N

N

Demo: Generate Emergent NPC Behaviours With
Symbolic Reasoning
Sylvain Lapeyrade

» To cite this version:

Sylvain Lapeyrade. Demo: Generate Emergent NPC Behaviours With Symbolic Reasoning. AIIDE
Workshop on Experimental Al in Games, Oct 2022, Pomona, United States. hal-04333539

HAL Id: hal-04333539
https://hal.science/hal-04333539v1
Submitted on 10 Dec 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04333539v1
https://hal.archives-ouvertes.fr

Demo: Generate Emergent NPC Behaviours With Symbolic

Reasoning

Sylvain Lapeyrade

Université Clermont Auvergne, CNRS, LIMOS, France

Abstract

We propose to use ontologies and declarative symbolic reasoning to generate emergent behaviours of Non-Player Characters
(NPCs). The objective is that the game designer only needs to specify the rules of the game and its components in a declarative
way, as he would naturally do in a traditional board game. The logic reasoner will then deduce the NPC behaviours that
comply with the game designer’s rules without the game designer having to manually specify all the game possibilities by
hand. We illustrate this approach on a prototype of the revisited Wumpus World game made on the Unity game engine
with a Prolog environment. This approach is combined with the Well-Founded Semantics (WFS) to solve the problem of
representation and reasoning despite the lack of NPC knowledge.

Keywords

Demo, Symbolic Reasoning, Unity, Prolog, Ontologies, Well-Founded Semantics,

1. Introduction

Classical Artificial Intelligence (AI) with reasoning and
symbolic representation are quite present in Game Al es-
pecially in Procedural Content Generation (PCG) [1, 2, 3]
and General Game Playing (GGP) with Game Description
Langages (GDL) [4, 5, 6]. However, there are very few
examples of games that use it to design Non-Player Char-
acter (NPC) behaviour. Instead, developers prefer to use
their own ad hoc techniques or classic NPC Al techniques
such as Finite-State Machine (FSM), Behaviour Trees (BT),
Utility Based Al Action Planning techniques [7, 8, 9].

However, reasoning and symbolic representation allow
game designers to state the rules and facts of their games
as they would naturally do in a classic board game. They
do not have to think exhaustively about the possible game
situations but can instead describe what is in the game
(i.e. facts), what is possible to do and what is not possible
to do in the game i.e. rules. This will allow the game
designer to generate NPC behaviours that they would
not necessarily have thought of, but which nevertheless
formally respect the rules of the game that they have
listed in their design. The player’s game experience can
then seem less linear and can be more tailored to their
specific game situation. Logic-based Al also allows for
an easy and complete explanation of results, which can
be very useful in explaining the AT’s behaviour to the
player.

The Joint Workshop Proceedings of the 2022 Conference on Artificial
Intelligence and Interactive Digital Entertainment
& sylvain lapeyrade@uca.fr (S. Lapeyrade)
&} https://sylvainlapeyrade.github.io (S. Lapeyrade)
@ 0000-0002-0984-6243 (S. Lapeyrade)
@] © 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).
[=== CEUR Workshop Proceedings (CEUR-WS.org)

2. Related Work

Even if they are not popular at the moment, there are
some examples of approaches using symbolic reasoning
in combination with a game engine, here all the works
use Unity!.

MKULTRA [10] focus on the natural language process-
ing (NLP) capabilities of logic programming to enable
deeper player-NPC interaction. It uses UnityProlog?, a
custom Prolog engine made by the author.

Possible future integration between games engines and
Multiagent Systems (MAS) is discussed in [11] as well
as results of previous work implementing Belief-Desire-
Intention (BDI) agents using the tuProlog engine [12].

More recently, the UnityIIS framework [13] allows
symbolic reasoning for planning and rational decision-
making using Answer Set programming (ASP) and the
Ontology Web language (OWL).

Another recent framework, VEsNA [14] uses Di-
alogFlow> and JaCaMO [15] to manage virtual environ-
ments with cognitive agents able to support decision-
making.

3. Symbolic Reasoning

We use ontologies so that agents can represent their
knowledge about the world and make reasoning as the
knowledge will have semantics. Our ontologies are or-
ganised as hierarchical packages, like in Object-oriented
Programming (OOP) and its principle of encapsulation.
Only specific parts of the ontology are accessible from
other ontologies. This is to have generic and modular

!'Unity Platform: https://unity.com/
UnityProlog: https://github.com/ianhorswill/UnityProlog
3Google DialogFlow: https://cloud.google.com/dialogflow

mailto:sylvain.lapeyrade@uca.fr
https://sylvainlapeyrade.github.io
https://orcid.org/0000-0002-0984-6243
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Client (Player)

‘Desktop Mobile
I
Game Engine (Unity)

Core
Engine

Render
Engine

Physics
Engine

Prolog Library
[

Prolog Environment (SWI-Prolog)

Figure 1: Our architecture combining Unity and Prolog.

ontologies and to help the developer to know how to use
them.

In order to deal with negative facts, two main seman-
tics are used, the Well-Founded Semantics (WFS) [16] and
the Stable Model Semantics [17] at the basis of Answer Set
Programming (ASP) [18]. The Stable Model Semantics
makes it possible to model simply indicates explicitly
that a statement is false but generate multiple models for
each query. However, the WFS was preferred because it
only generates one model and introduces a third truth
value for undefined values [19].

Prolog can do planning using backward chaining to
find the conditions necessary to fulfil the conditions of a
given goal [20]. By giving the inference engine the goal
that the agent is trying to reach, it will be able to return
the set of sub-goals (e.g. actions) to achieve the main goal
and thus lead to an intelligent action sequence. This is
very powerful since the sequences are not hard-coded by
the game designers and potential sequences not imagined
by the game designer may emerge.

4. Prototype

Figure 1 shows how a logic programming development
environment is integrated with a game engine. Unity was
chosen as the game engine and SWI-Prolog [21] as Prolog
environment, as it notably supports the WFS and pro-
vides interfaces with C#* which can be used with Unity
and C++° which can be used with the Unreal Engine.
To use the Prolog interface from within Unity, we sim-
ply import the interface DLL file into Unity Plugins and
call the interface functions in a C# script. We personally
decided to separate the code that interacts directly with
Prolog in a separate file. This is to make the code more

4C# Interface: https://github.com/SWI-Prolog/contrib-swiplcs
5C++ Interface: https://github.com/SWI-Prolog/packages-cpp

Figure 2: Screenshot from the game.

modular, and to be able to integrate the interface into
another existing game. Placing the code for the script
that interacts with Prolog in a library would allow a game
designer to use the interface with minimal knowledge of
Prolog.

The idea of the game for the prototype of our approach
comes from the reference artificial intelligence textbook
Artificial Intelligence: a Modern Approach [20]. The au-
thors use the example of the game Wumpus World to
show the use of a Knowledge-Base agent. In the game,
an agent must explore a cave, room by room, in order
to collect gold and return to the cave entrance, all the
while avoiding pits and monsters called wumpus. To
avoid pits and wumpus while exploring, the agent must
use clues surrounding the rooms containing them, and
deduce where they are. This mechanic is similar to
Minesweeper®, where the player must deduce where the
bombs are from the numbers surrounding the unexplored
rooms.

As the basic Wumpus World game is rather simple and
does not allow for the use of very complex behaviour, we
have extended the game to include more elements such
as agent characteristics, personalities, states, different
character types, etc. The aim is to create more possible
game situations, so that the prologue environment can
be used to generate more different behaviour. The aim
is to create more possible game situations, so that the
Prolog environment can be used to generate more differ-
ent behaviours. We also generate the cave procedurally
with a seed, so that it can be as large as we want it to
be and still be interesting to explore. Figure 2 shows a
screenshot of the game with a medium-sized cave, the
agent in the starting position, bottom left, and the gold
to be recovered, top right.

®Minesweeper: https://w.wiki/5ZRi

https://github.com/SWI-Prolog/contrib-swiplcs
https://github.com/SWI-Prolog/packages-cpp

5. Conclusion

Our demo is still being improved, we want to make the
possible game situations more complex despite the ba-
sic game example being quite simple to get out of the
stereotypical behaviours and show that the generated
behaviours can be very qualitative. We are currently in
a research collaboration with a game studio to create a
commercial video game with NPC Al based on symbolic
reasoning. The studio’s developers have no experience
in declarative logic programming, so we will be able to
see how well they master the approach and correct any
difficulties they encounter.

Acknowledgments

This research was funded by the French National Re-
search Agency (ANR) and the European Regional Eco-
nomic Development Fund (FEDER). Jan Wielemaker is
acknowledged for his helped with the use of the WFS.

References

[1] A.M. Smith, M. Mateas, Answer set programming
for procedural content generation: A design space
approach, IEEE Transactions on Computational
Intelligence and AI in Games 3 (2011) 187-200.
doi:10.1109/TCIAIG.2011.2158545.

[2] J.Dormans, Adventures in level design: Generating
missions and spaces for action adventure games, in:
Proceedings of the 2010 Workshop on Procedural
Content Generation in Games, PCGames 10, 2010,
pp. 1-8. doi:10.1145/1814256.1814257.

[3] G. Smith, J. Whitehead, M. Mateas, Tanagra: A
mixed-initiative level design tool, in: Proceedings
of the Fifth International Conference on the Foun-
dations of Digital Games, FDG 10, 2010, p. 209-216.
doi:10.1145/1822348.1822376.

[4] M. Genesereth, N. Love, B. Pell, General game
playing: Overview of the aaai competition, AI
magazine 26 (2005) 62—62.

[5] E.Piette, D.]J. N.J. Soemers, M. Stephenson, C. F.
Sironi, M. H. M. Winands, C. Browne, Ludii - the lu-
demic general game system, in: Proceedings of the
24th European Conference on Artificial Intelligence
(ECAI 2020), volume 325 of Frontiers in Artificial
Intelligence and Applications, 10S Press, 2020, pp.
411-418.

[6] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina,
J. Togelius, S. M. Lucas, General video game ai: A
multitrack framework for evaluating agents, games,
and content generation algorithms, IEEE Transac-
tions on Games 11 (2019) 195-214.

[7] G.N. Yannakakis, J. Togelius, Artificial Intelligence
and Games, 1st ed. 2018 ed., Springer International
Publishing : Imprint: Springer, 2018. doi:10.1007/
978-3-319-63519-4.

[8] I Millington, Al for games, third edition ed., Taylor
& Francis, a CRC title, 2019.

[9] A.Simonov, A. S. Zagarskikh, V. Fedorov, Applying

behavior characteristics to decision-making process

to create believable game ai, Procedia Computer

Science (2019).

I. Horswill, Mkultra (demo), Proceedings of the

AAAI Conference on Artificial Intelligence and In-

teractive Digital Entertainment 11 (2015) 223-225.

S. Mariani, A. Omicini, Game engines to model

MAS: A research roadmap, in: C. Santoro,

F. Messina, M. D. Benedetti (Eds.), Proceedings of

the 17th Workshop "From Objects to Agents”, vol-

ume 1664, CEUR-WS.org, 2016, pp. 106-111.

E. Denti, A. Omicini, A. Ricci, Multi-paradigm

java-prolog integration in tuprolog, Science of

Computer Programming 57 (2005) 217-250. doi:10.

1016/3.scico.2005.02.001.

A. Brannstrom, J. C. Nieves, UnityIIS: Interactive

Intelligent Systems in Unity, 2021. URL: https://git.

io/JMpzr.

A. Gatti, V. Mascardi, Towards vesna, a frame-

work for managing virtual environments via nat-

ural language agents, Electronic Proceedings in

Theoretical Computer Science 362 (2022) 65-80.

doi:10.4204/EPTCS.362. 8.

O. Boissier, R. H. Bordini, J. F. Hiibner, A. Ricci,

A. Santi, Multi-agent oriented programming with

jacamo, Science of Computer Programming 78

(2013) 747-761.

A. Van Gelder, K. A. Ross, J. S. Schlipf, The well-

founded semantics for general logic programs, Jour-

nal of the ACM 38 (1991) 619-649. doi:10.1145/

116825.116838.

M. Gelfond, V. Lifschitz, The stable model semantics

for logic programming, in: R. Kowalski, Bowen,

Kenneth (Eds.), Proceedings of International Logic

Programming Conference and Symposium, MIT

Press, 1988, pp. 1070-1080.

V. Lifschitz, Answer set programming, Springer

Berlin, 2019.

U. Nilsson, J. Maluszynski, Logic, Programming,

and PROLOG, 2nd ed., John Wiley & Sons, Inc.,

1995.

S. J. Russell, P. Norvig, Artificial intelligence: a

modern approach, fourth edition ed., Pearson, 2021.

[21] J. Wielemaker, T. Schrijvers, M. Triska, T. Lager,

Swi-prolog, Theory and Practice of Logic
Programming 12 (2012) 67-96. doi:10.1017/
51471068411000494.

(16]

(18]

(19]

(20]

http://dx.doi.org/10.1109/TCIAIG.2011.2158545
http://dx.doi.org/10.1145/1814256.1814257
http://dx.doi.org/10.1145/1822348.1822376
http://dx.doi.org/10.1007/978-3-319-63519-4
http://dx.doi.org/10.1007/978-3-319-63519-4
http://dx.doi.org/10.1016/j.scico.2005.02.001
http://dx.doi.org/10.1016/j.scico.2005.02.001
https://git.io/JMpzr
https://git.io/JMpzr
http://dx.doi.org/10.4204/EPTCS.362.8
http://dx.doi.org/10.1145/116825.116838
http://dx.doi.org/10.1145/116825.116838
http://dx.doi.org/10.1017/S1471068411000494
http://dx.doi.org/10.1017/S1471068411000494

	1 Introduction
	2 Related Work
	3 Symbolic Reasoning
	4 Prototype
	5 Conclusion

