Sylvain Lapeyrade

Demo: Generate Emergent NPC Behaviours With Symbolic Reasoning

Keywords: Demo, Symbolic Reasoning, Unity, Prolog, Ontologies, Well-Founded Semantics

We propose to use ontologies and declarative symbolic reasoning to generate emergent behaviours of Non-Player Characters (NPCs). The objective is that the game designer only needs to specify the rules of the game and its components in a declarative way, as he would naturally do in a traditional board game. The logic reasoner will then deduce the NPC behaviours that comply with the game designer's rules without the game designer having to manually specify all the game possibilities by hand. We illustrate this approach on a prototype of the revisited Wumpus World game made on the Unity game engine with a Prolog environment. This approach is combined with the Well-Founded Semantics (WFS) to solve the problem of representation and reasoning despite the lack of NPC knowledge.

Introduction

Classical Artificial Intelligence (AI) with reasoning and symbolic representation are quite present in Game AI, especially in Procedural Content Generation (PCG) [START_REF] Smith | Answer set programming for procedural content generation: A design space approach[END_REF][START_REF] Dormans | Adventures in level design: Generating missions and spaces for action adventure games[END_REF][START_REF] Smith | Tanagra: A mixed-initiative level design tool[END_REF] and General Game Playing (GGP) with Game Description Langages (GDL) [START_REF] Genesereth | General game playing: Overview of the aaai competition[END_REF][START_REF] Piette | Ludii -the ludemic general game system[END_REF][START_REF] Perez-Liebana | General video game ai: A multitrack framework for evaluating agents, games, and content generation algorithms[END_REF]. However, there are very few examples of games that use it to design Non-Player Character (NPC) behaviour. Instead, developers prefer to use their own ad hoc techniques or classic NPC AI techniques such as Finite-State Machine (FSM), Behaviour Trees (BT), Utility Based AI, Action Planning techniques [START_REF] Yannakakis | Artificial Intelligence and Games[END_REF][START_REF] Millington | AI for games[END_REF][START_REF] Simonov | Applying behavior characteristics to decision-making process to create believable game ai[END_REF].

However, reasoning and symbolic representation allow game designers to state the rules and facts of their games as they would naturally do in a classic board game. They do not have to think exhaustively about the possible game situations but can instead describe what is in the game (i.e. facts), what is possible to do and what is not possible to do in the game i.e. rules. This will allow the game designer to generate NPC behaviours that they would not necessarily have thought of, but which nevertheless formally respect the rules of the game that they have listed in their design. The player's game experience can then seem less linear and can be more tailored to their specific game situation. Logic-based AI also allows for an easy and complete explanation of results, which can be very useful in explaining the AI's behaviour to the player.

Related Work

Even if they are not popular at the moment, there are some examples of approaches using symbolic reasoning in combination with a game engine, here all the works use Unity 1 .

MKULTRA [START_REF] Horswill | Mkultra (demo[END_REF] focus on the natural language processing (NLP) capabilities of logic programming to enable deeper player-NPC interaction. It uses UnityProlog2 , a custom Prolog engine made by the author.

Possible future integration between games engines and Multiagent Systems (MAS) is discussed in [START_REF] Mariani | Game engines to model MAS: A research roadmap[END_REF] as well as results of previous work implementing Belief-Desire-Intention (BDI) agents using the tuProlog engine [START_REF] Denti | Multi-paradigm java-prolog integration in tuprolog[END_REF].

More recently, the UnityIIS framework [START_REF] Brännström | UnityIIS: Interactive Intelligent Systems in Unity[END_REF] allows symbolic reasoning for planning and rational decisionmaking using Answer Set programming (ASP) and the Ontology Web language (OWL).

Another recent framework, VEsNA [START_REF] Gatti | Towards vesna, a framework for managing virtual environments via natural language agents[END_REF] uses Di-alogFlow 3 and JaCaMO [START_REF] Boissier | Multi-agent oriented programming with jacamo[END_REF] to manage virtual environments with cognitive agents able to support decisionmaking.

Symbolic Reasoning

We use ontologies so that agents can represent their knowledge about the world and make reasoning as the knowledge will have semantics. Our ontologies are organised as hierarchical packages, like in Object-oriented Programming (OOP) and its principle of encapsulation. Only specific parts of the ontology are accessible from other ontologies. This is to have generic and modular ontologies and to help the developer to know how to use them.

In order to deal with negative facts, two main semantics are used, the Well-Founded Semantics (WFS) [START_REF] Van Gelder | The wellfounded semantics for general logic programs[END_REF] and the Stable Model Semantics [START_REF] Gelfond | The stable model semantics for logic programming[END_REF] at the basis of Answer Set Programming (ASP) [START_REF] Lifschitz | Answer set programming[END_REF]. The Stable Model Semantics makes it possible to model simply indicates explicitly that a statement is false but generate multiple models for each query. However, the WFS was preferred because it only generates one model and introduces a third truth value for undefined values [START_REF] Nilsson | Logic, Programming, and PROLOG[END_REF].

Prolog can do planning using backward chaining to find the conditions necessary to fulfil the conditions of a given goal [START_REF] Russell | Artificial intelligence: a modern approach[END_REF]. By giving the inference engine the goal that the agent is trying to reach, it will be able to return the set of sub-goals (e.g. actions) to achieve the main goal and thus lead to an intelligent action sequence. This is very powerful since the sequences are not hard-coded by the game designers and potential sequences not imagined by the game designer may emerge.

Prototype

Figure 1 shows how a logic programming development environment is integrated with a game engine. Unity was chosen as the game engine and SWI-Prolog [START_REF] Wielemaker | Swi-prolog[END_REF] as Prolog environment, as it notably supports the WFS and provides interfaces with C# 4 which can be used with Unity and C++ 5 which can be used with the Unreal Engine.

To use the Prolog interface from within Unity, we simply import the interface DLL file into Unity Plugins and call the interface functions in a C# script. We personally decided to separate the code that interacts directly with Prolog in a separate file. This is to make the code more modular, and to be able to integrate the interface into another existing game. Placing the code for the script that interacts with Prolog in a library would allow a game designer to use the interface with minimal knowledge of Prolog.

The idea of the game for the prototype of our approach comes from the reference artificial intelligence textbook Artificial Intelligence: a Modern Approach [START_REF] Russell | Artificial intelligence: a modern approach[END_REF]. The authors use the example of the game Wumpus World to show the use of a Knowledge-Base agent. In the game, an agent must explore a cave, room by room, in order to collect gold and return to the cave entrance, all the while avoiding pits and monsters called wumpus. To avoid pits and wumpus while exploring, the agent must use clues surrounding the rooms containing them, and deduce where they are. This mechanic is similar to Minesweeper 6 , where the player must deduce where the bombs are from the numbers surrounding the unexplored rooms.

As the basic Wumpus World game is rather simple and does not allow for the use of very complex behaviour, we have extended the game to include more elements such as agent characteristics, personalities, states, different character types, etc. The aim is to create more possible game situations, so that the prologue environment can be used to generate more different behaviour. The aim is to create more possible game situations, so that the Prolog environment can be used to generate more different behaviours. We also generate the cave procedurally with a seed, so that it can be as large as we want it to be and still be interesting to explore. Figure 2 shows a screenshot of the game with a medium-sized cave, the agent in the starting position, bottom left, and the gold to be recovered, top right.

Conclusion

Our demo is still being improved, we want to make the possible game situations more complex despite the basic game example being quite simple to get out of the stereotypical behaviours and show that the generated behaviours can be very qualitative. We are currently in a research collaboration with a game studio to create a commercial video game with NPC AI based on symbolic reasoning. The studio's developers have no experience in declarative logic programming, so we will be able to see how well they master the approach and correct any difficulties they encounter.

Figure 1 :

 1 Figure 1: Our architecture combining Unity and Prolog.

Figure 2 :

 2 Figure 2: Screenshot from the game.

Unity Platform: https://unity.com/

UnityProlog: https://github.com/ianhorswill/UnityProlog

Google DialogFlow: https://cloud.google.com/dialogflow

C# Interface: https://github.com/SWI-Prolog/contrib-swiplcs

C++ Interface: https://github.com/SWI-Prolog/packages-cpp

Minesweeper: https://w.wiki/5ZRi

Acknowledgments

This research was funded by the French National Research Agency (ANR) and the European Regional Economic Development Fund (FEDER). Jan Wielemaker is acknowledged for his helped with the use of the WFS.