
HAL Id: hal-04333537
https://hal.science/hal-04333537v1

Submitted on 10 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-Player Character Decision-Making With Prolog
and Ontologies

Sylvain Lapeyrade, Christophe Rey

To cite this version:
Sylvain Lapeyrade, Christophe Rey. Non-Player Character Decision-Making With Prolog and
Ontologies. 2023 IEEE Conference on Games (CoG), Aug 2023, Boston, United States.
�10.1109/CoG57401.2023.10333221�. �hal-04333537�

https://hal.science/hal-04333537v1
https://hal.archives-ouvertes.fr

Non-Player Character Decision-Making
With Prolog and Ontologies

Sylvain Lapeyrade
Université Clermont Auvergne, CNRS,

Clermont Auvergne INP, Mines Saint-Etienne, LIMOS
sylvain.lapeyrade@uca.fr

Christophe Rey
Université Clermont Auvergne, CNRS,

Clermont Auvergne INP, Mines Saint-Etienne, LIMOS
christophe.rey@uca.fr

Abstract—This paper proposes a new approach to non-player
character (NPC) decision-making in games using a Prolog and
ontologies declarative approach, addressing limitations of tra-
ditional techniques such as flexibility and maintainability. We
implement a more complex Unity version of the Wumpus World
to show our method’s effectiveness and its potential to facilitate
game AI design and prototyping. Our approach can achieve the
same results as the classical methods without having to hard-code
all the transitions between each possible game situation.

Index Terms—declarative, ontologies, behavior, NPC, games

I. INTRODUCTION

Artificial intelligence’s (AI) growth in gaming has driven
demand for advanced, realistic non-player characters (NPCs),
making their human-like development a key research focus
in game AI. Traditionally, NPC decision-making has been
developed using hand-crafted conditional statements, state
machines, or behavior trees [1]. However, these methods can
be time-consuming and difficult to maintain as game com-
plexity increases. This sometimes leads to generated behaviors
that lack the adaptability and flexibility required for more
dynamic game scenarios. Indeed, the difficulty of creating
relevant NPCs increases with the number of actions they can
perform. Game AI designers must then anticipate a wide
range of specific possible cases to offer the best possible
game experience. Coding every possible situation can lead to
difficult-to-maintain “spaghetti code” [2].

We propose a declarative alternative approach where the
decision-making is obtained by reasoning with Prolog rules
and domain ontologies to describe NPCs’ characteristics and
preferences. The obtained methodology and the modeled
knowledge, especially the ontologies, are reusable for other
games. We have developed a slightly more complex version
of the Wumpus World game from [3] in the Unity game
engine to show that our approach can achieve the same results
as the classical methods without having to hard-code all the
transitions between each possible game situation. Although
declarative programming takes some time to learn, it offers
a different and expressive way to imagine and iterate games

This research was funded by the French National Research Agency (ANR)
and the European Regional Economic Development Fund (FEDER).

as well as quickly prototyping and testing new behaviors
before implementing them in more complex environments.
The proof of concept code and a demo video are available:
https://anonymous.4open.science/r/Wumpus World/.

II. RELATED WORK

Prolog-like reasoners are incorporated into research projects
like MKULTRA [4] and commercial games like Project
Highrise and City of Gangsters using custom C# reasoner
engines [5] for improved compatibility and performance, albeit
with limited control and expressiveness compared to Prolog.
The ThinkEngine framework is developed by [6] to interface
declarative Answer Set Programming (ASP) modules to a
game engine via their EmbASP library. UnityIIS [7] uses
symbolic reasoning for planning and rational decision-making
using ASP and the Ontology Web Language (OWL). A new
Wumpus World frame and first-order logic solution were
recently implemented in Flora-2 [8].

III. GAME CONCEPT AND AI DESIGN

A. Game Concept

To introduce our approach, we have developed a proof-of-
concept game in Unity, using C#, based on the classic logic
game Wumpus World. The game is a grid-based environment

Fig. 1. Screenshot of the proof-of-concept game with dual cave views: agents’
perspective on the left and all elements on the right. Colored cells distinguish
elements: black for walls, gray for cave entrances, green for safe areas, red
for danger, orange for unknown, and blue for visited areas. Brown cyclops
monsters symbolize wumpuses, with adjacent cells having stenches. Cells with
pits are labeled accordingly and are surrounded by breezes.979-8-3503-2277-4/23/©2023 European Union

where an agent, controlled by AI, explore a cave to find gold,
and then exit the cave. All this while avoiding dangerous cells
with a pit or a monster, a.k.a. a wumpus. If the agent goes
into a dangerous cell, he dies and loses the game. The cells
adjacent to dangerous cells are surrounded by a breeze for
pits and a stench for wumpuses, indicating the presence of
danger. The agent moves one cell at a time and must deduce
where the danger is to avoid it; this mechanic is similar to
the classic Minesweeper logic puzzle game. When the agent
has deduced the precise location of a wumpus, he can shoot
an arrow in its direction to kill it, thus making the cell safe.
However, the agent only has a limited number of arrows, so he
must use them wisely. Some cells in the caves are walls that
the agent cannot cross. In our more complex version, the cave
is generated randomly and procedurally. It is possible to have
multiple agents at the same time in the same cave. Finally,
agents now have personality traits and objectives to generate
actions. A view of an ongoing game is shown in Figure I.

B. AI Design
Our decision-making AI is designed as shown in figure 2.

It is orchestrated by Prolog rules executed by a SWI-Prolog
environment. Communication between Unity and SWI-Prolog
is ensured through a socket interface. We can generate different
game environments by choosing a random seed. Besides this
logic-based AI, the game prototype also allows to choose
between three other AI approaches for the agent with a single
click: AI based on hand-made conditional statements, finite
state machines and behavior trees. Each AI is coded in a dif-
ferent module, while using the same shared modules, making
each approach modular and allowing for the easy addition of
new AI types. Like the logic-based AI, all other AI approaches
produce a list of objectives based on the personality of the
agent and the present elements of the game. Then, based on
the objectives generated, each AI can produce a set of possible
actions. Each action has a utility value based on the agent’s
personality meaning that the agent will choose the action to
execute, among all available, according to its personality. In
this setting, AI approaches can be fairly compared.

IV. RESULTS

A. Qualitative
In all tested game environments, all four AI approaches

follow the same decision-making steps and lead to the same re-

UNITY SWI prolog
sent
via

socket
for

update

Current
state of

the
game

Fact
base
Prolog
rules

Ontology of
actions

Action
utilities

NPC
objectives

NPC
possible
actions

NPC
chosen
action

Ontology of
personalities

Fig. 2. Prolog rules and ontologies are used for decision-making. First, They
infer NPC’s objectives through facts, rules, and a personality trait ontology,
then determines potential actions via rules and an action ontology. Finally,
it select the highest utility action. Ontologies, expressed in a concise OWL
sub-language, consist of Prolog concept hierarchies along orchestration rules.

sult. It is therefore interesting to compare what each approach
requires of the AI designer to work. Not surprisingly, logic-
based AI benefits from its high declarative power: designing
rules and ontologies can be more intuitive for someone know-
ing both Prolog and C# than modifying the C# code associated
with the other three approaches. The second great advantage is
that ontologies are widely reusable in other contexts since they
contain general domain such as personality traits or actions.
By comparison, the other three approaches contains the same
knowledge, however deeply intricated into the C# code. We
argue that it limits reusability. Our methodology enables the
simple addition of reasoning steps for more complex decision-
making. For instance, we can infer NPC emotions from an
ontology, then determine objectives based on those emotions.

B. Performance

Our logic-based AI is currently slower than the other three
approaches: it takes between 10 to 20 ms per turn, while the
others are from 0 to 3 ms per turn. The difference is not due
to reasoning in Prolog, which is comparatively as fast as the
other methods, but to socket communications and updates of
the Prolog fact base. In addition to the socket, we used the
official SWI-Prolog C# SwiPLCs interface: https://github.com/
SWI-Prolog/contrib-swiplcs, but it is deprecated and not fully
functional. A tighter integration of Prolog into Unity like in
[5] could be considered but it loses SWI-Prolog features like
the tabled resolution and the Well-Founded Semantics.

V. CONCLUSION AND FUTURE WORK

We are looking into generalizing the approach to more
expressive ontologies such as OWL ontologies. We are also
working on improving performances by optimizing communi-
cations and fact base updates. We continue to explore other
AI methods like ASP or Flora-2 as an alternative to Prolog,
or machine learning and Large Language Models (LLM) to
generate actions from descriptions of game rules and situation.
Finally, we would like to test whether our approach can
be generalized to perform planning, e.g. with ontologies in
classical Goal Oriented Action Planning (GOAP).

REFERENCES

[1] G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games,
1st ed. Springer International Publishing : Imprint: Springer, 2018.

[2] J. Gillberg, “Ai behavior editing and debugging in ’tom clancy’s the
division’,” 2016, game Developer Conference.

[3] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach,
4th ed. Pearson, 2021.

[4] I. Horswill, “Mkultra (demo),” Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, 2015.

[5] ——, “Logic programming in commercial games: Experiences and
lessons learned,” 2023, game Developer Conference.

[6] D. Angilica, G. Ianni, and F. Pacenza, “Declarative ai design in unity
using answer set programming,” in 2022 IEEE Conference on Games
(CoG), 2022, pp. 417–424.

[7] A. Brännström and J. C. Nieves, “A framework for developing interactive
intelligent systems in unity,” in EMAS’22: 10th International Workshop
on Engineering Multi-Agent Systems AAMAS, vol. 10, 2022.

[8] S. Mehdipour Ataee, “A frame and first-order logic solution for the wum-
pus world: Implemented in flora-2,” Expert Systems with Applications,
vol. 220, p. 119717, 2023.

