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Neural dynamics is triggered by discrete synaptic inputs of finite amplitude. However, the neural
response is usually obtained within the diffusion approximation (DA) representing the synaptic
inputs as Gaussian noise. We derive a mean-field formalism encompassing synaptic shot-noise for
sparse balanced networks of spiking neurons. For low (high) external drives (synaptic strenghts)
irregular global oscillations emerge via continuous and hysteretic transitions, correctly predicted by
our approach, but not from the DA. These oscillations display frequencies in biologically relevant
bands.

Introduction. In several contexts the discrete nature
of stochastic events should be taken into account to cor-
rectly predict the system dynamics. A typical exam-
ple is represented by shot-noise, which is conveyed by
pulses and is therefore discontinous, at variance with
white noise, which is associated to thermal fluctuations
and is continuous [1]. The inclusion of shot-noise is fun-
damental to fully characterize the emergent phenomena
in many fields of physics ranging from mesoscopic con-
ductors [2] to driven granular gases [3].

The discrete nature of the events is an innate char-
acteristic also of the neural dynamics, where a neuron
receives inputs from other neurons via electrical pulses,
termed post-synaptic potentials (PSPs). The PSPs stim-
ulating a neuron in the cortex are usually assumed to
be uncorrelated with small amplitudes and high arrival
rates. Therefore the synaptic inputs can be treated as
a continuous Gaussian process and the neural dynamics
can be examined at a mean-field level within the frame-
work of the Diffusion Approximation (DA) [4, 5]. In this
context, the theory of dynamical balance of excitation
and inhibition [6–8] represents one of the most success-
full results able to explain some of the main aspects of
cortical dynamics [9].

However, several experiments have shown that rare
PSPs of large amplitude can have a fundamental impact
on the cortical activity [10, 11] and that synaptic weight
distributions display a long tail towards large amplitudes
[12–14].

Furthermore, networks of inhibitory neurons with low
connectivity (in-degree K ≃ 30−80) have been identified
in the cat visual cortex [15] and in the rat hippocampus
[16] and the latter are believed to be at the origin of col-
lective oscillations (COs) in the γ-band [17]. Recent ex-
periments have also shown that the cortical connections
are definitely more sparse in primate when compared to

mouse [18].

These experimental evidences call for the development
of a mean-field formalism able to incorporate the effect
of discrete synaptic events for diluted random networks.
Population based formalisms taking into account the dis-
crete nature of the synaptic events have been previously
developed for Integrate-and-Fire models [19–22]. How-
ever, such approaches are limited to stationary solutions
and they cannot describe the emergence of oscillatory
behaviours.

In this Letter, we introduce a complete mean-field
(CMF) approach for balanced neural networks [6], tak-
ing into account the sparsness of the network and the
discreteness of the synaptic pulses, able to reproduce all
the possible dynamical states. For simplicity, but with-
out any loss of generality, we consider inhibitory balanced
networks subject to an external excitatory drive [23–26].

Firstly, we illustrate that the DA cannot capture oscil-
latory behaviours emerging for sufficiently low in-degree
in spiking neural networks by considering conductance-
and current-based neuronal models. However, this
regime is correctly reproduced by a mean-field approach
whenever the sparse and discrete synaptic inputs are
taken in account. Furthermore, for Quadratic Integrate-
and-Fire (QIF) [27, 28] neuronal network via the CMF
approach we obtain a complete bifurcation diagram en-
compassing asynchronous and oscillatory regimes. In
particular, for sufficiently low (large) excitatory drive
(synaptic amplitudes) the CMF reveals bifurcations from
the asynchronous irregular (AI) to the oscillatory irreg-
ular (OI) regime as well as a region of coexistence of
these two phases not captured by the DA [29]. Exact
event-driven simulations of large QIF networks confirm
the sub- and super-critical Hopf bifurcations predicted
within the CMF theory. Furthermore, for low in-degrees
COs in biologically relevant frequency bands (from δ to
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γ band) are observable [30].
The balanced network. As a prototype of a dynam-

ically balanced system we consider a sparse inhibitory
network made of N pulse-coupled neurons whose mem-
brane potential evolves according to the equations

V̇i(t) = F (Vi) + I − g
N
∑

j=1

∑

n

ǫjiδ(t− t
(n)
j ) ; (1)

where I is an external DC current, g the synaptic cou-
pling, and the last term represents the inhibitory synap-
tic current. The latter is the linear superposition of in-

stantaneous inhibitory PSPs emitted at times t
(n)
j from

the pre-synaptic neurons connected to neuron i. ǫji is
the adjacency matrix of the random network with en-
tries 1 (0) if the the connection from node j to i exists
(or not), and we assume the same in-degree K =

∑

j ǫji
for all neurons. We consider two paradigmatic models
of spiking neuron: the quadratic integrate-and-fire (QIF)
with F (V ) = V 2 [25–27, 31, 32], which is a current-based
model of class I excitability; and the Morris-Lecar (ML)
[33], a conductance-based model representing a class II
excitable membrane [34]. The DC current and the synap-
tic coupling are assumed to scale as I = i0

√
K and

g = g0/
√
K as usually done in order to ensure a self-

sustained balanced state for sufficiently large in-degrees
[6, 7, 24–26, 35]. The times (frequencies) are reported
in physical units by assuming a membrane time constant
τm = 10 ms.
Mean-field description. For a sufficiently sparse net-

work, the spike trains emitted by K pre-synaptic neurons
can be assumed to be uncorrelated and Poissonian [8, 23],
therefore the mean-field dynamics of a generic neuron can
be represented in terms of following Langevin equation:

V̇ (t) = F (V ) + I − gS(t) (2)

where S(t) is a Poissonian train of δ-spikes with rate
R(t) = Kν(t), and ν(t) is the population firing rate
self-consistently estimated. Usually the Poissonian spike
trains are approximated within the the DA [5, 36] as
S(t) = R(t) +

√

R(t)ξ(t), where ξ(t) is a Gaussian white
noise term. However, this approximation can fail to re-
produce fundamental aspects of the neural dynamics. In-
deed, as shown in Fig. 1 (a) for a sparse ML network,
by employing the DA in (2) one obtains an asynchronous
dynamics (blue curve), while the correct network evolu-
tion, characterized by global oscillations with frequency
fC ≃ 18 Hz (black dots), can be recovered only by ex-
plicitely taking into account the Poissonian spike trains
in (2) (red line).
In the mean-field framework the population dynamics

is usually described in terms of the membrane potential
probability distribution function (PDF) P (V, t), whose
time evolution is given for the QIF model by the following
continuity equation

Ṗ (V, t) + ∂V [(V
2 + I)P (V, t)] = R(t)∆P (V, T ) (3)
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ν(
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0

10

20
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FIG. 1. Population firing rate ν(t) versus time for ML (a) and
QIF (b) models: blue (red) lines refer to diffusive (shot-noise)
MF results and black circles to network simulations. For the
ML the MF shot-noise and DA results have been obtained
by integrating the Langevin equation (2), while for the QIF
by integrating (3) and (4), respectively: more details in [34].
The parameters for the ML model are K = 20, i0 = 0.1,
g0 = 5 and network size N = 20000, the other parameters
are reported in the supplemental material [34]. For the QIF
model K = 200, i0 = 0.16, g0 = 4 and N = 80000.

with boundary condition limV→∞ V 2P (V, t) = ν(t) and
where ∆P (V, T ) = [P (V +, t)−P (V, t)] with V + = V +g.
By assuming that g is sufficiently small we can expand
the latter term as ∆P (V, t) =

∑

∞

p=1
gp

p! ∂
p
V P (V, t) ; and

by limiting to the first two terms in this expansion we
recover the DA corresponding to the following Fokker-
Planck Equation (FPE) [37]

∂tP (V, t)+ ∂V [(V
2+A(t))P (V, t)] = D(t)∂2V P (V, t) (4)

where A(t) =
√
K[i0 − g0ν(t)] and D(t) = g20ν(t)/2. The

DA can give uncorrect predictions for the QIF model,
as well. Indeed as shown in Fig. 1 (b) the network
dynamics is oscillatory with fc ≃ 40 Hz (black circles)
: an evolution correctly captured by the MF equation
(3) (red line), while the FPE (4) converges to a a stable
fixed point (blue curve), Therefore to reproduce the col-
lective dynamical regimes observable in the network it is
necessary to consider the complete continuity equation
(3). In this respect we have developed a CMF formalism
encompassing synaptic shot-noise to identify the various
possible regimes displayed by (3) and to analyse their
stability.
The QIF model evolution can be transformed in that

of a phase oscillator, the so-called θ-neuron [27, 38], by
introducing the phase variable θ = 2 arctanV . However,
this transformation has the drawback that even uncou-
pled neurons are associated to a non flat PDF of the
phases, thus rendering quite difficult or even unfeasible
to identify asynchronous regimes with respect to par-
tially synchronized ones in noisy enviroments [39, 40].
A more appropriate phase transformation to analyse
the synchronization phenomena is the following ψ =
2 arctan (V/

√
I) ∈ [−π, π], which leads to a uniformly ro-

tating phase in the absence of incoming pulses for supra-
threshold neurons with I > 0 [34].



3

By considering the phase PDF w(ψ, t) = P (V, t)
(

I +

V 2
)

/(2
√
I), Eq. (3) can be rewritten in terms of the

so-called Kuramoto–Daido order parameters zn [41, 42]
by expanding in Fourier space the PDF as w(ψ, t) =
(2π)−1

∑+∞

n=−∞
zne

−inψ with z0 = 1 and z−n = z∗n . Af-
ter laborious but straightforward calculations, one ob-
tains the following evolution equations

żn = i2n
√
Izn +Kν

[

+∞
∑

m=0

Inm(α) zm − zn

]

, (5)

where n = 1, 2, 3, ... , α ≡ g/
√
I = g0/(

√
i0K

3/4),

Inm(α) ≡ 1

2π

2π
∫

0

einψ
(

e−iψa
)m

dψ

1 + α2

2 + α sinψ + α2

2 cosψ
(6)

=











(

α
2i−α

)n
, m = 0 ;

min(n,m)
∑

j=1

4(−1)j(n+m−j)!·αm+n−2j(4+α2)j−1

m(j−1)!·(m−j)!·(n−j)!·(2i−α)m+n , m ≥ 1 .

The firing rate can be self-consistently determined by
the flux at the firing threshold limV→∞ V 2P (V, t) =
2
√
Iw(π, t), as follows

ν = 2
√
Iw(π, t) =

√
I

π
Re

(

1 + 2

∞
∑

k=1

(−1)kzk

)

. (7)

The dynamics of the system (5,7) is controlled by only
two parameters: K and α. Thus, we can limit to derive
a bidimensional phase diagram in the parameter plane
(K, i0/g

2
0) , that will comprehensively cover the entire

diversity of the macroscopic regimes observable in the
network. In particular, we have estimated the stationary
solutions of Eqs. (5,7) by truncating the Fourier expan-
sion in (5) to M ≥ 100 modes in order to guarantee a
numerical accuracy of O(10−12) for all the parameter val-
ues. The linear stability of the asynchronous state has
allowed us to identify a HB line where the oscillatory dy-
namics emerges: this is reported as a orange line in Fig.
2 (a) together with the super-critical HB line obtained
within the DA (black solid line) previously reported in
[43]. At variance with the DA the HBs induced by the
shot-noise can be either super- (solid orange line) or sub-
critical (dashed orange line), thus allowing for regions
where asynchronous and oscillatory regimes can coexist,
see Fig. 2 (b). Furthermore while for the DA the oscil-
latory dynamics is observable only for sufficiently large
in-degree K ≥ Kmin ≃ 220, by taking into account the
discrete nature of the synaptic events COs may emerge
even for extremely small in-degrees. Furthermore, the
asynchronous regime is always unstable for sufficiently
small i0 (large g0) : namely, for for i0/g

2
0 < 0.00029. A

peculiarity of the shot-noise results is that the HB line
is re-entrant, thus in a certain range of i0/g

2
0 we can

have asynchronous dynamics only in a finite interval of
in-degrees (as shown in Fig. 2 (c)).
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FIG. 2. (a) Phase diagram for the QIF network in the plane
(i0/g

2

0 ,K): the black solid line is the super-critical HB line
obtained within the DA; the orange solid (dashed) line is the
super- (sub-) critical HB line given by the CMF; the sym-
bols refer to numerical estimations of the HBs and Saddle-
Node Bifurcations (SNBs). The green (blue) circles denote
HBs obtained by performing quasi-adiabatic simulations by
varying K (i0) for constant i0 (K) values; the magenta stars
indicate SNBs. For more details see [34]. (b-c) Average order
parameter ρA versus i0 (K) for quasi-adiabatic simulations
: black circles refer to decreasing (increasing) i0 (K), while
red ones to increasing (decreasing) i0 (K). The blue dashed
line in (b) denotes the sub-critical HB given by the CMF and
the magenta dot-dashed line to numerically estimated SNB;
the two green dashed lines in (c) indicate the HBs given by
the CMF. The values of ρA in panel (b) (panel (c)) refer to
K = 100 (i0 = 0.00055) averaged over 5 network realizations,
with N = 80000, for a time interval t = 30 following a tran-
sient of 20 s. All data refer to g0 = 1.

Network Simulations. In order to verify the CMF
predictions we have performed essentially exact numeri-
cal simulations of the QIF network by employing a fast
event-driven integration scheme [44], which allowed us to
follow the network dynamics for long times, up to 50−100
sec, for system of sizes N = 10000− 80000 [34]. In par-
ticular, to characterize the macroscopic evolution of the
network we measured the following indicator [45]

ρ =
[

σ2
V /σ

2
i

]1/2

where σ2
i = 〈V 2

i 〉 − 〈Vi〉2 , (8)

and σV is the standard deviation of the mean membrane
potential V =

∑N
i=1 Vi/N , with · (〈·〉) denoting an

ensemble (a time) average. A coherent macroscopic ac-
tivity is associated with a finite value of ρ (perfect syn-
chrony corresponds to ρ ≡ 1), while an asynchronous
dynamics to a vanishingly small ρ ≃ O(1/

√
N). A fi-

nite size analysis of the order parameter ρA averaged
over several different network realizations has allowed us
to identify the HBs and the Saddle-Node Bifurcations
(SNBs) of limit cycles displayed in Fig. 2. In particular,
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in Fig. 2 (a) green (blue) circles refer to HBs identi-
fied via quasi-adiabatic simulations by varying K (i0) for
constant i0 (K) values; while the magenta stars indicate
SNBs. Numerical simulations are in good agreement with
the CMF results and allowed us also the identification of
a coexistence region for asynchronous irregular and os-
cillatory irregular dynamics. By irregular we mean that
the microscopic evolution is characterized by fluctuations
in the instantaneous firing rates associated to coefficient
of variations [46] of O(1), as we have verified [23]. A
hysteretic transition from AI to OI obtained by vary-
ing quasi-adiabatically i0 is displayed in Fig. 2 (b), the
coexistence region can be clearly identified between the
sub-critical HB (blue dashed line) and the SNB (magenta
dashed line). Furthermore, as shown in Fig. 2 (c) for suf-
ficiently small currents AI states are observables only for
intermediate values of the in-degrees (K ∈ [50 : 180]
in the considered case), bounded by regions at small
(K ≤ 40) and large (K ≥ 200) in-degrees where OI are
instead present. The finite-size scaling analysis of ρA for
this specific case, revealing the different regimes, is re-
ported in Fig. S1 in [34].

At the HBs, COs emerge with a frequency fH that
is reported as a function of i0/g

2
0 in Fig. 3 (a). The

comparison between the results of the CMF approach
(solid line) and of network simulations with N = 20000
(blue stars) is very good along the whole bifurcation line
predicted by the CMF. Furthermore, fH covers a wide
range of frequencies ranging from 1.77 Hz (δ band) to
≃ 100 Hz (γ band).

As expected by the CMF analysis, the same dyanmics
should be observable at fixed K by maintaing the ratio
i0/g

2
0 constant. Indeed this is the case, as we have veri-

fied by considering a state in the OI regime corresponding
to (K, i0/g

2
0) = (200, 0.01) and by varying, as a function

of a control paramer β, the synaptic coupling and the
current as g0 =

√
β and i0 = β × 0.01, while K stays

fconstant. We obsvered irregular dynamics characterized
by an average CV ≃ 0.78 [46] and COs in the whole
examined range β ∈ [1, 64]. As expected, the only ob-
servable variation is in the time scale, that decreases as
1/

√
I [26, 29, 34], consequently the frequency fC of the

COs grows proportionally to
√
β, thus one can observe

OI dynamics induced by finite amplitude PSP in a wide
frequency range by simply varying the parameter β (see
Fig. 3 (a)).

Stability of the Asynchronous Regime: DA versus

CMF. The linearization of the system (5,7) allows us
to perform a linear stability analysis of the asynchronous
regime, corresponding to a constant firing rate. In partic-
ular, we have estimated the corresponding complex spec-
trum {λi}: the fixed point is stable whenever Re λi <
0 ∀i. Here we would like to compare the spectra ob-
tained within the DA and the CMF to better understand
the origin of the instabilities leading to oscillatory dy-
namics in presence of microscopic shot-noise. As a first
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FIG. 3. (a) Frequency fH of the COs at the HB versus i0/g
2

0 :
symbols are simulations for N = 20000 and the solid line are
the CMF results.(b) Frequency fC of the COs as a function
of the parameter β, where i0 = β × 0.01, g0 =

√
β, K = 200.

Circles are network simulation data with N = 20000 and the
red dashed line represents the curve νCO = 11

√
β Hz. (c-d)

Spectrum of the eigenvalues {λi} for a stationary solution of
system (5,7) for (i0/g

2

0 , K) = (0.02, 400) (c), and (0.00055, 10)
(d). An enlargement is reported in the inset in (d). Black
circles (red stars) refer to the CMF (DA).

remark, we observe that the DA spectra are character-
ized besides the most unstable modes, which can give rise
to the oscillatory instability, by modes that are strongly
damped as shown in Fig. 3 (c). The case shown in Fig.
3 (c) refers to a situation where the dynamics is well re-
produced within the DA, in this case the DA eigenvalues
corresponding to small Im λi in proximity of the Hopf
instability approximate quite well the CMF spectrum.
However, while the CMF eigenvalues appear to saturate
at some finite Re λ value, the DA ones do not. Despite
this difference in this case the collective dynamics of the
system is essentially controlled by the two most unstable
modes, that pratically coincide within the DA and CMF
approaches.
In Fig. 3 (d) we report the CMF spectrum for a situa-

tion where the OI regime is definitely due to the finitess
of the synaptic stimulations and not captured at all by
the DA. In this case, we observe that a large part of
the eigenmodes are now practically not damped, com-
pare the scales over which Re λi varies in Fig. 3 (c)
and (d). Therefore, we expect that the collective dynam-
ics is no more dominated by only the 2 most unstable
modes as usually observable in the DA, but that also the
marginally stable or slightly unstable modes will have a
role in the coherent dynamics, see the inset of panel (d).
In summary, the shot-noise promotes the emergence of

weakly damped eigenmodes that have a relevant role in
the instability of the asynchronous regime at sufficiently
small in-degrees and that are neglected in the DA.
Conclusions. We have shown that the macroscopic

phase-diagram of balanced networks is strongly influ-
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enced by the discreteness and the finite amplitude of
PSPs. In particular, we have developed a CMF formal-
ism by including Poissonian shot-noise which reproduces
quite well the network simulations, at variance with the
DA. Our mean-field analysis of the balanced state com-
plements the previous ones, that has been performed in
the conxtext of the DA [23] or in the limit N >> K >> 1
[6], and adresses some aspects of the neural dynamics not
taken into account by the previous analysis. A counter-
intuitive aspect is the fact that COs can be observed
even in extremely sparse inhibitory networks with fre-
quencies in a wide range from 1-2 Hz (δ-band) to 100
Hz (γ-band). Thus somehow supporting the supposition
reported in [17] that γ-oscillations in the hippocampus
are generated by sub-networks of interneurons with low
in-degrees K ≃ 30− 80 [16].

Our analysis has been limited to homogeneous net-
works, the inclusion of heterogeneity in the mean-field
formulation could be probably worked out by assuming
Lorentzian distributed heterogeneities which can be an-
alytically integrated [47–49], somehow similarly to what
done within the DA in [29].

Quite recently, the effect of shot-noise induced by finite
size fluctuations have been analyzed for the macrosocpic
evolution of globally coupled populations of QIF neurons
[50, 51]. It will be interesting to combine such approach
with our to fully understand the relevance of finite-size
fluctuations for the dynamics of random sparse networks.
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sité Claude Bernard Lyon 1 and by the the ANR via the
Junior Professor Chair in Computational Neurosciences
Lyon 1.

∗ corresponding author: alessandro.torcini@cyu.fr
[1] W. Schottky, Annalen der Physik 362, 541 (1918).
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