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Abstract

This paper provides evidence of the pivotal role data on temperature conditions can play in
forecasting the real natural gas prices at the Henry Hub in real time. We consider a recently
proposed index to track deviations from normal temperature during winter and include it as an
additional exogenous variable in various Bayesian vector autoregressive (BVAR) models. The
inclusion of the index significantly increases forecast accuracy at horizons up to 12 months,
which puts forward the long-lasting impact of temperature shocks and their associated conse-
quences on the gas market. Our approach is novel to energy price forecasting as it considers
both supply and demand simultaneously and further includes temperature data as a proxy of
real-time demand for natural gas.

JEL classification: C11, C32, C53, Q41, Q47

Keywords: energy prices, natural gas, Bayesian VAR, price forecasting, real-time data, tem-
perature.

1 Introduction

This paper presents a forecasting analysis of real natural gas prices at the Henry Hub in real
time. We use state-of-the-art Bayesian VAR econometrics allowing for stochastic volatility
and/or fat tails in an environment where variable selection can take place. We first show
that considering a model à la Baumeister and Kilian (2012) for natural gas combined with
the price of crude oil as an additional variable significantly improves forecast accuracy
at horizons of up to 12 months. The originality of our approach lies in considering the
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Christiane Baumeister and Derek Bunn are particularly acknowledged. Any remaining errors are, of course,
ours. This work was made possible by Nantes University’s computing labs (CCIPL), which allowed us to
estimate our computationally-intensive models.
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demand side directly - through the consumption of gas - as in Baumeister et al. (2022) in
addition to the supply side already present in Baumeister and Kilian (2012).1 We then
provide evidence that considering an additional variable which is available in real time,
temperature, increases forecast accuracy at all horizons. Using temperature data allows us
to include real-time variations in demand in our models and is shown to be critical to the
performance of our forecasts. To the best of our knowledge, this is the very first time such
an approach has been applied to forecasting commodity prices in a VAR setting.2

Natural gas is a key industry in the U.S., with a total revenue for distributors amounting
to $101 billion in 2018.There are more than 75 million residential, commercial, and industrial
natural gas customers in the U.S., and natural gas currently meets more than one-fourth of
the United States’ energy needs (American Gas Association, 2019). The U.S. natural gas
price is closely watched by consumers, as it directly affects their budget as well as their home
heating choices. It is also a key commodity price for the U.S. economy and has an impact on
inflation expectations, consumption level, and consumer confidence in the economy. Hence,
it is of vital importance for central bankers. Moreover, natural gas is playing an increasingly
prominent role in generating power.3

Investments in the gas industry are significant and often non-reversible. Improved price
visibility is important for all players in the gas industry as they are in other industries where
good forecasts are of equal importance (see Auffhammer (2007)). Natural gas infrastructure
operators (TSO) can establish the transportation cost of operating, balancing, and main-
taining the pipeline networks in order to ensure security of supply. Power generators rely on
forecasts to compete more efficiently in the natural gas market, especially in a world where
the role of natural gas is evolving. Indeed, because of the rise of intermittent renewable
energy sources of electricity, natural gas-based thermal generation is increasingly used as a
back-up technology. For these reasons, providing better-quality long-term forecasts offers
market participants improved visibility regarding the evolution of their investments, as well
as being critical for all natural gas stakeholders.

A substantial number of papers have tackled forecasting commodity prices. Some papers
rely only on the price time-series itself (Wang et al. (2020), Gao et al. (2020)) while others

1Baumeister and Kilian (2012) also consider the demand side through a quite general activity index
which is likely to proxy for the state of the economy. Such an index is less likely to be relevant for natural
gas, whose price is determined in a regional setting and where the majority of consumption is domestic. As
such, our approach is more direct and relies on the consumption of natural gas itself to proxy the demand
for gas.

2An exception is Nick and Thoenes (2014) which makes use of temperature data in a Structural VAR
analysis for the European case. In their paper, the measure of temperature as well as the aim of the
empirical analysis, not focused on forecasting, are notably different.

3Steam turbines (which can also be powered by oil or coal) combust fuel to generate steam, which then
generates electricity. Combined-cycle units heat up fuel and use the fuel-air mixture to spin gas turbines and
generate electricity. The waste heat from the gas turbine is used to generate steam for a steam turbine that
generates additional electricity. Based on the U.S. Energy Information Administration’s (EIA hereafter)
December 2018 monthly electric generator inventory of utility-scale generation, 31.3 gigawatts (GW) of
generating capacity were added in the United States in 22018 and 18.7 GW of capacity were retired. The
2018 annual capacity additions were the largest since the 48.8 GW added in 2003. More than 60% of
electric-generating capacity installed in 2018 was fueled by natural gas and, since April 2018, the U.S. has
produced more power using natural gas than using coal (Energy Information Administration, 2019). As
of January 2019, U.S. generating capacity at NGCC power plants totaled 264 gigawatts (GW), compared
with 243 GW at coal-fired power plants. See also Doyle and Fell (2018) and Brehm (2019) about the switch
from gas to coal for power generation.
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make use of information on a few fundamental variables, for example financial variables like
equity and bond yields (Bessembinder and Chan (1992), Baumeister et al. (2015)), exchange
rates (Chen et al. (2010)), futures prices (Alquist and Kilian (2010) and Baumeister et al.
(2018)) or open interest in futures markets (Hong and Yogo (2012)). A quite different
approach was developed for oil prices in Baumeister and Kilian (2012) and Alquist et al.
(2013) and aims at modeling the oil market in a vector autoregression (VAR) framework
where the variables at stake are commonly the oil price, oil production, oil inventories
and an index of economic activity. This method delivered very promising results and was
extended in various directions through both methodological and data improvements. In
particular, the recent paper by Baumeister et al. (2022) focuses on enhancing the economic
activity index used in Baumeister and Kilian (2012) and Alquist et al. (2013) as a proxy
for oil demand. More relevant to our present framework, Baumeister et al. (2022) develop
a consumption-based VAR model, replacing oil production with petroleum consumption
on the grounds that “fluctuations in the demand for refined products will translate into
changes in the demand for crude oil and thus have predictive power for the future path
of the real price of crude oil." (Baumeister et al. (2022), p. 11). This consumption-based
model improves forecast accuracy in most cases, thereby highlighting the central role of
demand in oil price dynamics.

Our approach is in the vein of the original contribution of Baumeister and Kilian (2012)
and Alquist et al. (2013) but includes some major features specifically related to natural
gas. We estimate a four-variable VAR model including the U.S. real price of natural gas
(Henry Hub), U.S. natural gas production, U.S industrial production, and the real price of
crude oil. 4 In so doing, our model partly follows Nguyen and Okimoto (2019). While it
is quite standard in the literature to include energy-commodity production in VAR models
when considering the supply side, the use of U.S. industrial production is less common and
is motivated, in our setting, by the regional nature of the gas market.5

Our motivation for including the price of oil comes from a long tradition in energy
economics of investigating the strong link between these two energy sources (see Bachmeier
and Griffin (2006), Brown and Yücel (2008) and more recently, Bello et al. (2017), Bunn et al.
(2017) and Jadidzadeh and Serletis (2017)) although this relationship has been challenged in
recent years following the shale gas revolution (Caporin and Fontini (2017)). The intuition
behind our choice is that oil and gas are partly substitutable and are extracted from the
same wells. In contrast to Hou and Nguyen (2018), who find oil price shocks to be of minor
importance to modeling U.S. gas prices, our results show that oil prices are very helpful in
the VAR framework. Indeed, models which do not include crude oil prices perform poorly

4Our sample periods covers the last two decades (1997-2018) and the major reforms introduced in 1989
(Natural Gas Wellhead Decontrol Act) are not covered by our sample period. These major reforms motivated
the Markov switching approach in, for instance Hou and Nguyen (2018), who cover the 1980-2016 period,
but they are not relevant in our framework.

5Attempts to include a world economic activity index in our empirical framework were uniformly un-
fruitful. Discussing the shale oil-gas revolution, Kilian (2016) writes: “Access to inexpensive natural gas
benefits the petrochemical industry, for example. U.S. natural gas prices have been low because the natural
gas market has never been a global market, but a regional market. Natural gas is transported by pipeline.
Although natural gas may be cooled down and liquefied, allowing it to be shipped as liquefied natural gas
(LNG) to any port in the world, the cost of LNG shipping is high and the infrastructure required to load
and unload LNG is expensive. This fact has prevented the integration of regional natural gas markets and
the emergence of a global price thus far. This means that, for the time being, the price of U.S. natural gas
has been determined by domestic demand rather that global demand, allowing for a greater price response
to increased domestic supply."
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with respect to the no-change and generally have low predictive power.

We go beyond this standard VAR model, whose primary aim is to consider endogenous
supply and demand, to take into account temperature and its critical role in shaping natu-
ral gas consumption (Energy Information Administration, 2014). Well established since at
least Berrisford (1965), this role has been studied in numerous papers (Timmer and Lamb
(2007) offer an emblematic analysis of this strong relationship for the U.S.). As temperature
is, by nature, an exogenous variable over a reasonable period of time and real-time data is
available, it is a perfect natural candidate to forecast gas prices.6 Including temperature
in our VAR allows us to reinforce the consumption-based aspect of our model in line with
Baumeister et al. (2022) but goes one step further. Unlike the variables used to proxy
demand in the VAR price-forecasting literature, temperature has the exceptional character-
istic of being truly available in real time, which is an essential feature in our setting. Using
temperature data in such a setting is new, and our convincing forecasting results show that
it genuinely deserves further consideration.

Our general empirical approach is through a Bayesian VAR model allowing for fat tails
and/or stochastic volatility as in Chiu et al. (2017) so as to deal efficiently with extreme
events and/or low-frequency variations in volatility. Our temperature variable which, as
explained below, is related to changes in natural gas inventories, is entered into the model as
an exogenous predictor. Moreover, to reduce overfitting in making out-of-sample predictions,
we implement a variable selection procedure for all specifications and show its relevancy to
forecasting

Our contribution to the literature is threefold. First and foremost, this paper is the first
to provide monthly real-time forecasts of the real price of natural gas for the U.S. following
the methodology initiated in Baumeister and Kilian (2012) who exploit data freely available
in the Energy Monthly Review on the Energy Information Administration (EIA) website to
construct a real-time database.7 As such, our paper will be useful for market participants,
policymakers, and regulators as well as for central bankers. Our results, the first of their kind
for natural gas, should also prove a valuable contribution to economic research in the field
of energy economics. Second, we provide evidence that our Bayesian VAR models produce
promising forecasts of the real natural gas price at horizons of from 1 to 12 months, for
instance improving on the no-change forecast by up to 47% at a 12-month horizon.8 These
large improvements highlight the crucial importance of considering economic fundamentals
in modeling the natural gas market dynamics. Third, we provide evidence of the central

6In contrast to Huurman et al. (2012), who focus on power prices, we do not forecast the weather to
forecast gas prices, our predictions covering a longer term (1 to 12 months). Moreover, note that only a
few papers in the field of energy economics have considered temperature data so far (see Panagiotidis and
Rutledge (2007) among others).

7On natural gas price forecasts, we are only aware of Ferrari et al. (2021) who provide energy price
forecasts, including for natural gas, quarterly. Their empirical approach is very different from ours and relies
on a global dataset including a large number of macroeconomic and financial variables. Gao et al. (2020) use
various univariate models allowing for time-variation in the parameters and/or stochastic volatility, but AR
models are known to perform poorly on energy price forecasting (see Baumeister and Kilian (2012) among
others). Other important contributions focused on forecasting non-oil energy prices include Baumeister
et al. (2017) who forecast the gasoline price in the U.S. To the best of our knowledge, no empirical study
has to date attempted to provide natural gas price forecasts in an environment considering fundamental
variables of the natural gas market.

8As will be clear below, such an improvement is expressed in terms of the mean squared prediction error
(MSPE) ratio for a given model relative to the MSPE of the no-change forecast, as in Baumeister and Kilian
(2012).
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role of considering demand in real-time through temperature data, thereby avoiding the
issue of using revised data for estimation. While such an approach is senseless in the case
of the world oil market, it is particularly relevant in the case of U.S. natural gas which is
a very large but regional market. As will be shown below, models including temperature
as an exogenous variable unambiguously deliver superior forecasts, particularly over longer
horizons.

The rest of the paper proceeds as follows. The next section outlines the data and how it
is treated before estimation. Models are presented in Section 3 and estimation algorithms
and forecasting procedure are discussed in Section 4. Section 5 details the empirical results
and evaluates the accuracy of the various forecasts. Finally, Section 6 provides concluding
remarks and possible avenues for future research.

2 Data

The various VAR models in our study rely on five endogenous variables where, in some
cases, we include an additional exogenous variable. As main drivers of the real gas price,
we consider both supply and demand, namely the log-difference in U.S. gas production
and the log in U.S. gas consumption. As real crude oil price, we choose the West Texas
Intermediate (WTI) spot oil price, which is available in real time and is very similar to other
benchmarks, such as, for instance the U.S. Refiner Acquisition Cost (RAC) which is more
often used in empirical analysis.9 As is standard in the energy price forecast literature,
we also consider the level of storage through a measure for gas inventories, namely the
U.S Natural Gas in Underground Storage taken in log difference. Finally, we include an
indirect measure of temperature conditions as an exogenous variable. As explained above,
this choice is motivated by the fact that gas demand, from both industrial and residential
heating sectors, is highly sensitive to temperature (Müller et al. (2015)). We now return to
the details of the construction of these variables.

2.1 Real-time data sources

As Baumeister and Kilian (2012) do establish for crude oil, using real-time data markedly
improves forecast accuracy. Similarly, some of the data used in our work are available in
real time and are not subject to revision over time, as are the WTI and the Henry Hub
natural gas price. For the rest of the variables, however, we need to extract a real-time data
set from various sources. Therefore, our first contribution in this study lies in constructing
a real-time data set for the U.S. gas market, as Baumeister and Kilian (2012) originally did
for crude oil. Gas production, consumption and inventories were hand-collected from the
Monthly Energy Review published by the EIA.10 Monthly averages of the daily WTI spot
price and Henry Hub gas prices were obtained from the FRED database.11 The dataset is
monthly and runs from January 1997 to August 2018, Henry Hub data being available from
January 1997 onward. As our focus in this paper is on forecasting the real gas price, nominal

9The correlation between the WTI spot prices at the monthly frequency and the RAC is 0.99 on our
sample. Using one or another thus makes little difference.

10As a control, the Monthly Energy Review is digitized and collected data are compared with the hand-
collected series.

11https://fred.stlouisfed.org/
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oil and gas prices were therefore deflated by the real-time U.S. consumer price index for all
urban consumers.12

Much of the existing literature on oil price forecasting via VAR models uses inventories
as a proxy for precautionary demand (Baumeister and Kilian, 2012; Kilian and Murphy,
2014; Baumeister and Hamilton, 2019). However, storage operators understandably exploit
the highly predictable seasonality in the gas market. Therefore, only unexpected shifts in
gas demand due to extraordinary weather conditions are likely to be relevant for explaining
gas market prices.13

For that reason, we pay particular attention to deviations from the normal seasonal
meteorological pattern as a determinant of gas prices. Following Müller et al. (2015), we use
the normalized Cumulated Heating Degree Days (nCHDD). More explicitly, we cumulate
heating degree days over a winter, from which we subtract the average of cumulated heating
degree days over previous winters. Our measure of the normalized cumulated heating degree
days is :

nCHDDd,w = CHDDd,w −
1

w − 1

w−1∑

l=1

CHDDd,w for 1 ≤ d ≤ 182

where 182 is the number of days in a winter w (from the 1st of October to the 31st of
March). Then, Λ returns to zero during next summer.14

We emphasize the fact that this measure allows to consider the effects of unexpected
temperature conditions on gas prices. In relation to our results, cumulating HDD makes
the measure highly relevant with respect to the consumption side of the market. This could
explain the long-lasting impact of temperature anomalies during the winter on natural gas
prices.

2.2 Nowcasting

One complication from using real-time data is the usual delay in data availability, from one
to three months depending on the variables. Real-time gas production becomes available
with a three-month lag for all samples between January 1997 and August 2018, while the
consumer price index only has a one-month lag. Gas consumption and gas stock share the
same publication lags, namely one month between January 1997 and June 2002 and three
months from July 2002 to the end of our sample.

To obtain nowcasts for vintages of gas production and the consumer price index, we
follow Baumeister and Kilian (2012) and extrapolate data based on the average rate of

12Real-time data for the monthly seasonally–adjusted U.S. consumer price index for all ur-
ban consumers are obtained from the Economic Indicators published by the Council of Eco-
nomic Advisers. These data are made available by the FRASER database of the Federal Re-
serve Bank of St. Louis (https://fraser.stlouisfed.org/theme/economic-data). Additional real-
time consumer price index (CPI) data were obtained from the macroeconomic real-time database
of the Federal Reserve Bank of Philadelphia (https://www.philadelphiafed.org/surveys-and-data
/real-time-data-research/real-time-data-set-for-macroeconomists).

13In preliminary experiments, we estimated our VAR models using the variation of the real-time U.S. gas
stock and, in all cases, forecasting performance was significantly poorer. Results are available upon request.

14Figure A.1 in Appendix A shows the original data on heating degree days and the resulting nCHDD
measure of temperature.
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change in variables up to the required date. Certainly, such an approach is not applicable
to gas consumption and inventory, which require specific processing to properly take into
account their marked seasonality.15

The real-time series data we end with are plotted in Figure 1 along with the post-revised
series (sub-figures production, Consumption, Stock and CPI). The gap between each pair of
series is small, on average, but is more pronounced for gas production because of the three-
month gap between the first release and the last data revision. Overall, Figure 1 visually
confirms the goodness-of-fit of our approach.

Figure 1 – Real-time and post-revised data variables
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Gas production, consumption, and stock are expressed in billion cubic feet. Henry Hub price is in dollars per
per million British thermal units (Btu) and WTI is in dollars per barrel.

3 Models under consideration

This section introduces the specification of the Bayesian VAR (BVAR) models and an
overview of the estimation methods. Our framework includes several BVARs with possible
stochastic volatility (SV) and/or shocks having Student’s t-distribution along with some
exogenous regressors in a context where variable selection can take place.

Consider a VAR model and define n and ne, the number of endogenous and exogenous
variables, respectively:

yt = c+B1yt−1 + · · ·+Bpyt−p +G1xt + · · ·+Gqxt−q + ut ∀t ∈ [1, · · · , T ] (1)

15Based on the estimated (partial) autocorrelation functions (ACF, PACF) as well as on the Han-
nan–Quinn (HQ) information criterion, we select a SARIMA(0, 1, 1)× (0, 1, 1)12 specification.
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where yt is an n × 1 vector of observed endogenous variables, xt is an ne × 1 vector of
observed exogenous variables, and c is an n × 1 vector of constants; Bi, i = 1, · · · , p are
n× n matrices of coefficients for the endogenous variables and Gi, i = 1, · · · , q are ne × ne

matrices of coefficients for the exogenous variables. Finally, ut are heteroscedastic shocks
associated with the VAR equations.

We assume that the covariance matrix of ut is defined as:

Cov (ut) = Σ−1

t = A−1HtA
−1′ (2)

where Ht = diag
(
σ2
1,t

1

λ1,t
, σ2

2,t
1

λ2,t
, · · · , σ2

n,t
1

λn,t

)
with σk,t = ln σk,t−1 + sk,t for k = 1, · · · , n,

where sk,t is the error term associated with the volatility, and var(sk,t) = hk, where hk is
the shocks to the volatility transition from Cogley and Sargent (2005).

As shown by Geweke (1993), assuming a Gamma prior for λk,t of the form p (λk) =∏T

t=1
p (λk,t) =

∏T

t=1
Γ̃ (1, υλ,k) leads to a scale mixture of normals for the orthogonal resid-

uals ǫ̃t = Aut where ǫ̃t = {ǫ̃1,t, ǫ̃2,t, · · · , ǫ̃n,t} and cov (ǫ̃t) = Ht. Note that Γ̃ (a, b) denotes a
gamma density with mean a and b degrees of freedom b.

Primiceri (2005) and Chiu et al. (2017) provide evidence that stochastic volatility permits
to capture the possible heteroscedasticity of the shocks along with potential nonlinearities
in the dynamic relationships of the variables under consideration in the VAR specification,
which are related to low-frequency variations in volatility. Baumeister et al. (2022) also rely
on such extensions of their genuine linear specification. We name this model the VARVOLX
as it allows for both stochastic volatility and exogenous regressors.

One way to deal with high-frequency variations in volatility is to consider the Student’s t-
distribution in the shock structure. As these variations are often very large, this specification
can deal efficiently with outliers and extreme events.16 We thus estimate a tVARX model
allowing for t-distributed errors but not for stochastic volatility.

We then enlarge our set of model with the estimation of a tVARVOLX model that
permits to capture both the transient (low-frequency) and the persistent (high-frequency)
shifts in volatility17 and a BVARX allowing for neither fat tails nor stochastic volatility,
as a benchmark model. Hence, comparing all these four models enables to assess which
specification best characterize the data.

Finally, because the number of parameters to estimate is large, we choose to make use
of the variable selection technique. Specifically, variable selection can help reduce the risk
of overfitting in our out-of-sample forecasting exercise. We implement variable selection
for all our specifications, choosing as in Korobilis (2013) from three types of priors: Ridge
regression prior, Minnesota (Litterman) prior, and Hierarchical Bayes Shrinkage prior for
the penalization of coefficients. To ensure compatibility of the results with those from
models without variable selection, we choose the Minnesota (Litterman) prior.

16Jacquier et al. (2004) first provided a detailed analysis of this issue in a univariate framework.
17The VARVOLX and the tVARX models allowing for stochastic volatility only and Student’s errors

only, respectively, are then restricted version of the tVARVOLX model. Details on how to deal with both
stochastic volatility and fat tails at the same time are given in Chiu et al. (2017).
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4 Estimation algorithms and forecasting procedure

We estimate all our models using the Markov Chain Monte Carlo (MCMC) Gibbs sampler.
The VAR parameter priors are calibrated as in Bańbura et al. (2010).18 Our reported results
are based on 20,000 Gibbs replications discarding the first 15,000 as burn-in. To gauge the
convergence of the Gibbs algorithm for the selected draws, we report in Figure B.1 in the
Appendix B the recursive means of the estimated coefficients for some selected parameters.
As little fluctuation is observed, convergence is reached.

We next assess the forecasting performance of our above models considered by producing
pseudo out-of-sample forecasts.19 The four models are estimated recursively from August
2013 to August 2018 which will be our evaluation period. At each iteration, we construct
the forecast density for the models.

P (ŷt+h | yt) =

∫
P (ŷt+h | yt,Ψt+h)P

(
Ψ̂t+h | Ψt, yt

)
P
(
Ψ̂t | yt

)
dΨ (3)

where h = 1, 2, · · · , 12 and Ψ denotes the model parameters. P
(
Ψ̂t | yt

)
represents the pos-

terior density of the parameters that is obtained via the MCMC simulation. P (ŷt+h | yt,Ψt+h)

and P
(
Ψ̂t+h | Ψt, yt

)
denote the density forecast of the data and the parameters that can

be obtained by simulation. The point forecast is therefore the mean of the forecast density.
The density forecasts, which are evaluated using log scores (LS), are defined as follows:

LSt = lnP (yt+h) (4)

where P (yt+h) denotes the forecast density evaluated at data observations. A higher value
of LSt suggests a more accurate density forecast. As in Chiu et al. (2017) we employ kernel
methods to estimate the density and distribution function of the forecasts. This addresses
potential non-linearity in the forecast distribution.

As a measure of the accuracy of point forecasts, we use Mean Square Prediction Errors

(MSPE s). The MSPE for h = 1, · · · , 12 is computed as:

MSPEh =
1

T −R

T−1∑

t=R

(
ŷh,t+1|t − yh,t+1

)2
(5)

where T is the number of observations, R is the length of the rolling window and ŷh,t+1|t are
individual forecasts of the monthly average of real Henry Hub natural gas price forecasts
and yh,t+1 are monthly averages of real Henry Hub natural gas price forecasts. For this
purpose we report the MSPE of each specification as well as the MSPE ratio relative to
no-change forecasts.

Moreover, in order to statistically assess and identify the best forecasting model, we
perform both conditional and unconditional pairwise model comparisons based on the fore-
casting performance test procedure of Giacomini and White (2006). This procedure is
particularly relevant for both point and density forecasts when using recursive forecasting
on real-time data.

18Again, more details about prior and hyperparameter choice for different VAR specifications (tVAR,
VARVOL and tVARVOL) can be found in Chiu et al. (2017).

19All the estimations and computations presented in this paper were carried out using Julia. As the
recursive estimation of different models can be very time-consuming, we take advantage of the computing
clusters by using parallel computing in Julia.
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5 Empirical results

In this section, we first compare the forecasting performance of real-time data to the one
based on post-revised data and confirm the findings in Baumeister and Kilian (2012) for
crude oil, namely that real-time data help in forecasting real prices. Second, we provide ev-
idence of the additional informational content of temperature data in various VAR settings.
Third, we show that improvement in forecasting accuracy mostly comes from including the
variable on temperature conditions despite considering stochastic volatility and fat tails also
enhance forecasts.

5.1 Do real-time data improve forecast accuracy?

To assess the advantages of using real-time data, we start performing the forecasting exercise,
similar to what we do for real-time data, but using post-revised data. We then compute
MSPE ratios relative to the no-change for both types of data.

Table 1 summarizes the real gas price forecast accuracy of both a univariate specification
and multivariate Bayesian autoregressive models estimated with some various combinations
of the potential endogenous variables. The univariate model is a simple Bayesian autore-
gressive (BAR) model whose results can serve as a point of reference when forecasts are
made using the gas price series only. For both the BAR and all BVAR models, the best
forecast accuracy is unsurprisingly obtained using 12 lags for the exogenous variable.

BVAR models include market real gas price (HH) itself, and its man drivers: the U.S.
Natural Gas production (P) to proxy for supply, the U.S. Natural gas consumption (C) to
proxy for demand, an estimate of U.S. Natural Gas Inventories (S) for the sake of comparison
with the existing literature and the real West Texas Intermediate oil prices (WTI).20 As is
done in Baumeister and Kilian (2012), we compare the estimated recursive MSPE and to
those of the no-change forecast for 1-month, 3-month, 6-month, 9-month, and 12-month
forecasts.

We choose to evaluate the models over the August 2013–August 2018 period thereby
leaving the January 1997-July 2013 period for estimation of the models’ parameters. Point
forecasts are produced via recursive estimation. Each model is estimated using 20,000
iterations, with 15,000 burns.

Not surprisingly, and in line with the results in Baumeister and Kilian (2012) for the oil
market, results from Table 1 Panel B show that models incorporating real-time data offer
a statistically significant improvement over models incorporating post-revised data; for all
models and for all horizons except the one-month horizon, MSPE ratios are lower than one.21

The improvement reaches 47% for the 12-month horizon. These substantial differences in
forecasts support our hypothesis that using real-time data goes some way toward solving
the well-known issues that arise with data revisions.

Besides, results from Table 1 (Panel A and B) provide strong evidence that BVAR models
give higher forecast accuracy than a univariate model, thereby supporting the adopted

20The use of Cholesky decomposition dictates our choice of variable order. WTI is ordered first in the
VAR, in the light of the findings in Kilian and Vega (2011). Then, for robustness, we estimate different
models with different variable ordering and results remain unchanged.

21For the sake of completeness, Table C.1 in Appendix C provides MSPE ratios relative to the no-change
forecasts.
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Table 1 – Recursive MSPE of forecasting accuracy

Panel A: Real-Time Panel B: Real-time over Post-Revised
BAR BVAR BAR BVAR

P,C,HH,S WTI,P,C,HH WTI,P,C,HH,S P,C,HH,S WTI,P,C,HH WTI,P,C,HH,S
1M 1.1934 1.1265 1.0530 1.0307 1.0000 1.1412 1.0621 1.0341
3M 1.3037 1.0029 0.9289∗∗ 0.9121∗ 1.0000 0.9602∗ 0.9410∗ 0.9466∗

6M 1.4487 0.8563∗∗ 0.7785∗∗∗ 0.7723∗∗ 1.0000 0.9049∗∗ 0.8044∗∗ 0.8274∗∗

9M 1.6103 0.6988∗∗∗ 0.6371∗∗∗ 0.6368∗∗∗ 1.0000 0.7591∗∗∗ 0.6736∗∗∗ 0.6732∗∗∗

12M 1.5902 0.5878∗∗∗ 0.5288∗∗∗ 0.5295∗∗∗ 1.0000 0.6583∗∗∗ 0.5732∗∗∗ 0.6009∗∗∗

Notes: Panel A presents ratios of each model’s MSPE to the baseline no-change forecast successively evaluated for
the entire evaluation period (August 2013–August 2018). Panel B presents MSPE ratios of the models including
real-time data over those including post-revised data. Entries lower than 1 indicate that forecasts from the model
are more accurate than forecasts from the associated baseline model. ∗∗∗, ∗∗ and ∗ indicate MSPE ratios are
significantly different from 1 at 1%, 5% and 10%, according to both the conditional and unconditional Giacomini
and White (2006) test.

multivariate framework. Apart from results at the one-month horizon, the forecast accuracy
gains using BVAR models with respect to no-change are between 7% and 47%.

A comparison across BVAR models incorporating either real-time or revised data reveals
the benefit of including WTI in terms of forecast accuracy. Including WTI leads to a relative
reduction in MSPE of 21% on average (for all horizons). The relative reduction in MSPE
from including natural gas inventories is 14%. Moreover, the five-variable BVAR model
including both WTI and gas inventories performs roughly as well on forecasting as the four-
variable BVAR including WTI only. In view of parsimony, our benchmark model in the rest
of the paper will be the latter one.

Table D.2, in Appendix D, reports estimates of the log score of the BVARX model includ-
ing nCHDD relative to the BVAR model, so that positive values indicate an improvement
over our benchmark. Results point to significant improvements in most cases.

To summarize, linear Bayesian VAR models including variables quite similar to those in
Baumeister and Kilian (2012) deliver highly competitive forecasts relative to the no-change
prediction. This important result does confirms the reliability of our new real-time dataset
and the ability of real-time fundamental variables related to the natural gas market to
generate competitive forecasts of the future gas price in a multivariate framework.

5.2 The informational content of temperature data

We now wish to take advantage of the strong relationship between temperature and gas
consumption as exemplified in Timmer and Lamb (2007). In other words, might models
incorporating temperature as an additional regressor provide more accurate real gas price
forecasts when considered in our Bayesian VAR specifications?

Gaussian Bayesian VAR

In Table 2 we report the performance of BARX and BVARX models incorporating either a
measure of Heating Degree Days (HDD) or nCHDD, our measure of temperature as specified
in Section 2.1, in the BVAR (WTI, P, C, HH) benchmark model.22

22Note that in the columns dedicated to BVAR (columns 1 and 5), only the MSPE is reported. Also note
that the BARX model is estimated using the nCHDD measure only.
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A remarkable finding, which is central to our analysis, is that BVARX models incorpo-
rating nCHDD exhibit the best forecasting performance, always dominating the benchmark
model with respect to MSPE. This is true for all horizons and for both real-time and post-
revised data. More specifically, the gains generated by including nCHDD are significant,
between 5% and 15%, depending on the horizon.23 The highest improvement in MSPE for
real-time data is for the six-month horizon with a reduction of the MSPE higher than 15%.
This amelioration of the forecast accuracy remains even when post-revised data are used
as shown in Panel B of Table 2 where the BVARX outperforms the benchmark model by
between 3% and 12%.24

Another noteworthy conclusion from Table 2 is that including HDD instead of nCHDD
leads to less accurate forecasts at all horizons, suggesting that the noise added from using
this variable does more damage than good. This may be due to the high correlation be-
tween HDD and natural gas consumption (about 60% for our sample), meaning that HDD
contains information already present in gas consumption data. Only extraordinary weather
conditions are therefore likely to explain real gas price formation.

Overall, our results confirm that the inclusion of temperature data is fruitful at all
horizons, thereby supporting the idea that considering demand in real-time through an
adequate measure of temperature conditions significantly help in forecasting natural gas
prices. While there is extensive evidence that temperature is a major determinant of natural
gas price and consumption, our forecasting evidence is new to the literature and is likely to
be helpful for all actors in the U.S. gas markets as well as for policy-makers whose decisions
duly rely on energy prices.

Table 2 – Recursive MSPE ratio relative to BVAR as benchmark

Panel A: Real-Time Panel B: Post-Revised
BVAR BARX BVARX BVAR BARX BVARX

X (MSPE) nCHDD HDD nCHDD (MSPE) nCHDD HDD nCHDD
1M 0.0756 3.4404 1.5058 0.9516∗ 0.0711 3.6542 1.6155 0.9682∗

3M 0.2663 2.5093 1.3310 0.8997∗ 0.2833 2.3613 1.5026 0.9495∗

6M 0.3985 1.8531 1.4328 0.8479∗∗ 0.4954 1.4908 1.1487 0.9266∗

9M 0.4105 2.5401 1.4875 0.8711∗∗ 0.6093 1.7110 1.1252 0.9028∗

12M 0.3878 2.0271 1.6064 0.9271∗ 0.6765 1.1620 1.1242 0.8808∗

BARX is estimated using 12 lags. Panel A (resp. B) presents MSPE ratios of model including real-time data (resp.
including post-revised data). For BVAR, only MSPE is provided. Entries lower than 1 indicate that forecasts from
the model are more accurate than forecasts from the associated baseline model. ∗∗∗, ∗∗ and ∗ indicate MSPE ratios
are significantly different from 1 at 1%, 5% and 10%, according to both the conditional and unconditional Giacomini
and White (2006) test.

23To complement our analysis, we also consider the density forecast accuracy as an additional tool to
gauge the additional informational content of temperature conditions when forecasting real gas prices. All
results for the density forecast analysis are provided in Appendix D. We first show that density forecasts
using real-time data favorably compares to those from post-revised data (see Table D.1). Then, Table D.2
reports estimates of the log score of the BVARX model including nCHDD relative to the BVAR model, so
that positive values indicate an improvement over our benchmark. Results point to significant improvements
in most cases.

24For exhaustiveness, MSPE ratios relative to the no-change – and not the benchmark model – are
reported in Table C.2 of Appendix C.
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Stochastic volatility and fat tails: Does it further help and how?

In light of the forecasting performance of the BVARX model incorporating nCHDD as an
exogenous variable, we choose it as the new benchmark. Our am is now to account for
stochastic volatility and fat tails. Because the number of parameters to estimate is large,
we allow for variable selection keeping in mind that variable selection may further improve
forecasting accuracy.

To this end, we first present a comparison of their fitting properties (adequacy) based
on marginal likelihood. Table 3 gives the estimated values of the log marginal likelihood for
each model on the full sample. VS indicates whether variable selection is used. We observe
that the combination of fat tails and stochastic volatility within the tVARVOLX model has
the highest estimated marginal likelihood, thereby delivering the best fit. We also note that
the simple (most restricted) BVARX has the lowest log marginal likelihood. Importantly,
however, allowing for stochastic volatility improves the fit of the model much more than
allowing for fat tails, which is in line with the properties of our time-series. In addition,
variable selection always increase the fit of the model in all four specifications.

Table 3 – Log-likelihood

BVARX tVARX VARVOLX tVARVOLX
VS No Yes No Yes No Yes No Yes
Log-likelihood -1988 -1934 -1461 -1458 -1042 -1040 -1039 -1034

The log marginal likelihood values are estimated for each model using the full sample with 20,000 iterations.
Estimation methodology follows Chiu et al. (2017)

.

We now turn to the forecasting performance itself. How do models allowing for stochastic
volatility and fat tails compare with their restricted version? Recall that the reference model
is a (WTI, P,C,HH) BVARX model with nCHDD as an additional regressor. Table 4 reports
recursive MSPE of alternative models relative to the benchmark. All models are estimated
with and without variable selection (VS).25 Again, figures in the first column are MSPE.

Table 4 – Recursive MSPE ratio relative to BVARX

BVARX tVARX VARVOLX tVARVOLX
VS No Yes No Yes No Yes No Yes
1M 0.0720 0.9931∗ 0.9929 0.9600∗ 0.9625∗ 0.9699∗ 0.9685∗ 0.9631∗

3M 0.2396 0.9766∗ 0.9395∗ 0.9191∗ 0.8797∗∗ 0.8800∗∗ 0.8754∗∗ 0.8725∗∗

6M 0.3379 0.9612∗ 0.9213∗ 0.9209∗ 0.8735∗∗ 0.8734∗∗ 0.8659∗∗ 0.8630∗∗

9M 0.3576 0.9521∗ 0.8922∗ 0.9141∗ 0.8632∗∗ 0.8630∗∗ 0.8524∗∗ 0.8496∗∗

12M 0.3596 0.9487∗ 0.8588∗∗ 0.9034∗ 0.8511∗∗ 0.8509∗∗ 0.8374∗∗ 0.8344∗∗

Notes: This table compares each model’s MSPE ratio relative to the baseline (WTI, P,C,HH) BVARX model
evaluated for the (August, 2013 - August, 2018) period. The first column reports MSPE. Entries lower than 1
indicate that forecasts from the model are more accurate than forecasts from the associated baseline model. Yes
(resp. No) in line VS (Variable selection) means (resp. No) Bayesian shrinkage in the VAR coefficient. ∗∗∗, ∗∗ and
∗ indicate MSPE ratios are significantly different from 1 at 1%, 5% and 10%, according to both the conditional and
unconditional Giacomini and White (2006) test.

Three important points emerge from Table 4. First, allowing for fat tails appears to be

25As we did for estimation without variable selection, we report in Figure B.2 in the Appendix B the
recursive means of the estimated coefficients showing as little fluctuation than before. Hence, convergence
is obtained.
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beneficial: the tVARX model offers an MSPE reduction as large as 14% at the 12-month
horizon without variable selection (10% when variable selection is applied).

Second, considering low-frequency movements in volatility through stochastic volatility
appears to be useful at all horizons, especially longer horizons. It is clear, however, that the
VARVOLX provides greater improvements than the tVARX, suggesting that gas market
variables are more characterized by persistent than by transient shifts in volatility.

A third interesting observation from Table 4 is that the combination of fat tails and
stochastic volatility (tVARVOLX) does deliver the best forecasting performance. The tVAR-
VOLX dominates our benchmark significantly, with an MSPE reduction going from 13%
to 16% for horizons higher than three months. Note, though, that the marginal improve-
ment of the tVARVOLX over the VARVOLX is rather limited supporting the idea that
high-frequency movements in volatility are of minor help to better forecast gas prices.

Further robustness analysis, regarding density forecasts, is included in Table D.3. The
results corroborate previous findings. Log score comparisons are in line with the relative
MSPE ratios, confirming that BVARX forecasting is strictly dominated when fat tails and
stochastic volatility are taken into account. Improvements are highly significant at longer
horizons, but not significant at the three-month horizon. Similarly, one month ahead, the
improvement is quite limited. Once again, the VARVOLX specification delivers better
forecasting performance than the tVAR model, both in magnitude and significance. The
largest forecast accuracy gain is provided by tVARVOLX, with improvement reaching 58%
at the 12-month horizon.

Confirming the source of improved forecasting performance

At this stage, we cannot dismiss the hypothesis that the improvement in forecasting ability of
the BVAR models allowing for stochastic volatility and/or fat tails might be due to their own
specifications only and not, or very few, related to the measure of temperature conditions.
To investigate this issue, we compare the forecasting performance of these models to similar
models with no exogenous variable.

Table 5 – Recursive MPSE ratio relative to each specification without
exogenous variable

BVARX
/BVAR

tVARX
/tVAR

VARVOLX
/VARVOL

tVARVOLX
/tVARVOL

VS No Yes No Yes No Yes No Yes
1M 0.9516∗ 1.0189 1.003 0.9960 0.9941 0.9623 1.0146 1.0210
3M 0.8997∗ 0.8901∗ 0.8999∗ 0.8980∗ 0.9021∗ 0.8956∗ 0.9481∗ 0.9473∗

6M 0.8479∗∗ 0.8657∗∗ 0.9997 0.9992 0.9999 0.9968 0.9247∗ 0.9209∗

9M 0.8711∗∗ 0.8459∗∗ 0.8634∗∗ 0.8592∗∗ 0.9167∗ 0.8955∗ 0.8944∗ 0.8971∗

12M 0.9271∗ 0.9303∗ 0.9547∗ 0.9293∗ 0.8960∗ 0.9001∗ 0.8623∗∗ 0.8664∗∗

Notes: This table compares each model’s MSPE ratio to the same model without exogenous variable evaluated for
the (August, 2013 - August, 2018) period. Yes (resp. No) in line VS (Variable selection) means (resp. No) Bayesian
shrinkage in the VAR coefficient.∗∗∗, ∗∗ and ∗ indicate MSPE ratios are significantly different from 1 at 1%, 5%
and 10%, according to both the conditional and unconditional Giacomini and White (2006) test.

Relative MSPE ratios from Table 5 unambiguously confirms the relevance of using tem-
perature as an additional regressor in our empirical analysis. Indeed, almost all models
incorporating nCHDD exhibit better forecasting accuracy than their counterparts with no
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exogenous variable. A few exceptions at the one-month horizon can be observed from the
Table but associated estimates are insignificant and are therefore not likely to cast doubt
on the usefulness of using temperature conditions as an additional regressor.26

As pointed out by Korobilis (2013), the more variables in the model, the more useful
penalization within variable selection will become. In our study, variable selection in many
cases improved forecasting performance, despite the small number of variables included in
the VAR models. We estimate our models with different values for the hyper-parameter (π0j)
which parameterizes the proportion of the predictors that should be in the final model. We
thus select values between 0.5 (non-informative), meaning that half of the BVAR coefficients
should be restricted, and 0.8, meaning only 20% of coefficients will be restricted. The
final value used for the reported estimation results is 0.8, which gives the best forecasting
performance gain. This is also consistent with the assertion of Korobilis (2013) that, for
small BVAR, choosing a non-informative prior for this hyper-parameter probably yields too
many restricted BVAR coefficients, thereby worsening the model’s forecasting performance.

6 Concluding remarks

The U.S. natural gas price and its evolution are vital to the U.S. economy. This makes
reliable forecasts of the real price of gas important to market participants, as well as to
consumers, regulators, and central bankers.

In this paper, we estimate various Bayesian VAR models following the Baumeister and
Kilian (2012) seminal contribution recently extended in Baumeister et al. (2022) with an em-
phasis on the demand-side. We provide evidence that considering demand is highly relevant
in the case of the U.S. natural gas market. We further show that a measure of tempera-
ture conditions that is, by nature, truly available in real-time does improves significantly
the forecasting accuracy at most horizons from 1 to 12 months. We also contribute to the
literature in proving that allowing for stochastic volatility is critical to the performance of
the models under consideration.

While we do provide evidence of significant statistical improvements in terms of fore-
casting, we do not evaluate the economic value of such an enhancement. Forecasts may thus
be used to price option on natural gas futures as quoted on the NYMEX (CME Group).

Another strand of the literature initiated in Alquist and Kilian (2010) deals with the
information content of futures prices to make predictions about commodity prices. While we
do not elaborate on this possibility for natural gas in the present paper, a related approach
in Thomas (2020), relying on a non-causal bivariate VAR for both crude oil and natural
gas, deserves further attention. In his model, the only two variables under consideration are
the energy price and the convenience yield. The latter variable is included on the economic
grounds that it proxies for expectations in the derivatives market. Surprisingly, this very
parsimonious model exhibits highly accurate forecasts at horizons of up to several months.

26Log scores in Table D.4 provide qualitatively similar results for density forecasts. Models incorporating
nCHDD remain the best-performing competitors, though forecasting performance gains are not statistically
significant in this case.
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Appendix

A Data

Following Müller et al. (2015), we use the normalized Cumulated Heating Degree Days
(CHDD). More explicitly, we cumulate heating degree days over a winter, from which we
subtract the average of cumulated heating degree days over previous winters. Our measure
of the normalized cumulated heating degree days is :

nCHDDd,w = CHDDd,w −
1

w − 1

w−1∑

l=1

CHDDd,lfor1 ≤ d ≤ 182

where 182 is the number of days in a winter w (from the 1st of October to the 31st of
March). Then, Λ returns to zero during next summer.

Figure A.1 – The nCHDD measure of temperature conditions
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B Empirical convergence results

Figure B.1 – Mean recursive estimations of VAR coefficients for different
specifications

BVARX model tVARX model

VARVOLX tVARVOLX

Figures in B.1 represent the recursive mean of the variation in the coefficients of the
autoregressive part of the Bayesian model along the iterations selected from the Gibbs
sample (5,000 iterations). According to these figures, there is minimal variation in the
estimated value for each coefficient, which ensures the convergence of the model. B.2 is the
counterpart with variable selection and provide similar results with respect to convergence.
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Figure B.2 – Mean recursive estimations of VAR coefficients for different
specifications

BVARX model with variable selection tVARX model

VARVOLX with variable selection tVARVOLX with variable selection

21



C Temperature and post-revised data

Table C.1 – Recursive MSPE ratio relative to the no-change forecast
with post-revised data

BAR BVAR
P,C,HH,S WTI,P,HH,C WTI,P,C,HH,S

1M 1.1934 0.9871 0.9914 0.9967
3M 1.3037 1.0443 0.9871 0.9635
6M 1.448 0.9462 0.9678 0.9334∗

9M 1.6103 0.9205∗ 0.9458 0.9459
12M 1.5902 0.8929∗∗ 0.9225∗ 0.8811∗∗

Notes:The table compares each model’s MSPE ratio to the baseline no-change forecast successively evaluated for
the entire evaluation period (August 2013–August 2018). Entries lower than 1 indicate that forecasts from the
model are more accurate than forecasts from the associated baseline model. ∗∗∗, ∗∗ and ∗ indicate MSPE ratios are
significantly different from 1 at 1%, 5% and 10%, according to both the conditional and unconditional Giacomini
and White (2006) test.

Table C.2 – Recursive MSPE ratio relative to the no-change forecast
(Temperature)

Panel A: Real-Time Panel B: Post-Revised
BVAR BARX BVARX BVAR BARX BVARX

X CHDD HDD CHDD CHDD HDD CHDD
1M 1.0530 3.6228 1.5857 1.0021 0.9914 3.6228 1.6017 0.9606∗

3M 0.9289∗ 2.3309 1.3310 0.8339∗∗ 0.9871∗∗ 2.3309 1.4833 0.9373∗

6M 0.7785∗∗∗ 1.4427 1.0898 0.6601∗∗∗ 0.9678∗ 1.4427 1.1041 0.8967∗

9M 0.6371∗∗∗ 1.6183 0.9477∗ 0.5550∗∗∗ 0.9458∗ 1.6183 1.0643 0.8539∗∗

12M 0.5288∗∗∗ 1.0720 0.8495∗∗ 0.4903∗∗∗ 0.9225∗ 1.0720 1.0371 0.8124∗∗

Notes: Panel A (resp. Panel B) compares MSPE ratios of models including real-time data (resp. including post-
revised data) to the baseline no-change model forecast successively evaluated for the entire evaluation period (August
2013–August 2018). Entries lower than 1 indicate that forecasts from the model are more accurate than forecasts
from the associated baseline model. ∗∗∗, ∗∗ and ∗ indicate MSPE ratios are significantly different from 1 at 1%, 5%
and 10%, according to both the conditional and unconditional Giacomini and White (2006) test.
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D Density forecast accuracy

Table D.1 – Recursive average percentage improvement in Log-Score

Real-time over Post-Revised
BVAR

P,C,HH,S WTI,P,HH,C WTI,P,C,HH,S
1M -3.62 -5.75 -5.39
3M 2.85 2.88 6.54
6M 4.77 1.49 1.03
9M 7.29∗ 5.52 1.41
12M 7.46∗ 18.00∗∗ 10.30

Notes: The table compares the percentage values of log predictive density scores of models incorporating real-
time data to those incorporating post-revised data successively evaluated for the entire evaluation period (August
2013–August 2018). The notation BVAR refers to univariate Bayesian vector autoregression. Density forecasts
are produced via recursive estimation of the models. Positive entries indicate that Log-Scores from the model are
improved (in %) relative to the Log-Score from the associated baseline model. ∗∗∗, ∗∗ and ∗ indicate Log-Score
variations are significantly different from 0 at 1%, 5% and 10%, according to both the conditional and unconditional
Giacomini and White (2006) test.

Table D.2 – Recursive average percentage improvement in Log-Score
relative to BVAR as the benchmark

Panel A: Real-Time Panel B: Post-Revised
BVAR BARX BVARX BVAR BARX BVARX

X CHDD HDD CHDD CHDD HDD CHDD
1M 0.7062 -86.024 -24.15 2.10 0.7417 -82.78 -27.98 -0.01
3M 0.5930 -765.26 -11.49 5.77 0.5186 -731.26 -12.07 4.20
6M 0.4399 -2826.83 -12.98 10.38∗ 0.4386 -2857.98 -10.43 9.99∗

9M 0.3707 -∞ -17.34 12.67∗∗ 0.3516 -∞ -15.95 8.64∗

12M 0.3314 -∞ -28.66 8.20∗ 0.2806 -∞ -20.05 8.35∗

Notes: Panel A (resp. Panel B) compares the percentage values of log predictive density scores of models incorpo-
rating real-time data (resp. post-revised data) to BVAR. For BVAR, only Log-Score is provided. Positive entries
indicate that Log-Scores from the model are improved (in %) relative to the Log-Score from the associated baseline
model. ∗∗∗, ∗∗ and ∗ indicate Log-score variations are significantly different from 0 at 1%, 5% and 10%, according
to both the conditional and unconditional Giacomini and White (2006) test.
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Table D.3 – Recursive average percentage improvement in Log-Score
relative to BVARX as the benchmark

BVARX tVARX VARVOLX tVARVOLX
VS No Yes No Yes No Yes No Yes
1M 0.7210 1.22 -5.82 -5.78 -2.52 -3.16 1.4 -4.16
3M 0.6272 5.53 2.98 2.79 1.23 3.89 3.40 5.02
6M 0.4956 2.84 11.03∗ 9.50∗ 18.24∗∗∗ 21.11∗∗∗ 24.28∗∗∗ 23.87∗∗∗

9M 0.4092 2.10 19.09∗∗∗ 18.65∗∗∗ 32.16∗∗∗ 33.28∗∗∗ 37.00∗∗∗ 40.42∗∗∗

12M 0.3610 6.00 30.68∗∗∗ 31.20∗∗∗ 48.33∗∗∗ 48.85∗∗∗ 53.79∗∗∗ 58.22∗∗∗

Notes: The table compares the percentage values of log predictive density scores of models incorporating t-
distribution and/or stochastic volatility to the baseline models. The baseline model is a BVARX model without
variable selection. For BVARX, only predictive density scores are provided. Positive entries indicate that Log-Scores
from the model are improved (in %) relative to the Log-Score from the associated baseline model The forecasts are
produced via recursive estimation of the models successively evaluated for the entire evaluation period (August
2013–August 2018). Yes (resp. No) in line VS (Variable selection) means (resp. No) Bayesian shrinkage in the
VAR coefficient. ∗∗∗, ∗∗ and ∗ indicate Log-score variations are significantly different from 0 at 1%, 5% and 10%,
according to both the conditional and unconditional Giacomini and White (2006) test.

Table D.4 – Recursive average percentage improvement in Log-Score
relative to each specification without exogenous variable

BVARX
/BVAR

TVARX
/TVAR

VARVOLX
/VARVOL

TVARVOLX
/TVARVOL

VS No Yes No Yes No Yes No Yes
1M 2.10 2.89 0.43 -0.38 0.39 1.00 1.70 2.60
3M 5.77∗ 7.47∗ 1.19 1.00 2.29 0.47 6.61∗ 4.82
6M 12.67∗∗ 11.93∗∗ 0.13 1.85 3.61 4.00 17.44∗∗ 17.01∗∗

9M 10.38∗∗ 14.33∗∗ 0.53 1.08 2.25 5.50 7.98∗ 18.09∗∗

12M 8.93∗ 8.07∗ 2.06 1.29 4.08 2.95 24.15∗∗∗ 21.78∗∗∗

Notes: The table compares the percentage values of log predictive density scores of models incorporating exogenous
variables with the associated model without exogenous variable successively evaluated for the entire evaluation
period (August 2013– August 2018). The forecasts are produced via recursive estimation of the models. Positive
entries indicate that Log-Scores from the model are improved (in %) relative to the Log-Score from the associated
baseline model. Yes (resp. No) in line VS (Variable selection) means (resp. No) Bayesian shrinkage in the VAR
coefficient.∗∗∗, ∗∗ and ∗ indicate Log-score variations are significantly different from 0 at 1%, 5% and 10%, according
to both the conditional and unconditional Giacomini and White (2006) test.
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