by using
the probability distribution function P (θ, ϕ) given
by Eq. (10). Once inserted in Eq. (18), an expres-
sion of the total elastic energy ∆We is obtained
as a function of nc, fabric anisotropy ac, contact
parameters, and strain tensor coefficients.

By definition, the elastic moduli Cij are the
second derivatives of this energy function with
respect to εij :



C11 =
∂2∆We

∂ε211
= nc⟨ℓ2⟩kn

(
3 + 2αt

15
+

24 + 4αt

105
ac

)
,

C22 =
∂2∆We

∂ε222
= nc⟨ℓ2⟩kn

(
3 + 2αt

15
− 12 + 2αt

105
ac

)
,

C12 =
∂2∆We

∂ε11∂ε22
= nc⟨ℓ2⟩kn (1− αt)

(
1

15
+

2

105
ac

)
,

C23 =
∂2∆We

∂ε22∂ε33
= nc⟨ℓ2⟩kn (1− αt)

(
1

15
− 4

105
ac

)
,

(20)
where αt = kt/kn is the stiffness ratio.

The shear moduli C55 and C44 are given by
the second derivatives of the energy function with
respect to the variables εq = ε11 − ε22 and εq′ =

ε22 − ε33:
C55 =

∂2∆We

∂ε2q
=

nc⟨ℓ2⟩kn
30

(
2 + 3αt +

4 + 3αt

7
ac

)
,

C44 =
∂2∆We

∂ε2q′
=

nc⟨ℓ2⟩kn
30

(
2 + 3αt −

8 + 6αt

7
ac

)
.

(21)
Finally, the bulk modulus K is the second

derivative of the energy function with respect to
the volumetric strain εv = ε11 + ε22 + ε33,

K =
∂2∆We

∂ε2v
=

nc⟨ℓ2⟩kn
9

. (22)

Note that, we have C22 −C23 = 2C44, so that the
bulk modulus can be expressed as a function of
Cij :

K =
C11 + 4C12 + 2C22 + 2C23

9
. (23)

6.2 Comparison with numerical
results

The above expressions of elastic moduli based on
EMT are proportional to the number density nc

of contacts. It is easy to show that

nc =
ZcΦ

2Vp
, (24)

where Vp is the average particle volume. Further-
more, the elastic moduli can be normalized by E∗,
which defines the reference value of all elastic mod-
uli. Hence, following Eq. (22), the bulk modulus
KEMT can be expressed as

KEMT = mE∗ΦZc, (25)

where

m =
⟨ℓ2⟩d
18Vp

. (26)

Equation (25) suggests that the bulk modulus
is proportional to ΦZc with a prefactor depending
mainly on the mean square distance ⟨ℓ2⟩ between
particle centers. This expression of K is the same
as the one derived previously for isotropic granular
materials composed of spherical particles [19, 23].
Here, it is extended to polyhedral particles by
replacing Z by Zc. Figure 9 shows K as a function
of ΦZc from all our simulation data at differ-
ent instances of compression. The EMT prediction
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is also plotted for comparison with the values
of ⟨ℓ2⟩ extracted from the simulations. All our
data points, independently of friction coefficient,
nicely collapse on a straight line for both spheri-
cal and polyhedral particle packings, as predicted
by EMT, in exception to data points lying slightly
above the line at low values of ΦZc. These data
points represent actually the late stages of com-
pression where the system is in the post-peak
softening regime with intense particle rearrange-
ments, leading to an over-estimation of elastic
moduli.

0.0

0.2

0.4

0.6

0.8

2.0 3.0 4.0 5.0 6.0 7.0 8.0

K
/
E

∗

ΦZc

dodecahedra
spheres

Fig. 9 Normalized bulk modulus K/E∗ as a function of
ΦZc from simulations of dodecahedral and spherical par-
ticle packings. The thin lines are linear fits to the data.
The thick lines represent predictions of EMT for polyhedra
(solid line) and spheres (dashed line).

While the predicted linear dependence of elas-
tic moduli on ΦZc is in agreement with the
simulation results, there are two key differences
between the predicted values of bulk modulus
KEMT and the values measured in simulations for
both spherical and polyhedral particle packings.
First, the prefactor m is higher in the simulations.
Secondly, KEMT vanishes only when ZcΦ tends to
zero whereas in the simulations the bulk modulus
vanishes for a finite value of ZcΦ. This means that
the bulk modulus can be approximated as

K = E∗(n+mΦZc), (27)

where n is a parameter of negative value which
depends on particle shape. The fitted values of
n and m are given in Table 1 for different parti-
cle shapes together with the values predicted by
EMT. The differences between the EMT predic-
tion and the simulated values of n and m have

their origin in the nonaffine relative particle dis-
placements which contradict the EMT assumption
of an affine displacement field [19, 21]; see below.

Interestingly, the non-zero value of n in the
linear fit to the simulation data implies that K
vanishes at ΦZc = −n/m. This ratio is ≃ 2.6 for
polyhedra and ≃ 1.65 for spheres. The vanishing
of K for a finite value of ΦZc is a reminiscent of
unjamming transition at a finite value of Zc. Obvi-
ously, unjamming does not occur in our system
during compression but Fig. 9 shows that the low-
est values of ΦZc (≃ 2.4 for spheres and ≃ 3.1 for
polyhedra) occur during post-peak softening and
they are close to the values of −n/m.

According to Eqs. (20) and (21), all elas-
tic moduli Cij are proportional to K and their
ratio depends linearly on the contact orientation
anisotropy ac:

Cij = K(rij + sijac), (28)

where the parameters rij and sij depend on
particle shape. This linear dependence on fabric
anisotropy is indeed what we observe in Fig. 10
for all elastic moduli and for both polyhedral and
spherical particle packings, but with values of rij
and sij that deviate from those predicted by EMT
due to nonaffine displacement field; see Table 1.

6.3 General expression of elastic
moduli

Based on the simulation data and effective
medium theory discussed previously, we propose
the following analytical expression for the five
orthotropic elastic moduli:

Cij = E∗(n+mΦZc)(rij + sijac). (29)

The EMT predictions of n, m, rij , and sij are
shown in Table 1 together with their values mea-
sured from our simulations for the three particle
shapes. This expression relates in a univocal way
the elastic moduli to the microstructure of granu-
lar materials under transversely isotropic symme-
try. With its parameter values given in Table 1, it
allows us to predict the evolution of elastic mod-
uli as a function of shear strain εq from that of
Zc and ac extracted from simulations. Figures 4,
5, and 6 show the evolution of the elastic mod-
uli according to this analytical expression together
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Fig. 10 Normalized moduli Cij/K as a function of fabric
anisotropy ac for the dodecahedral (a) and spherical (b)
particle packings from simulations with different values of
the friction coefficient, together with theoretical prediction
(c) based on the EMT. The straight lines are the best linear
fits to the data points. The data of icosahedra is shown in
Supplemental Material and it follows a similar evolution.

with their measured values from simulations. We
see that this expression follows amazingly well
the simulation data from the isostatic state up to
the stress peak state. The observed “wavy” fea-
ture of the evolution of elastic moduli observed in
these figures can therefore be explained as a con-
sequence of the multiplicative contributions of the
isotropic part n+mΦZc and the anisotropic part
rij + sijac with decreasing Zc and increasing ac
during compression.

It is remarkable that the model parameters n,
m, rij , and sij are independent of friction coeffi-
cient. The differences between elastic moduli for
different values of µs arise therefore from the effect
of the latter on the evolution of Zc and ac. The
values of parameters in Table 1 show also that
the higher value of K in the case of polyhedral
particle packings compared to that of the sphere
packing is mainly due to the higher values of ZcΦ
rather than the smaller variations of the model

parameters. Furthermore, the dodecahedral and
icosahedral particle packings have slightly differ-
ent elastic moduli. A detailed comparison between
the elastic moduli of polyhedral particle packings
with different numbers of faces will be presented
elsewhere.

The observed linear dependence of the elastic
moduli on ZcΦ and ac in our simulations suggests
that, despite the evolution of the microstructure
the level of nonaffine displacements is nearly con-
stant during triaxial compression. To check this
point, we investigated the nonaffine displacements
in our simulations. Several methods can be used to
quantify the level of nonaffinity [53–56]. We used
a measure of non-affinity from the relative particle
displacements. Let δrαz = δriz − δrjz be the relative
displacement at the contact α between particles i
and j projected along the z direction and ℓα the
length of the branch vector joining their centers.
Then, the actual strain increment at contact α
along the z direction is δεαz = δrαz /ℓ

α. We define
the nonaffinity ξ along the compression axis as

ξ =

√
⟨(δεz)2⟩ − ⟨δεz⟩2

⟨δεz⟩
, (30)

where the averages run over all contacts inside the
packing. Note also that the average ⟨δεz⟩ is sim-
ply equal to the mean affine displacement imposed
when probing the elastic response.

0.0

0.2

0.4

0.6

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

ξ

εq

spheres
dodecahedra
icosahedra

Fig. 11 Level of non-affinity ξ (equation (30)) as a
function of shear strain εq for packings of spherical and
dodecahedral particles with friction coefficient µs = 0.1.

We calculated ξ at all probing instances and
Fig. 11 displays its evolution for the three particle
shapes in the case µs = 0.1 (the evolution being
similar for other values of µs). Interestingly, ξ has
nearly the same value for all shapes during com-
pression and increases slowly from ≃ 0.2 at low
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compression until the stress peak at εq ≃ 5×10−2.
Beyond this point, it grows rapidly to higher val-
ues as a result of softening and unstable particle
motions. This is consistent with the evolution of
the elastic moduli shown in Fig. 9, where the corre-
sponding data points deviate from expression (29).
The nearly constant level of non-affinity before
stress peak explains the linear dependence of elas-
tic moduli on the microstructural prameters Zc

and ac and thus the constant values of the param-
eters n, m, rij , and sij in the analytical expression
(29) implying that their values are almost only
functions of particle shape. Obviously, the small
second-order effects arising from the dependence
of non-affinity on the increasing anisotropy of the
packing during compression are not observable
within the statistical precision of our simulation
data.

7 Conclusion

We derived a general expression (29) of the
orthotropic elastic moduli of granular materials
under triaxial boundary conditions as a function
of microstructural parameters for three different
particle shapes and four different values of the
interparticle friction coefficient. This expression
reveals three different origins of elastic mod-
uli: a stress scale E∗, an isotropic part, and an
anisotropic part. The stress scale E∗ depends on
the force model. In our linear force model, its value
is simply kn/d, but for a Hertz contact, which
is obviously not adapted to faceted particles, it
should be multiplied by a ratio {p/(ẼZcΦ)}1/3,
where Ẽ = E/(1− ν2) is the reduced elastic mod-
ulus [20, 23, 24], and makes depend the moduli on
the confining pressure.

The effect of particle shape appears at two
levels: on the one hand, through the parameters
n, m, rij , and sij , which do not depend on fric-
tion coefficient and are not neither expected to
depend on p for Hertzian contacts, and on the
other hand, through the microstructure via the
values of Zc and ac, which depend on both par-
ticle shape and friction coefficient µs. While the
expression (29) provides a powerful model of elas-
tic moduli in the hardening regime (before stress
peak) with a clear distinction between the two
effects of particle shape, our results indicate that,
due to unstable particle rearrangements, the mea-
surement of elastic moduli in the softening regime

requires strain probes well below 10−5 used in this
work throughout triaxial compression.

The expression (29) makes it possible to
extract the values of Zc and ac and the model
parameters n, m, rij , and sij from experimen-
tal measurements of the elastic moduli. This is
specially relevant for granular materials composed
of aspherical particle shapes whose elastic prop-
erties have not yet been a subject of systematic
investigation. More work is currently underway to
further validate Eq. (29) for other particle shapes,
different values of the stiffness ratio, and differ-
ent boundary conditions. A detailed comparison of
the elastic moduli of polyhedral particle packings
with increasing number of faces will be published
in a forthcoming paper.
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