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MODELLING ACOUSTIC SPACE-COILED METACRYSTALS*

JOAR ZHOU HAGSTROM T, KIM PHAM T, AND AGNES MAUREL

Abstract. We present an effective model of ”space-coiled metacrystals” composed of a periodic
array of sound rigid blocks into which long slots have been coiled up. The periodic cell of the block
contains a coiled slot whose straight parts are at wavelength scale, which enables the appearance of
Bragg resonances. These resonances, which prevent high transmission, compete with the Fabry-Pérot
resonances of the entire slot, which foster perfect transmission. This results in complex scattering
properties driven by the characteristics of the turning regions that act as atoms in a one-dimensional
coiled crystal. Using appropriate scaling and combining two-scale homogenization with matched
asymptotic techniques, the modelling of such metacrystals is proposed. The resulting model is
validated through a comparison with full-wave numerics in both harmonic and transient regimes.

Key words. Space-coiling, resonant metasurface, crystal, two-scale homogenization, asymptotic
analysis

AMS subject classifications. 34E13, 35B27, 35105, 76B15

1. Introduction. Many devices used to control the propagation of acoustic
waves are based on arrangements of guiding slots. The simplest example is that
of a sound-rigid wall pierced by a regular array of straight slots whose periodicity is
less than the wavelength. When the wall has a thickness comparable to the wave-
length, Fabry-Pérot type resonances appear, which have been exploited for practical
applications [12, 2]. About ten years ago, the idea emerged that it would be possi-
ble to use devices with sub-wavelength thicknesses, called ” metasurfaces”, capable of
interacting strongly with waves [20]. With this in mind, Liang and Li [11] proposed
to promote the straight slot array into the family of metasurfaces by rolling up the
slots in the unit cell with the intuitive idea that the straight slots and their rolled-
up version behave in the same way. Based on this concept of spaced-coil structures,
applications have been proposed for the acoustic lensing [8, 16, 17], unidirectional
transmission [7, 16, 9] and negative refraction [19, 10]. From a theoretical point of
view, a heuristic model was initially proposed in [9, 1], which is essentially based (but
not explicitly stated) on the homogenisation of a straight slit grating whose length is
that of the uncoiled path. Such approaches are justified for these structures since the
dimensions of the unit cell are subwavelength, but this implies that the straight parts
of the labyrinth between the turning regions are also subwavelength [21]. As a result,
the scattering turning regions have only a weak effect on wave propagation and the
labyrinthine structure behaves as a homogeneous anisotropic block producing perfect
transmissions at the Fabry-Pérot resonances at low frequencies.

In the present study, we consider labyrinths whose longest straight parts (of length
¢, see figure 1(a)) are of wavelength size. This way, the turning regions have strong
scattering effects that make possible the appearance of Bragg band-gaps, as they
behave like the atoms of a one-dimensional coiled crystal. Besides, we keep the peri-
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n

Fic. 1. (a) Geometry of the space-coiled metacrystal; the unit cell (in orange) contains a coiled
slot whose straight parts, of length £, are of wavelength size while the periodicity h is subwavelength.
(b) Scattering of an incident wave with wavevector k; the reported fields have been calculated nu-
merically for an incident plane wave at incidence 45° (k€ = 0.41, £ = 2h with zero wall thicknesses).

odicity h of the structure on a subwavelength scale so that both the Bragg resonances
and the Fabry-Pérot resonances of the entire (uncoiled) slot occur in a low frequency
regime, i.e., in a regime where the grating supports a single diffraction order. It results
in a complex scattering due to the competition between the two types of resonances,
the Fabry-Pérot resonances fostering high transmission and the Bragg resonances pre-
venting it. In what follows, we build an effective model that captures these scattering
properties. To do so, we combine model reduction in straight regions to capture prop-
agation, two-scale homogenization to deal with periodicity, and suitable asymptotic
techniques to deal with the evanescent field triggered in the turning regions and at
the labyrinth extremities. The paper is organized as follows. In §2, we present the
effective model whose derivation is detailed in §3. The derivation is performed in the
time domain, which allows us to discuss the energy properties of the effective model;
this is done in §4. The validation of the model is presented in §5 by comparisons with
direct numerical calculations in the harmonic and transient domains.

2. Main results.

2.1. The actual problem. We consider the scattering of acoustic waves by
a metacrystal as shown in figure 1. It is made of a periodic arrangement of unit
cells along the vertical, xo, direction with subwavelength periodicity h and horizontal
thickness ¢ (along x1). FEach cell contains a coiled slot resulting in N horizontal
slots connected between them through turning regions. Note that for a transmissive
structure, N is odd (N =1 corresponds to a straight, uncoiled, slot and we show the
case N = 3 in figure 1). In the air, the acoustic pressure p and velocity u satisfy the
linearized Euler equations

ou 1 dp
2.1 —=——V — +divu =0 - =0
( ) ot D 'z Xaat + divu , U n|F )
where (p., X.) are the mass density and the compressibility of the air (and ¢ is the
time). The problem is complemented by Neumann boundary conditions on the pres-
sure (vanishing normal velocity) applying on the boundaries T' of the sound-rigid
walls.
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MODELLING ACOUSTIC SPACE-COILED METACRYSTALS 3

2.2. The effective problem. In the effective model, whose derivation is de-
tailed in the forthcoming §3, we distinguish two regions, as sketched in figure 2. In
the regions surrounding the metacrystal, for z; ¢ (0, £), the linearized Euler equations
apply, namely

ou 1 Op

2.2 =
(2.2) T pan’ Xo gy

with p and u depending of  and ¢ as in the actual problem.

+ dive = 0, for x1 ¢ (0,¢),

In the metacrystalline region 1 € (0, ), we denote (P,U) the acoustic pressure
and velocity, respectively. This region is described in terms of a strongly anisotropic
effective medium, the spatial variable x; being replaced by the curvilinear abscissa s,
s € (0,L;) with Ly = N{ the total length of the coiled slot. In each straight part of
the slot, for s € (s}, s,,1), n € {0,..., N—1}, (blue segments associated with specific
s-orientation in figure 2), (P, U) satisfy the one-dimensional propagation equations

oU 6 0P P oU
2. _— = ——— _ i f + —
(2.3) B s X% + 5. =0, forse (55,5701,
where
(2.4) sg =0, sy=N{ ands:=nl+enc{0,...,N—1},

with e = ( + v)h the width of the turning region (J, n and v are non-dimensional
geometrical parameters defined in figure 3). Note that the fields (P,U) depend on s
which allows us to describe the propagation within a single cell but they also depend
on o which allows us to describe the field variations from one cell to the others
(and they depend on time t). Next, the effect of a turning region connecting two
consecutive slots (sketched in red in figure 2) is encapsulated in jump conditions of
the form

1PL = D2 n s 1 2P0
25) t O(P) " oU)
[U]n = —x.h(20 + &)n 5 h(d +§) awzn,
(p,w) (P,U)

Fic. 2. The effective problem where the unit cell of the metacrystal has been replaced by a
homogenized anisotropic region with one-dimensional propagation. It is set on a curvilinear coordi-
nate s that follows the coiled path (blue lines). Jump conditions account for boundary layer effects
in the turning regions (red dotted lines) and at the extremities of the coiled slot connected to the
surrounding air (green dotted lines). The actual rigid, pierced, block is shown in light grey to assist
in the understanding.
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4 J. ZHOU HAGSTROM, K. PHAM, AND A. MAUREL

forn € {1,..., N —1} (£ is a non-dimensional geometrical parameter defined in figure
3), and where the jump and the average of the field F' = (P,U) are defined by

[Fln = F(s}, 22,t) — F(s,,,22,t), (F), == (F(s},z2,t) + F(s,,,x2,t)).

Eventually at the extremities s = sar and s = sy of the coiled slot, which communicate
with the surrounding air at z; = 0 and x; = £ (these regions are sketched in green in
figure 2), jump conditions of a different type apply, of the form

[P = .82
2.6 0,N
( ) ne { ) }7 [[U]] B _hcawn Where % B _l8<P>n
L Oxsy ot p. Oxy

where we have defined, for f = (p,u1) and F = (P,U), the jumps
1
[[F]]O:F(837x27t)_f(0_7x27t)7 0_5( 807$2, +f(0 , L2, ))7
1

[Fly = f(£F, 29,t) — F(sy,z2,t), (F)y= 5 (f(E , T, )—i—F(sN,a:g,t)).

The effective model involves, in addition to geometrical parameters, three effective
parameters (B, C, D) which are boundary layer coefficients given by elementary static
problems that will appear in the asymptotic analysis.

L

F1G. 3. Decomposition of the unit cell into sub-regions requiring appropriate asymptotic analy-
sis. In the straight parts of the coiled slot (blue area) the propagation is accounted for; in the turning
regions connecting two of these straight slots (red area) and in the regions connecting the extremi-
ties of the coiled slot to the surrounding air (green area), matched asymptotic methods are used to
capture the effect of the boundary layers.

We notice that the model results from an analysis conducted at order 1 with
respect to the small parameter kh < 1 which is a measure of the subwavelength
regime. We will see in the forthcoming section that the model at order 0 (limit
problem) is trivial because it corresponds to an uncoiled slot. This means that, in the
x1 € (0,¢) crystalline region, (2.3) applies to the whole uncoiled slot, i.e., s € (0, N¥),
since the jump conditions in (2.5) reduce to continuity conditions [P],, = [U], = 0.
The same is true at the ends s = 0 and s = N/ in (2.6) (without effect of evanescent
fields triggered at the junction of a slot with the surrounding regions). By neglecting
the evanescent fields at the extremities of the slot, the model at order 0 gives a rough

This manuscript is for review purposes only.
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MODELLING ACOUSTIC SPACE-COILED METACRYSTALS 5

estimate of the Fabry-Pérot resonances. This is true for straight slots and the (mild)
gain obtained with the model at order 1 has been discussed in [14]. In contrast, by
neglecting the effects of evanescent fields in the turning regions, the model at order
0 completely misses the Bragg resonances. We will see in §5 that this results in a
serious lack of accuracy.

3. Derivation of the effective model. We derive in this section the effective
model based on asymptotic analysis valid in the subwavelength regime which means
that the typical wavelength is much smaller than the unit cell length h. As we are
working in the time domain, the subwavelength regime implicitly assumes that the
spectral content of the sources, once they will be defined, is limited by a maximum
angular frequency w satisfying

e=kh <1, k=w/e,
with ¢ =1/,/p.X. the speed of sound. We also consider
kt=0(1),  n,&06,v=0(1),

hence N = O(1) (see figure 3). In the following, we shall use non-dimensional forms
of the linearized Euler equations (2.1), with

(3.1) D= X.p, u—ule, t—owt, x—wx/c,
resulting in

ou op

o +divu =0, w-nr=0.

In the asymptotic procedure, we shall consider sub-regions where appropriate
analysis will be achieved. Specifically, as sketched in figure 3 (the figure uses the
same color code as in figure 2), we shall distinguish the straight parts of the coiled
slot (blue area) where one-dimensional wave propagation takes place resulting in (2.3),
the turning regions connecting two straight slots (red area) and eventually the regions
connecting the coiled slot to the surrounding air (green area). These two families of
intermediate regions involve evanescent fields whose signatures in the effective model
are the jump conditions announced in (2.5) and (2.6).

3.1. Effective propagation in the straight parts of the coiled slot.

3.1.1. Setting of the asymptotic procedure. In the straight slots far from
the turning regions, the medium is structured along x5 only. Hence, we assume the
following expansions

(3.3) p*= ZEipi(CC,QQ,t) ) u® = Zsiui(m,yg,t) with u’ = u'e; + vles,
i>0 i>0

where (e1, e3) are the unit vectors along x; and xo. The variable yo = x5/ € (0,1)
is a fast variable describing the vertical position towards the N slots. We denote Y{;
the region of the n-th slot within the unit cell yo € (0,1), specifically

This manuscript is for review purposes only.
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6 J. ZHOU HAGSTROM, K. PHAM, AND A. MAUREL

see figure 4. For the n-th slot and at any order ¢, we define the average pressure field
., and the flow rate ug, as

(35> p(ln)(ma t) = g pZ(m’ Y2, t) dyQa u(ln) ($7 t) = /;/ uz(w’ Y2, t) dy27
(

O)

Yin)

which are the effective, macroscopic, fields we are interested in. The Neumann condi-

Y2
Y(n+1) Y(n+1)
Yin) Yin)
Y(n-1) Yin-1)

Fic. 4. The one-dimensional representative cell defined by y2 € (0,1) inside the coiled region
far from the extremities. It is made of N segments of thickness § (blue region) separated by walls
of thickness & (grey region).

tion on the horizontal rigid walls, separating each slot from the other, holds at each
order of the expansion and reads

(3.6) v (T, Y +£6/2,t) = 0.

Due to the two-scale expansions in (3.3), the divergence operator and the gradient
operator now read

e 1of _ 1
(37) lef = lemf + ga—yz + €, Vf = me + g

of .
ayz 25

for any vectorial function f(x,ys,t) and for any scalar function f(@,ys,t). Accord-
ingly, applying the differential operators (3.7) to (3.2) along with (3.3) and identifying
the terms with same powers in €, we obtain

0 i . it+1
9 o P v+ 22 0 foriso,
(3.9) 0ya ot 0y
’ ap° out  gpitt ’
Lo, L= V- for i > 0.
ayz s ot zP A €y 1I0ri =~

3.1.2. The order O in the slots. We deduce from the leading order in (3.8)
that p° and v° take constant values in each slot (yet possible different values due to
the rigid walls between the slots). Using the definition (3.5) of the average, we get

(39) pO (.’11, Y2 € Y’(n)a t) = p(g)(a:, t)'

This manuscript is for review purposes only.
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MODELLING ACOUSTIC SPACE-COILED METACRYSTALS 7

and from the Neumann boundary conditions (3.6), we have
(3.10) v(x,y2 € Vi), t) =0.

At the next order in (3.8), we obtain that 06—7{) = fg—gi with p° piecewise constant.
We deduce using (3.5) that

(@, y2 € Vi), t) = <u) (z, t)es.

Next, integrating the mass balance in (3.8) at order i = 0 over Y{,) and using (3.5) as
well as Neumann boundary conditions (3.6) to get rid of the contribution of v* at the
walls, we also obtain

0 0 0 0
o 8}9(“) 8u(n) 6])@

(n)
=0
’ [“)xl ot

A1 =
(3 ) 8t afEl

:O7

which describes the expected one-dimensional propagation in the n-th slot.

3.1.3. The order 1 in the slots. From the balance of mass given by (3.8)
(with ¢ = 0) and equations (3.9) and (3.11) derived at the dominant order, we get
that 88—’;0 + divyu® = 0, hence we have 8y2v1 = 0 and v! is piecewise constant. By
taking into account the Neumann boundary conditions (3.6) at order 1, we deduce
that v* = 0 in all the slots. From the balance of momentum in (3.8) along ez at order

0 and (3.10), we have 0 = fg—i - g—i, which after integration gives
op?
1_ @) 1
(312) b = (y(n) - y2) 8.%‘2 +p(77,)7

with fy( )(y(n) — y2) dys = 0. Integrating the mass balance (3.8) for ¢ = 1 and using

the Neumann boundary conditions (3.6), we get the one-dimensional wave equation
at the first order in the n-th slot

oul Opt Oul Opt
1 w 4 %P _ w 4 %P _
(3.13) at 00 Y T o O

which is the same as the one obtained at order 0.

3.2. Solutions in the air far from the material. Since the surrounding air
for z1 ¢ (0,£) is a homogeneous medium, the asymptotic expansion is straightforward
and does not involve two scales expansion. Specifically, we have

(3.14) P = Zeipi(sc,t) , u® = Zeiui(w,t),

i>0 >0
which after injection in (3.2) results at each order in

opt ou’

(3.15) Vi>0, —-+ diveu’ =0, T ~Vap'.

3.3. Analysis at the junctions at the entry/exit of the slot. We shall now
derive the effective jump conditions applying between the extremities of the coiled slot
and the surrounding air. The analysis is presented at the extremity x; = 0 as the
jump conditions at x1 = £ can be deduced by mirroring the analysis.

This manuscript is for review purposes only.
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8 J. ZHOU HAGSTROM, K. PHAM, AND A. MAUREL

3.3.1. Setting of the asymptotic procedure. It consists in matching the
outer expansions (3.3) and (3.14) through an intermediate inner region governed
by boundary layer effect. To do that, we introduce the representative unit cell ),
obtained by rescaling spatially the extremity of the slot near z; = 0 owing to the
variable y = /¢, see figure 5. This cell is the union Y = YT UY~ of the semi-infinite

Fi1G. 5. The representative unit cell Y = YT U Y~ near one extremity of the slot at x1 = 0
connects the surrounding air (green region) to the interior of the slot (blue region).

region Y~ in the surrounding fluid and of the semi-infinite region Y+ in the first
straight slot, specifically

y_ :(_OO’O) X(Oal)v y+:<O,OO)XYY(1).

In this inner region, we use the following expansion of the fields

(316) p - Zs x?ay7 ) Ze m?ay7 ) u= (U,V),

120 =0

where (p?,u?) are assumed to be periodic with respect to y2 in ¥~ and u* - n = 0
on the boundaries I" of the rigid walls. As in the previous section, the divergence
operator and the gradient operator are affected by the two-scale expansion, which in
this case read

of

1
dlvf— 6'f -eq + dlvyf, Vf=—-— e+ -V,f,
Oxq 0xo €

for any vectorial function f(x2,y) and for any scalar function f(x2,y). Injecting the
expansions (3.16) in (3.2), we get at the leading orders

a 0
divyu® =0, div,u' +9,,v° + 5 =0,
(3.17) 0- V.o ou’  op° v
yp 9 8t 813262 yp )

u0~n‘r:u1~n‘r:0.

The matching conditions are obtained by pairing the outer expansions (3.3) and (3.14)
valid far from the entry at y; = 0 with the inner expansions (3.16) valid in the vicinity

This manuscript is for review purposes only.
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MODELLING ACOUSTIC SPACE-COILED METACRYSTALS 9
of the entry. For the pressure expansions in (3.14) and (3.16), the matching reads

Po(ﬂﬁzay,t) +5P1($2,y7t) +e po(wﬂt) + Epl(mvt) + - 5

as y3 — —oo and x; — 07. By recalling that z; = ey; and by using a Taylor
expansion of the outer expansion with respect to €, we get at the dominant order and
at the first order in the fluid

(318) po(oi,x%t) = lim po(x%yat)a
Yy —>—0Q
(3.19) p (07, 20,t) = lim (p'(z2,y,t) —y 8—;00(0_ Za,1)
. s L2y g1 —00 2,Y, 18331 s L2y .
Doing the same for the expansions in (3.3) and (3.16) results in

po(x%yat) + €p1(172,y7t) + e Npo(m7y23t) +€p1($,y2,t) +ey

as y1 — +oo (with y € Yjy)) and 21 — 07, hence for y, € Y{y), we get

(320) p0(0+a$27y2?t) = lim p0($27y7t>7
Y1 —>+00

(321) p1(0+ax2ay27t) = lim pl(any7t) - po (O+ax2ay25t) .
Yy1—>+00 8x1

The exact same matching conditions as (3.18) and (3.20) are obtained for the velocity
field by replacing formally p by u and p by wu.

3.3.2. The continuity conditions at order 0. From (3.17), we deduce that
p” is independent of y and we obtain from the matching conditions (3.18) and (3.20)
that

0

(3.22) P (07, 22,t) = p°(x2,9,t) = p°(07, 22, 1),

since p? = p(% for yo € Yy from (3.9). Next, by integrating the free divergence
equation in (3.17) set on u® over the subset domain Y* C ), truncated at y; = +y;
with y] > 1, and using the Neumann boundary conditions on the rigid walls and the
periodic boundary condition in Y* N Y™, we obtain

/ UO(xZayfay%t) dy2 - / uo(an _yLyQat) dy2 =0.
Y(l) Y

Passing to the limit as y7 — +o0o0 and using the matching conditions (3.18) and (3.20)
written on the velocity, we obtain

(3.23) ug) (0%, 29, t) = u®(07, 22, 1).

Therefore, there is no boundary layer correction at the, dominant, order 0 meaning
that the usual continuity conditions on pressure and flow rate apply. Conducting
the same analysis at the extremity x; = £ of the slot, we get the same continuity
conditions, namely

p(?v)(gf,x%t) = pO(ZJraxZat)a u(?v) (67, ant) = uo(éJr,szt)'

This manuscript is for review purposes only.
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10 J. ZHOU HAGSTROM, K. PHAM, AND A. MAUREL

3.3.3. The jump conditions at order 1.
Jump condition on the pressure. From (3.17), the problem set on ) for the couple
(p*,u?) is given by

0 0
% :—g—i O_eg—Vyp1 , divyuozo, u0~n|F =0,
) ou® o op°
(3.24) y11—1>H—loo W B E’O— €1 87172 0 €2
lim 87uo = laio‘ €1
yi—too Ot 5 Ot lo- 7
ith 222 — 9% (- ouly  _ 8ul -
with g-fo- = 55-(07, 22, ¢) and Fi-[o- = S (07, 22,1). In (3.24), we have used the

continuities of the pressure and of the flow rate given by (3.22) and (3.23), along with
(3.9) (for n = 1). By linearity, the solution of (3.24) can be decomposed as a linear
combination of the macroscopic fields g%h* and 8871?‘0* which do not depend on y.
Specifically, we have

Op° ou®
3.25 Yy, y,t) = =— -
(3.25) P (22,,1) = 5 | Qa(y) — 5,
where the functions (Q1, Q2) satisfy the so-called elementary problems given by (i =
1,2)

O*Ql(y) + Q*(x%t)v

diVy(VyQi + 51‘262) =0 in )Y, (VyQZ + 52‘262) MY = 0,
(3.26) ie{1,2}, { (QiVQi) y2— periodic for y; <0,
lim V,Q;=dei, yllirﬂwvy@i =di1e1/6 — dizes,

Y1 —>—00

with 6;; = 0if ¢ # j and J;; = 1 otherwise. The behavior of (Q1,@2) at infinity reads

lim lim
Y1—>—00 Yy1—+0o0
(3.27) Q| w | 5+B

Q2 0 Ya) — Y2

with yqy = §/2 from (3.4). Note that the problem on @; corresponds to a classical
potential flow problem and in this context, B is called blockage coeflicient [15]. For
(01 which corresponds to the problem of a perfect fluid flowing in a rigid duct whose
height changes from 1 for y; < 0 to ¢ for y; > 0, B has been determined by [18] (Eq.
(2.12)), namely

1 [1+6% 1496 48
2 = — log —— — 2log ——

(3:28) 5 27r[ 5 15 °g1—52}

We have used that @2 is odd with respect to yo = /2 in the slot, hence its behavior

at infinity when y; — +o00. From the matching condition (3.18) with the exterior

together with (3.15), we get

. ou’
320 P00 = tim (0wt Fn ] ) = Qulent)

Y1—>—00
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From the matching condition (3.20) with the first slot together with (3.11) and (3.23)
Bu(l)

3 : . ou’ _ 8;00
which gives %o~ = lo+ = =055+, we get

. ou’
P1(0+a$27y2 € )/(1),t) = lim (pl(y7x27t) yl >

y1—+o0 5 ot
ou’ 8 0
:*Bﬁ 856 ’ (Yay) — y2) + Qu«(x2,1).

Using (3.12) (since p°|o- = pJ]o+), we deduce

oud

(3.30) Py (0%, 39, 1) = —BW + Qu(w2,1).

Finally, subtracting (3.29) to (3.30) we get the jump conditions on the pressure field
0
(3.31) P (07, g, t) — p' (07, 22, t) = —BW

By conducting the same analysis at the other extremity x; = £ of the slot, we obtain

0
(3.32) P 2o, t) — ph (€0, ) = — i

Jump condition on the flow rate. We start from the divergence relation on u! in
(3.17) that we integrate over the truncated domain )* after taking the time derivative,
specifically we get

) aul 62VO 82p0

We evaluate separately the three contributions in the integral in (3.33). First, since
p? is constant in Y, see (3.22), we have

82 82]70
(3.34) | Ay =10 W’

Next, using the divergence theorem and the matching conditions (3.18)-(3.20) written
for the velocity as well as the definitions (3.5) of the flow rate, we have the asymptotic
estimate

. ou? au’(ll)

where o(1) are vanishing terms as y; — 4o0o. Adding the two contributions (3.34)
and (3.35) and using mass balance equations (3.11) and (3.15), we get

out  9%p° oul
(3.36) / (dlvy 5 + 8t2> dy = 5t

The remaining term of the integral (3.33) can be expressed using (3.24) as

82\/0 82p0 a2p1
. dy=—(1
(3:37) /y dtom, W= U TGy - /y 92092

o(1)

Bu _+ Ougy . 0%’ ‘
ot ot Y 550, 1o+ T Y Bia,

out , 020

— 1).
o+ ot lo- % Ot0xo ‘0* +o(1)

This manuscript is for review purposes only.
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The last integral can be made explicit using (3.25) to get

82 1 82 0 o o
ez = (L 5 00+ Ly (G e) o)
Py 8.’1}28y2 8.7;2 Rlan % 8y2 yrAy+ (9y2

9?u° ’ o1

~ Bidaslo- )y ays YW

(3.38)

Note that due to periodicity conditions in )~ , we have fy*m} an dy=0fori=1,2.
One can also remark that the loading being in the direction 61 or @1, the solution is
symmetric with respect to yo = §/2 in the slot and hence we have fy*mH % dy = 0.
Finally, introducing the boundary layer corrector

Q2 )
3.39 C= — +1) dy
( ) ( dy2
and adding (3.36) to (3.37) with the use of (3.38), we get
) _ o?*p?
e (ugy (0%, 29, 8) — ! (07,22, 1)) = CW(O , T2, ).
2

To get rid of the time derivative, we introduce the auxiliary velocity field Wy(x2, t)
which allows us to express the jump condition on the normal velocity at first order as

oW, oW, op°

1 /4 1/0— N 0 0 o P

(340) u(l)(O ,ﬂfg,t) —Uu (O 7I2,t) = _CT{I;Q’ W(xg,t) = _871'2(0 l'g,t),
By conducting the same analysis at the exit of the crystaline region, we get

OWy aWN(x t)__aipo
oy~ Ot 27 T Ony

(3.41)  u(lt,z9,t) —ul, (0™, 22,t) = —C (01, 30, t).

1
)
3.4. Analysis at the junctions. We shall now derive the effective jump con-
ditions applying between two consecutive slots at a turning region. We notice that
a similar analysis has been conducted in [6, 3]. For the sake of conciseness, we shall
consider a turning region close to x1 = 0, that is to say between the n-th and the
(n+1)-th slot with n even. The conditions for the turning region on the opposite side
near 1 = ¢ can be deduced by mirroring the analysis. We also notice that the analysis
is very similar but not identical to that developed in the preceding section; to avoid
multiple references to this previous analysis, we simply repeat below the exercice.

3.4.1. Setting of the asymptotic procedure. With y, and Y{, defined by
(3.4), we define the representative cell ). of the turning region (see figure 6), using
the rescaled space variable y = ¢ /¢, as the semi-infinite region

Ve=7+m X Wy = 0/2,Yns1) +0/2) U (v +1,+00) X (Yiny U Yypy))-

In this region, we use the following asymptotic expansions

(342) p *Zs $2,y, ) u® *ZE z?aya

120 =0
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Y2

Yn+1)

Yn)

F1G. 6. The representative cell Y. at a turn connecting two consecutive slots (red region).

Injecting (3.42) in the governing equations (3.2), we get at the leading orders
o 0
divyu® =0, divyu! + 9,,v° + % —0,
(3.43) 0oy 0 M _ o o
WP o T T am, 2 VP
w-n, =ul-n, =0,
where I'. denotes the part of the boundary ), associated to the rigid walls. The

matching conditions between the inner expansions and the outer expansions (3.3) far
in the slots can be derived using the same procedure as in the preceding §3.3.1. For
the pressure, they read

p0(0+, ai) = lim p(c)(yla ai)a

(3 44) Y1 —+00 0
. . ap
1ot o) = 1 N — oo 220t .
p (0 7al) yll_lg_loo (pc (yhal) Y1 Ox, (0 ’al)> )

with the notation a; = (y2 € Y(),x2,t) for i = {n,n + 1}. The same matching
conditions on the velocity are obtained by replacing formally p by w and p. by u, in
(3.44).

3.4.2. The continuity conditions at order 0. At the dominant order, we get
from (3.43) that pY is independent of y, hence we obtain from the matching condition
(3.44) together with the result (3.9) set in the bulk that

(345) p((7)L+1) (0+7 Z2, t) = p8($27 Y, t) = p(?m) (O+’ T2, t)7

which translates in the continuity of the pressure between two consecutive slots. Next,
by integrating the divergence free equation in (3.43) over the subset domain Y C ),
truncated at y1 = £y with y7 > 1, and eliminating the boundary terms associated
to the Neumann boundary conditions on the rigid walls, we obtain

Ji

Passing to the limit when yi — 400 and using the matching condition (3.44) (written
for the velocity) together with the definitions of the flow rate (3.5) in the bulk, we
obtain a jump condition on the flow rate

ul(za, yi, Y2, t) Y2 + /Y u®(za, Y7, y2,t) dyo = 0.
(n+1)

n)

(3.46) ud (07 20, 8) + 0 (01, 24, 8) = 0.
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14 J. ZHOU HAGSTROM, K. PHAM, AND A. MAUREL

At the dominant order, we recover the continuity conditions on the pressure and on
the flowrate.

3.4.3. The jump conditions at order 1.
Jump condition on the pressure. From (3.43), the problem set for the couple
(pk,u?) is given by

8u9 8]9(%) :
87f:_8w2 0+62—Vypi, div,ul =0, uS'n‘Fc:O’
8u0 1 oud
3.47 I Y .
(3.47) W T Wy € Yoo, 720 8) = 5757 e
ou’ 1 Oug
I Y2 € Vi), T2,1) = £l €1
yl—lg-loo ot (yl Y2 (n+1)s T2 ) 5 ot 0"’61

The above formulation has been obtained using i) (3.46) used to express the limit

when y; — +00 in terms of |0+ only, ii) that the vertical velocity v° is zero in
the slots from (3.10), iii) the contlnulty of the pressure in (3.45) which shows that
0 ol
g% = ap‘”) o+- The solution of (3.47) can now be expressed as a linear combination of
2 T2
the two macroscopic fields 2 636 e lo+ and 24 \0+ (which are independent of y), namely
we use
op° oul.
(348)  pllayt)= 57| (e —92) — 52| QM () + QY (2 1),

Oxo

with Q™) (y) being solutions to the elementary problems
(3.49)

2,Q" =0 in Y., V,Q0-my, =0,

e e
lim  V,Q™ (y1, 92 €Yy) = Fl, lim V,Q™ (y1,ys € Ypqn) = -

y1—+00 y1—+o00 1)

The asymptotic behavior of Q(™) at infinity is given by

lim lim
Y2€Y (), y1—+00 | Yy2€Y(41),y1—>+00
(3.50)

(n) LA _YL p
@ B )

The elementary problem (3.49), as those in (3.26), corresponds to a potential flow
problem, for a perfect fluid flowing in a curved portion of a rigid duct; however, as far
as we know, explicit expression of the blockage coefficient D* is not available in the
literature. We can now express jump conditions at the first order. For that, we pass
to the limit in (3.48) with the help of the asymptotic behavior (3.50), and then make
use of the matching conditions (3.44) together with the form (3.12) of the pressure p
in the slots. This leads to
0
p(i+1) (O+a T2, t) = (y(n) y(n+1)) (21‘;( 2

p(i)(0+,332, ) Q( (an )

ou?
oy 2 et (n)
oF D 375 0++Q* (xQJt)7
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Noticing that yg,41) — ym) = 0 + &, we deduce the jump condition on the pressure at
the junction between each slot

0
o

ou?
1 + 1+ _ « Oy
(3.51) Doy (07,22, 8) =, (07, 22, 1) = —D* ——— o g 0+

ot

Jump condition on the velocity. We start from the divergence relation on u' in

(3.43) that we integrate over the truncated domain Y after taking the time derivative.

This reads
aul 62\/0 a2p0

.52 i = < ° =0.
(3.52) /‘y (dlvy 5 + Bt + 8152) dy=0

We evaluate below the three contributions in the integral in (3.52). First, since p? is
constant in ), see (3.45), we have

5
c

82 pO

2,0
0 Py
ot?

(3.53) dy = (20(y7 —v) +&n)

o+

Next, using the divergence theorem and the matching conditions (3.44) written
for the velocity, we have the asymptotic estimate

Ou! oul oul 9%u? 9?u?
3.54 di e duy = —etb ) * (n+1) * n) 1),
( ) \/)’): lvy at Yy at o+ at o+ yl ataxl o+ yl 8ta[]’,‘l 0++0( )

where o(1) are vanishing terms as y} — +o0o. Adding the two contributions (3.53)
and (3.54) and using mass balance equations (3.11), we get

(3.55)
oul  9%pY ou}

di c c dy = (n+1)
/y (Wy ot 8t2> Y= "o

The remaining term of the integral (3.52) can be further simplified using (3.47),

namely
2,0 9240 (n)

(3.56) / OV gy- o / 0
Y ot Jy: Oys

* 8t8x2 - atal‘g

1 2,0
u, 9Py

ot?

o++ ot

L+ (&n—207)

) +o(1).

*
c

with the integral on the right-hand side being explicit. Indeed, integrating by part of
(3.49) after a multiplication by ys gives

Q™M
Yo

0=/ Y22, Q™ dy:/ yQVyQ(")-ndy—/ dy.
ayC

c c

Eliminating the zero contribution in the boundary integral, on the rigid walls due to
the Neumann boundary condition, it leaves only the contribution when y; — +00

1
/ 1 V,Q™ - n dy = f/
o5, 5 )y,

from which we deduce that fyc agg;:) dy = —(d+¢). Finally, adding (3.55) and (3.56),

we find the jump condition at order 1 on the normal velocity

1
Y2 dyz—*/ Yo dy2 = — (0 +§)
0 Yot

n)

0
8u(n)

0xa o+’

8]7(2)

(357) u(1n+1)(0+7 T2, t) =+ u(ln)(0+7 €2, t) = 7(57] - 26’7) ot

049
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16 J. ZHOU HAGSTROM, K. PHAM, AND A. MAUREL

3.5. Unique formation of the effective problem with curvilinear coor-
dinate.

3.5.1. The curvilinear description. The effective problem derived from the
asymptotic analysis in the slots can be rewritten a posteriori in a more intuitive
form. It consists in using the curvillinear coordinate s that runs along the coiled slot.
Specifically, s is defined over (0, N¢) with the mapping from the global frame, made
of the IV slots, to the curvilinear frame, made of a single path, given by

{ (a1 s = (n=3) £+ (1" (5 - o),

(3.58)
{1,....N} % (0,0) — (0, N0).

Expressing the one-dimensional wave equation (3.11) and (3.13) in terms of s gives

. out  oP! Ut 9Pt
(3.59) i1 €{0,1}, se(0,N?), WJ”SK_O’ gJF(SW_O,

where (P?,U?) are the pressure and flow rate variables set in the new frame and
defined as

(360) (Pi(sv:r’2)7 Ui(57x2)) = (p(i)(xlva)r (_l)nu(in)(xth))'

At the entrance and the exit of the crystalline region, at s = 0 and s = N/, the
continuity conditions at order 0, (3.22) and (3.23), now read

130|s:0+ 7p0|11:0* :po|w1:€+ - P0|5:(N£)7 = 0’
(3.61)
UO|S:OJr - u0|x1:0* = U0|9L’1:£+ - UO‘S:(N£)7 =0,

while the jump conditions at order 1, (3.31)-(3.32) and (3.40)-(3.41), are given by
(3.62)

ou? oWy
Pleor —ptla—o- = —B— Ullor —ul]p - = —C——
| =0+ p | 1=0 ot 11:0*, | =0+ U | 1=0 8:1;2 3
8u0 8 N
1 1 1 1 W
oot — P o= - =-B— , oot — U |e= - =-C ,
P ler=er | (NE) Ot lgi=0+ U o=t | (o) 0xo

with (W, Wx) still given by (3.40) and (3.41).

Eventually, at the turning regions, the jump conditions (3.45) and (3.46) at order 0,
(3.51) and (3.57) at order 1, now apply at s =nf with n € {1,..., N — 1} and read

[P°] = [U°] =0,
oU° opY
(3.63) [P']=-D"—-| —( ) Faz e
. P U
U-=-n- 25’7)@ T (6+£)8Tc2 »

3.5.2. The unique formulation. The last step in the construction of the effec-
tive model is to gather the contributions (p°, P°, u°, U°) at order 0 and (p*, P!, u',U"')
at order 1 into a unique problem. In the surrounding air we introduce

(3.64) p=p"+ep! and w=u"+cul,
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and inside the equivalent metacrystalline region, we introduce the pressure and flow
rate fields (in the curvilinear frame)

(3.65) P=P°+eP! and U=U"+cU

Using (3.15) and (3.59), it is straightforward to deduce the final effective wave equa-
tions (2.2)-(2.3) after using the dimensionalization procedure (3.1). The derivation
of the unique formulation of the jump conditions is more involved as it requires the
introduction of mean quantities. At the entry of the metacrystalline region, in virtue
of the continuity of the flow rate (3.61) at order 0 combined with (3.64)-(3.65), we

have
1 /0u
z1=0" o 5 <8t 5-0*) * O(E)

Now, summing the contributions (3.61) at order 0 and (3.62) at order 1 on the pressure
together with (3.66), we finally get the jump condition on the pressure (2.6) at the
entry (up to the second order in £). Next the continuity equation on the pressure
(3.61) implies that (3.40) gives

oWy _ 1 (o
8332

ou
ot

ou

(3.66) o + o

op
231:07 (9172

(3.67) =5

O(e),

o) HOE)

which allows to deduce from (3.61) and (3.62) the jump condition on the flow rate
(2.6) at the entry (up to the second order in €). The same exact procedure can be
applied to get the final jump conditions at the exit of the metacrystalline region.

Getting the final jump conditions at each junction needs to introduce the enlargement
of the interface due to the finite size of the turning region (at order 1). This is done
in order to ensure stability of the model which requires that a positive definite energy
can be defined; examples can be found in [4, 13] and the positivity will be proven in
the forthcoming §4. To do this, we aim to express the jump conditions, when going
from the slot n to the slot (n+1), in terms of s values s = n{ —e and s = nf+e (with
e = (n+ v)e). By doing a Taylor expansion as ¢ < 1 of the continuity conditions
(3.63) on the pressure field and using (3.59), it can be shown that

2 oU
(3-68) PO|S=nl+e - PO|S=M—€ = _55(77 + 7)% + 0(52)a
with the mean operation defined as
1
(369) <f> = 5 (f's:n£+e + f|5:n576) .

Similarly at the next order, by doing a Taylor expansion on the first order jump
condition (3.63) on the pressure, we have

o) 9(P)
3.70 Pscpire — Plscpi—e = =D —L — (6 + &)~ + O(e).
(3.70) |s=ne+ |s=ne or @0 +E5 =+ 00)
Now multiplying (3.70) by € and adding the contribution (3.68), we obtain the desired
jump conditions (2.5) at the junction on the pressure field (valid up to the second
order in ¢) with

2(n+1)

(3.71) D=D"+ =
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18 J. ZHOU HAGSTROM, K. PHAM, AND A. MAUREL

The unique formulation of the jump condition on the flow rate at the junction is
obtained similarly. We first enlarged the continuity condition (3.63) with a Taylor
expansion to get

o(P
(372) U0|s:n€+e - UOIs:né—e = _26(77 + ’7)5 ét> + 0(52)7

with (P) defined by (3.69). We proceed similarly with the jump condition at the first
order to get

o(P U
(373)  Ulentne ~ lacie = —(en 20 20— (54907 4 o),
T2
Now multiplying (3.73) by € and adding the contribution (3.72), we obtain the desired

jump conditions (2.5) (valid up to the second order in ).
4. Energetic properties.

4.1. Energy balance of the effective model. We consider a rectangular do-
main Q = (=L, L1) X (—La, Lo) with L; > £ so that 2 contains the crystalline region.
In the direct problem given by (2.1), the classical energy balance equation is given by

dé&,
dt

1
+/ T -ndxr = O7 with 5b = */ (Xap2 + p1|’U,|2) dmv
a0 2 Ja

where &, is the acoustic bulk energy and @ = pu the Poynting vector that accounts
for the flux energy throughout the boundary 9€2. A similar energy balance can be
obtained for the effective model (2.2)-(2.6). Specifically, it involves four contributions
to the energy and reads

d ... .
(4.1) T [EX 4 Eo 4 Em/ont £ +/ 7 -ndx=0.

a0
The bulk energy £* is the standard energy stored in £2/Q*, the region of the sur-
rounding air, with Q* = (0,¢) x (—Lg, Ly) C , namely

1
(4.2) g = 5/ (xap® + pulul® ) da.
Q/Q*

The bulk energy £ is the effective energy stored in the straight slots. Expressed by
means of the curvilinear coordinate, it reads:

(4.3) goeor — 1N21/L2 /S;“ (oP? + 2202) dsda
N b - 2 ~ L, 52’ Xa (5 2.

The surface energy £*/°** is the sum of the effective energies stored in the boundary
layers at the entry/exit of the coiled slot and it reads

(44) Ein/out % Z /L2 Da (hcwg + hB<U>Z) dxs.

nefo,N}” ~L2

This manuscript is for review purposes only.



513
514
515

516

ot
~

518
519

520

[GLENTN

ot Ot Ot Ot
NN NN

3

at
)
oo

529
530

531

MODELLING ACOUSTIC SPACE-COILED METACRYSTALS 19

Finally the surface energy £!™ is the sum of the effective energies stored in the
boundary layers at each turning region between two consecutive slots; it reads

N-1 L
turn __ 1 2 2 2
(4.5) =33 | (o + (P} + phD(0)7) ar,

A proof of the positivity of the effective coefficients (88,C, D) is given in the sup-
plementary material (SM1). This ensures the positivity of the surface energies, hence
avoiding numerical instabilities in the time domain, see [5] for a detailed analysis of
such issue.

4.2. Derivation of the energy balance. Multiplying in (2.3) the momentum
balance and the mass balance by 22U and P, respectively (for each segment s &
(s;,8,41) with n € {0,..., N —1}), and adding the two contributions, we get

oP oU  a(PU
(4.6) s€(stsiy),  xoP= + 20T 4 (PU)

ot 5 ot a5

Similarly in the air we have

ou

5 + div(pu) = 0.

op
4.7 — :
(4.7) XuD gy + pau
To obtain a balance of energy, we start with the energy stored in the surrounding
air by integrating (4.7) over /Q*, which makes (4.2) appear. Next we integrate
(4.6) over xy € (—Lg, Ly) and each segment (s;},s, ), which makes (4.3) appear.
Summing the two contributions, and using the divergence theorem, we get

d Yot
— [E + &Y — / PU],, dz —|—/ m-ndr=0,
dt[ ] HZ:O _Lz[[ H ? a0

with £ and &t given by (4.2)-(4.3). The terms associated to the surface energies
appear as we have the identity [PU],, = [P],.(U),, + (P),[U]n. Specifically, by using
the jump conditions, we get for n =0 or N,

(4.8) [PU], = —%%pa (hCWS + hB<U>i) _ hc%xnzwn)’

and, for 1 <n < (N —1),

o(P), (U),)

(4.9) [PU], = — e

1d

o (xah(% +En(P), + pahD<U>i) —h(6+¢)
We obtain the surface energies (4.4)-(4.5) after integration along x2 of (4.9)-(4.8) (up
to some flux terms at the edges of the crystalline region at xo = £Ly and associated
to the integration of the last term in (4.9) and (4.8). These contributions will be left
out of the present analysis).

5. Validation of the effective model. In this section, we inspect the validity
of our effective model at order 1 by comparing it to a numerical reference solution
(details on the numerics -a multimodal method- are provided in the SM2.1). We also
take the opportunity to compare this model with the one obtained at order 0, which,
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as mentioned earlier, neglects the effects of boundary layers at the turning regions and
at the extremities of the labyrinth. We consider the following geometry: zero wall
thickness £ = v = 0 with £ = 2h, h/N the length and width of the slot (6§ = 1/N with
N =7) and nh = 0.01h the width of the turning regions. The elementary problems
(3.26) and (3.49) have been solved numerically in this configuration (using multimodal
methods, see SM2.1) and the non-dimensional effective parameters (B,C, D) entering
the jump conditions (2.5) and (2.6) have been deduced (they are defined in (3.27),
(3.39) and (3.50) along with (3.71)). We obtain B = 0.4982 (in agreement with (3.28)),
C =0.0033 and D = 0.4196/6.

To begin with, we consider an incident plane wave in the harmonic regime with
time dependence e~ ** at normal incidence (the case of oblique incidence is considered
in SM2.2). Outside the metacrystal slab, the solution of the effective model reads

ekl p(w)em e gy € (—o0,0),

(5.1) p(r1,w) = ,
t(w)ek@ =0, x1 € (£, 00).

We notice that the above solution holds for the actual problem far enough the slab
where the evanescent fields can be neglected. Next, by solving (2.2)-(2.4) along with
the jump conditions (2.5) and (2.6), we obtain the solution inside the slab and ex-
plicit values of (r,t) in (5.1) (see SM2.2). We report in figure 7(a) the transmission
coefficient ¢(w) obtained numerically for ¢ = wh/c € (0,4.5) (below the threshold for
the appearance of higher orders of diffraction at wh/c = 2m).

1 [ \\ T T ‘\‘F ‘ T T T \‘F \\ } 1
(a | J\ H Jl\ ﬂ ‘\ H ‘\ [ | | U\\ ﬂ } | H“ ‘ H | J\ ﬂ
e N | A U R
| | | —
e Sl e e o R =
A TR YT LI O 0 11 AL
I S R /‘ ) “\“ e MMJ‘H“% g
N A R R AT RO A D AR (R 1 | =
Bl | | | | | I | <,
M ”\\’;\}/H/UV// N
Y/ IV VG U W e v
Fo— erics | 4
— \ |
0 --- order 0 | | | \\ 4 -
0 e =wh/c 4.5 T logyg(e) 0.7

Fi1G. 7. (a) Transmission coefficient |t| against dimensionless frequency wh/c. (b) Relative
errors of the models, in log-log representation, at orders 0 (grey, slope 1) and 1 (black, slope 2).

The prediction of our model at order 1 is shown by black dashed lines and, for
comparison, that of the model at order 0 by grey dashed lines (obtained by set-
ting B =C =D = 0). The relative errors |t — tuum|/|taum| against € are reported in
figure 7(b); they show that the model at order n, n = 0,1, is accurate up to terms
O(e"*1) as expected. More importantly in practice, we note that the order 1 model
remains accurate over a wide range of frequencies that covers several perfect transmis-
sions (at Fabry-Pérot resonances) and large transmission dips (at Bragg band-gaps).
The lack of accuracy of the model at order 0 is visible as it slightly overestimates the
Fabry-Pérot resonances and more critically, it ignores the Bragg band-gaps.

We now move on to the time-domain and consider an incident Gaussian pulse at
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normal incidence, namely

(5.2) p(21,t) = s(t —x1/c), where s(t) = et/

with 7 the width of the Gaussian. The pressure field is obtained by solving the
problem in the harmonic regime and applying Fourier transforms,

(5.3)

P (2q,t) + 2R {/ S(w)r(w) e~ wlttar/c) dw} , x1 € (—00,0),

p(xlvt) = 00 0 _

2R [/ §(w)t(w) emwlt=(z1=0/e) dw} ,
0

T € (6700)7

with §(w) the Fourier transform of s(t) (and R[X] means real part of X). We consider
incident pulses with increasing spectral contents ¢r/h = 3,2,1 (corresponding §(w)
are shown in figure 8).

1y ct/h =3 ct/h =2

/ '\ ] 1’ ]}\
\ | l\‘ N
1‘ ) S(w) ] "\l\ ‘!l “‘ “ [\'1'\
It Bl HIEN
\ ‘\“ \ numerics ‘U ;“1 r“‘\\ H'K;"'u”b i ‘A\
pr v i\ --- order 1 /\\““\JA\\,‘M VY, (\ U'\A\;‘ﬂ‘h )
\ JVVI Ty

— JON - -~ order 0
wh/c 4.5

cr/h=1

0 A (i

0 whc 45 0

FiG. 8. Spectral contents §(w) of the incident pulse and corresponding variations of §(w)t(w)
contributing to the transmitted pulse, see (5.3).

The resulting pressure profiles p(z1,t) along z1/h € (—200,0) U (2,200) at dimen-
sionless time ct/h = 175 are shown in figure 9. In the reported cases, we observe
that the two ballistic pulses at x; = £ct/h, directly reflected and transmitted by the
slab, are followed by pulses having undergone multiple reflections within the slab.
For er/h = 3, the most visible pulses correspond to internal reflections between
the two extremities of the labyrinth, thus separated in space by Ax; ~ 2N¢ = 28,
i.e., twice the length of the entire slots. However, zooming in on a region between
two of them reveals the presence of additional lower amplitude pulses due to mul-
tiple reflections/transmissions at the turning regions (hence separated in space by
Axy ~ 20 = 4). By increasing 7, the amplitudes of these pulses increase because the
incident waves with shorter wavelengths are more efficiently scattered due to Bragg
resonances. In terms of the accuracy of the effective models, this complexification
in the scattering properties is accompanied by a neat degradation in the accuracy
of the model at order 0 which ignores the Bragg scattering. As a consequence, the
amplitudes of the main pulses, in addition to their positions, are not correctly pre-
dicted because the energy redistributions in reflection and transmission at the turning
regions are not taken into account. In contrast the model at the order 1, by correctly
taking into account the two scatterings, remains very accurate (the table 1 gives the
quantitative errors |p(z1,t) — Pmeaa (Z1, t)|/|p(x1,t)| in reflection and transmission for
the two models).

6. Conclusions. We have provided a model capable of accurately reproducing
the scattering properties of a coiled metacrystal producing high transmission due
to Fabry-Pérot resonances and low transmission due to Bragg resonances in a low
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ct/h =3
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F1G. 9. Pressure profiles along x1 for ct/h = 175 for increasing spectral content of the incident
pulse (for readability, the vertical range has been shortened to (-0.1,0.1), with the main pressure
peaks on the order of unity).

errors in reflection / transmission
et /h model at order 0 model at order 1
3 44.6% /| 77.8% 0.9% /1.5%
2 54.4% [ 95.2% 1.6% /2.8%
1 64.3% / 123.2% 4.6% /8.0%
TABLE 1

Errors in reflection |p(x1 < 0,t) — pmoder(z1 < 0,¢)|/|p(z1 < 0,t)| and in transmission |p(x1 >
£,t) — Dmoge(z1 > £,1)|/|p(z1 > £,t)| for the models at the orders 0 and 1.

frequency regime (with a unique diffraction order). The effect of the Bragg resonances
has been efficiently captured by taking into account the evanescent fields responsible
for the scattering strength of the turning regions, these regions playing the role of
atoms in a one-dimensional coiled crystal. Such metacrystalline structures offer new
degree of freedom to control the acoustic flow since they allow an efficient filtering of
the frequencies (perfect or negligible transmission and reflection) by simply playing
on the geometry of the turning regions. We notice that additional degrees of freedom
can be easily taken into account with the same formalism, such as a coiled crystal
with different turning regions (different atoms) or different inter-distances between
them. Another extension, although less straightforward, is to consider a more complex
crystalline structure in which the turning regions become regions connecting several

This manuscript is for review purposes only.



603

604
605
606

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655

656

MODELLING ACOUSTIC SPACE-COILED METACRYSTALS 23

slots.
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