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Abstract

We study a set-valued maximal monotone coupling law achieving robust output convergence in het-
erogeneous networks of dynamical systems with uncertainties and persistent disturbances. The coupling
consists of an adaptable strategy built from normal cones to convex time-dependent sets (hard-threshold
maps). To guarantee the convergence of the output mismatches to a neighborhood of the origin, only
connectivity of the intrinsic graph is required (knowledge of the graph algebraic connectivity is not re-
quired), whereas only the output of the associated systems is used. Numerical simulations illustrate the
effectiveness of the proposed coupling scheme.

1 Introduction

The study of interacting dynamical systems showing synchronized trajectories has got much attention in
recent years, see e.g., [5, 17, 19, 21, 22, 47] and references therein. Such intense focus has been motivated
by the wide range of applications coming from almost all fields of science: power grids in engineering
[36]; biological and artificial neural networks in neuroscience and computer science [32]; gene regulatory
networks in biology [26]; distributed resource allocation in operations research [57]; and opinion formation
of individuals in sociology [9]; are just some examples from the increasing list of applications reported in
the literature. In the control and systems community, the property of synchronization has become a pivotal
property, studied from different perspectives and under different contexts. At first, ideal situations were
considered, where disturbances and uncertainties were absent [44, 41, 45, 52]. In such contexts, linear, and
more generally, smooth approaches, (such as the master-stability function and contraction theory, see e.g.,
[4, 50, 41]), are the dominant tools used.

Nowadays, the complexity of the studied networks has increased, as more complicated dynamics are
considered together with a lack of global uniformity on the models describing the individual systems, [34,
28, 39]. Such heterogeneity in the network may be present because of different reasons. For instance, each
system in the network may be described by a mathematical model that is different from that of its neighbors,
with the possibility of having a state space of different dimension. In such a case, full synchronization is not
possible. Nevertheless, synchronization of some of the state variables (output synchronization) may still be
attainable, depending on the structure of the systems and their interactions. In other cases, even if each
system belongs to the same model class, variations or uncertainties in the values of the parameters give
rise to heterogeneity. Also, heterogeneity may arise due to the presence of external persistent disturbances
affecting some of the agents. It is clear that when all the aforementioned sources are combined into the
network, the analysis of such systems becomes a challenging task.

Some recent works dealing with the synchronization of heterogeneous networks include [12, 16, 28, 30,
34, 39, 55]. These works focus on either of the following types of interconnections: i) diffuse coupling;
ii) nonlinear (high-gain) time-varying coupling; or iii) discontinuous coupling. For the case of diffusive
coupling, it is shown in [28, 34, 39, 55] that under suitable assumptions (such as connectivity of the network,
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and semipassivity or QUAD-ness of the vector fields), the synchronization error diminishes as the amplitude
of the coupling signal increases. It is shown that, in general, an infinite interconnection signal is needed
in order to force the exact invariance of the synchronization manifold, so that asymptotic synchronization
cannot be attained in practice. For the case of nonlinear coupling, [12, 30] showed, under similar assumptions
as in the diffusive case, that a better performance is obtained with high-gain time-varying interconnections.
In [30] nonlinear coupling strategies, inspired from the literature of funnel control, are studied. It is shown
there that such strategies achieve high-precision in the presence of heterogeneity. However, the coupling
applied requires the knowledge of the full state. Similar interaction laws where proposed in [12] regarding
adaptable dead-zone maps for the case of identical systems under external noise perturbations. In such a case,
the dead-zone induces an implicit funnel for the synchronization error, and the adaptation mechanism drives
the funnel towards a neighborhood of the origin. Showing, once again high precision for the synchronized
trajectories. Finally, for the case of discontinuous coupling, [16] established interesting properties of the
network that are not shared by their smooth counterparts. Indeed, [16] showed that discontinuous couplings
can achieve the asymptotic convergence of the full state with finite coupling strength. Their approach is
reminiscent of sliding-mode control techniques for lumped systems, where the synchronization manifold is
seen, to some extent, as a sliding surface for the synchronization error. However, it is noteworthy that the
asymptotic convergence in [16] holds only at theoretical level, as the coupling is implemented in a regularized
fashion to avoid the so called chattering effect. Thus, adding a boundary layer around the synchronization
manifold leading to practical synchronization.

Notably, nonsmooth control techniques have shown a remarkable performance when dealing with un-
certainties and disturbances, endowing the closed-loop with interesting properties such as, finite-time con-
vergence and model reduction, see e.g., [31, 33, 51]. In contrast, to achieve such distinctive performance,
special attention must be put at implementation level, as without an appropriate implementation, those
techniques may lead to the appearance of chattering, which leads to degradation in performance and the
useful life of components. Regarding networks of systems, the prevalent source of nonsmoothness con-
cerns discontinuous (switched) and impulsive couplings, these have been addressed in recent studies such
as [14, 15, 24, 27, 42, 49, 54, 56]. In there, the main concern regards the synchronization of systems under
interactions that change abruptly, or in cases where the communication channels put constraints on the
coupling between systems. However, besides such cases, very little is known about the performance, and
the implementation, of more general nonsmooth strategies. Thus, it becomes natural to consider the robust
output synchronization problem under nonsmooth couplings, as a way to counteract all the effects caused
by disturbances and uncertainties affecting the network.

In this paper we study the robust output convergence of heterogeneous networks using tools from the
theory of differential inclusions and convex analysis. The term convergence is used in this paper, instead
of the term “synchronization”, as the amplitude of the coupling signals is not constrained to be small
[43, Section 1.2.1]. First, some theoretical results are presented regarding perfect output convergence in
presence of uncertainties and persistent disturbances. Later, practical convergence is studied by considering
a discrete-time implementation of the ideal coupling. The proposed coupling scheme has a strong connection
with funnel coupling [30], adaptable dead-zone coupling [12], constrained differential inclusions [40], and
perturbed Moreau’s sweeping processes [35]. Intuitively, it can be seen as a nonsmooth generalization of the
funnel coupling in [30] and the dead-zone coupling in [12]. It consists in applying a correction at each time
that the mismatches between the outputs of neighbors reach the boundary of a control set S(t), so that S(t)
is rendered positively invariant. Such correction terms are implemented via hard-thresholds to the set S(t),
so that the coupling action is inactive whenever the mismatches reside in the interior of S(t). Additionally,
S(t) is designed such that it contracts asymptotically towards zero at a rate depending on the aforementioned
mismatches. In this way, output convergence is easily achieved by means of high-gain couplings. The main
problem that arises with the proposed strategy concerns the well-posedness (existence and uniqueness of
absolutely continuous solutions) of the interconnected systems, as the operators characterizing the hard-
threshold mapping are set-valued and locally unbounded on the boundary of the set S(t). That is, the
associated differential inclusion is not of Filippov type [48, Definition 2.2]. Thus, special attention is paid
to the well-posedness of the problem and sufficient conditions for the existence of solutions are presented in
Theorem 6. Finally, it is shown that the proposed strategy is robust against parametric uncertainties, as
well as, external disturbances. The main contributions of the paper are summarized as follows:
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• The proof of existence of absolutely continuous solutions for set-valued heterogeneous networks with
nonsmooth hard-threshold couplings, where the dimension of the state at each vertex is not necessarily
the same.

• The robust output convergence in the presence of unmatched, persistent disturbances.

• The presentation of two numerical approaches, (one centralized and one fully distributed), for the
implementation of the proposed nonsmooth schemes in digital computers.

• The extension of the funnel-coupling proposed in [30] to the multivariable, nonsmooth case.

The paper is organized as follows. The next section recalls some results from convex analysis and settles
the notation used all over the paper. Section 3 formulates the problem and introduces the proposed coupling
strategy. The formal proof concerning the well-posedness of the coupled system is deferred to Section 6.
Section 4 studies the asymptotic properties of the interconnected system in a robust framework, whereas,
Section 5 presents two specific numerical approaches for the discrete-time implementation of the proposed
schemes in digital computers. The paper ends with Section 7 where conclusions are presented.

2 Notation and preliminaries

The Euclidean inner product is represented as ⟨•, •⟩ and the associated norm as ∥ • ∥. The p-norm of a vector
is denoted as ∥ • ∥p, for p ∈ [1,+∞]. For the sake of simplicity we drop the subindex for the 2-norm. In
the cases when the argument of the norm is a matrix, A ∈ Rr×l, the induced norm is considered, that is
∥A∥ = sup∥x∥=1 ∥Ax∥. The null and range subspaces of A are represented as, nullA and rgeA, respectively.

The matrix A† ∈ Rl×r denotes the Moore-Penrose pseudoinverse of A. The identity matrix is denoted as
Il ∈ Rl×l, whereas Id : Rl → Rl denotes the identity map. The set Bl denotes the closed unit ball in Rl with
center at zero (in the cases where the dimension is clear from the context we will drop the subindex l). For
any two nonempty sets U ,V ⊆ Rl, U+V = {u+ v|u ∈ U , v ∈ V}, and AU =

⋃
u∈U{Au}. The interior of a set

U is denoted as intU . The spaces L1([0, T ];Rl) and L∞([0, T ];Rl) correspond, respectively, to the Lebesgue
spaces of all absolutely integrable and essentially bounded functions, from [0, T ] into Rl. For a sequence
{fk}k∈N ⊂ L1([0, T ];Rl), the notation fk ⇀ f denotes convergence in the weak topology of L1([0, T ];Rl),

whereas if {fk}k∈N ⊂ L∞([0, T ];Rl), then the notation fk
∗
⇀ f denotes convergence in the weak* topology of

L∞([0, T ];Rl). The reader is addressed to [10, Chapter 3] for further details on these notions of convergence.

2.1 Elements from convex analysis

Let U ,V ⊂ Rl be two nonempty, closed, convex sets. The distance from a point x ∈ Rl to U is given as

dist(x,U) = min
y∈U

∥x− y∥ = ∥x− proj(U ;x)∥ ,

where proj(U ;x) denotes the projection of x onto the set U , i.e.,

proj(U ;x) = argmin
y∈U

∥x− y∥ . (1)

Let φ : Rl → R ∪ {+∞} be a proper, convex, lower semicontinuous function. The convex subdifferential
of φ at x is defined as the set-valued map

∂φ(x) := {w ∈ Rl|⟨w, y − x⟩ ≤ φ(y)− φ(x), for all y ∈ Rl} .

One of the most important properties of convex subdifferentials, that is central in the developments that
follow, concerns its maximal monotonicity. A set-valued map1 M : Rl ⇒ Rl is monotone (in the sense
of Minty-Browder) if for any two pairs (x1, w1), (x2, w2) ∈ gphM := {(x,w) ∈ Rl × Rl|w ∈ M(x)}, the
inequality

⟨x1 − x2, w1 − w2⟩ ≥ 0 ,

1The double arrow is used to emphasize that M maps points to sets. See for instance [46, Chapter 5].
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holds. In addition, M is maximal monotone, if it is monotone and its graph is not strictly contained in
the graph of any other monotone map. Maximal monotonicity guarantees that, for any r > 0, the map
(Id+rM)−1 is single-valued and Lipschitz continuous, (indeed it is firmly nonexpansive, see [7, Definition
4.1 and Proposition 23.7]), and with domain equal to the entire space Rl (Minty’s theorem [7, Theorem
21.1]).

The proximal map to the function φ at x, prox(φ;x) is the function

prox(φ;x) := argmin
w∈Rn

{
φ(w) +

1

2
∥w − x∥2

}
. (2)

The proximal map to φ is related to the convex subdifferential of φ via the following expression, see e.g., [7,
Theorem 16.34],

prox(φ;x) = (Id+∂φ)
−1

(x) . (3)

The right-hand side of (3) is also called the resolvent of ∂φ at x, see e.g., [7, Chapter 23]. It is clear from
(1) and (2) that the proximal map is a generalization of the projection onto a closed, convex set, as

proj(U ;x) = prox(ψU ;x) ,

where ψU : Rl → R ∪ {+∞} is the indicator function of the set U , such that ψU (x) = 0 for all x ∈ U and
ψU (x) = +∞ otherwise. The set-valued map N(U ; •) : U ⇒ Rl denotes the normal cone to U , given by

N(U ;x) = ∂ψU (x) =
{
w ∈ Rl|⟨w, y − x⟩ ≤ 0, for all y ∈ U

}
.

Thus, it follows from (3) that

proj(U ;x) = (Id+N(U ; •))
−1

(x) (4)

The function σ(U ;u) = supp∈U ⟨p, u⟩ denotes the support function of the set U at u ∈ U .

2.2 Elements from graph theory

A graph G(V, E) is a mathematical structure consisting of a set of vertices V = {ν1, . . . , νN} where νi ∈ V
represents the i-th vertex, together with its connections, represented via a set of edges E ⊂ V ×V. So that, if
{νi, νj} ∈ E , then the vertices νi and νj are connected (adjacent). Throughout the paper adjacency between
vertices νi and νj is also denoted as νi ∼ νj . In addition, each edge {νi, νj} ∈ E is incident with the vertices
νi and νj . When the set of vertices and edges is clear from the context we will denote the graph simply as G.
Note that, in the set notation used, {νi, νj} = {νj , νi}, that is, the graph under consideration is undirected.
Let νi, νj ∈ V, a path of length m from νi to νj is a sequence of m + 1 vertices {νk}mk=0 ⊆ V such that
ν0 = νi, νm = νj , and {νk, νk+1} ∈ E for k ∈ {0, . . . ,m− 1}. The graph G(V, E) is connected if for any pair
of distinct vertices (νi, νj) ∈ V × V there exists a path from νi to νj . For each edge ϵk = {νi, νj} ∈ E a sign
to each end of ϵk is assigned. Such sign assignation will provide an orientation to the graph G(V, E). Along
all the manuscript, it is assumed that an orientation has been chosen and it is fixed. Thus, the oriented
incidence matrix Θ ∈ R|V|×|E| is given as, see e.g., [23],

[Θ]i,k =


+1, if νi is the positive end of ϵk;

−1, if νi is the negative end of ϵk;

0, otherwise.

If the graph G has |V| vertices and c connected components, then any associated incidence matrix has rank
|V| − c. Moreover, the graph Laplacian L = ΘΘ⊺ and Θ⊺1N = 0.

3 Problem formulation and proposed coupling strategy

Let G(V, E) be an undirected and connected graph, with vertices νi ∈ V and edges {νi, νj} ∈ E , characterizing
the connection structure between vertices. Each vertex is associated with a nonlinear system of the form,

νi :

{
ẋi(t) = fi(xi(t)) +Biui(t) +Giζi(t, xi(t)) ;

yi(t) = Cixi(t) ,
(5)
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where, for each i ∈ {1, . . . , |V|}, xi(t) ∈ Rni denotes the state of the i-th system at time t; ui(t), yi(t) ∈ Rm

denote the variables available for interconnection with other systems, as indicated by the graph G. The term
ζi(t, xi(t)) ∈ Rpi is in general unknown, as it takes into account parametric uncertainties of the model, as
well as, external disturbances affecting the i-th system. Finally, all the matrices are constant and of the
appropriate dimensions, whereas each fi : Rni → Rni is assumed Lipschitz continuous.

Throughout the paper it is assumed that each function ζi(•, xi) is measurable, whereas ζi(t, •) is a function
of bounded variation, such that there exists a set-valued map Zi : R× Rni ⇒ Rpi , that is measurable in its
first argument and upper-semicontinuous in its second argument, with compact and convex images and such
that ζi(t, xi(t)) ∈ Zi(t, xi(t)) for almost all times. In addition, the following assumption on the norm of ζi is
considered.

Assumption 1. For each function ζi there exist non-negative constantsMi,1 andMi,2 such that the following
inequality holds for all t ≥ 0,

∥ζi(t, x(t))∥ ≤Mi,1∥x(t)∥+Mi,2 .

As stated in the introduction, we will focus on the study of a particular nonsmooth coupling law, described
below, enforcing the robust agreement (against the heterogeneity of the network and external disturbances
ζi) of all vertex outputs yi(t) towards a single common trajectory or a small neighborhood of it. These two
properties are formalized in the following definition.

Definition 1. The family of systems (5) achieves robust asymptotic output convergence if there exist
coupling laws ui(t) such that for any two indices i, j ∈ {1, . . . , |V|}

lim
t→∞

∥yi(t)− yj(t)∥ = 0 .

Likewise, it achieves practical output convergence if for any ε > 0 there exist coupling laws ui(t, ε), i ∈
{1, . . . , |V|}, such that for any two indices i, j ∈ {1, . . . , |V|}

lim
t→∞

dist (yi(t)− yj(t); εB) = 0 .

Problem formulation Given a family of systems (5) and a graph interconnection G(V, E), our target
consists on designing coupling laws ui(t) = ui(t, yj1(t), . . . , yjpi (t)), (where each jk is such that νjk ∼ νi
and i ∈ {1, . . . |V|}), such that robust asymptotic output convergence holds in the presence of non-vanishing
disturbances.

Notice that for each vertex νi, the external disturbances ζi are not necessarily matched with the coupling
input, that is rgeGi ̸⊆ rgeBi for some i ∈ {1, . . . |V|}. In addition, the dimension of the state space may
also be different from vertex to vertex leading to a heterogeneous dynamical network. In such context, it is
well-known that smooth coupling, such as diffusive coupling, cannot solve the robust convergence problem
exactly, since it can provide at most practical convergence with coupling gains growing towards infinity as the
mismatches between trajectories approach a neighborhood of the origin, see e.g., [34, 39]. On the other hand,
nonsmooth control laws are able of removing, theoretically at least, all the affections caused by uncertainties
and external disturbances, whilst maintaining all control signals in a bounded region, see e.g. [16, 33, 51].

Motivated by the robustness properties of the set-valued hard-thresholds controllers studied in [33], it is
proposed to use the following set-valued and time-dependent coupling law

−ui(t) ∈
∑
j∼i

N(S(i,j)(t); yi(t)− yj(t)) , (6)

where
∑

j∼i indicates that the sum is taken over all indices j such that the vertex νj is adjacent to vertex
νi and N(S(i,j)(t); •) : S(i,j)(t) ⇒ Rm denotes the normal cone to the time-dependent set S(i,j)(t). At each
time instant t ≥ 0, each set S(i,j)(t) = S(j,i)(t) in (6) is given as

S(i,j)(t) = r(i,j)(t)C(i,j) ⊂ Rm , (7)

where the sets C(i,j) are constant and satisfy the following standing assumption.
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Assumption 2. Each set C(i,j) ⊂ Rm is nonempty, compact, convex, symmetric (i.e., C(i,j) = −C(i,j)), and
such that 0 ∈ int C(i,j).

Note that the symmetry condition on C(i,j) guarantees thatN(S(i,j)(t); yi(t)−yj(t)) = −N(S(j,i)(t); yj(t)−
yi(t)), so that the coupling function in (6) is undirected. Figure 2 below depicts the evolution of the graph
of the normal cone over time for the case when Ci,j = [−1, 1]. The variable r(i,j)(t) ∈ R in (7) is used to
control the size of each set S(i,j)(t) and it obeys

ṙ(i,j)(t) = −γ(∥yi(t)− yj(t)∥)r(i,j)(t) , (8)

with r(i,j)(0) > 0, and γ : R+ → R+ is a class-K function, that is, γ is strictly increasing and γ(0) = 0. In
addition, γ is chosen such that there are constants M̄γ ,Mγ ≥ 0 such that for any two outputs yi(t), yj(t),

γ(∥yi(t)− yj(t)∥) ≤ M̄γ∥yi(t)− yj(t)∥+Mγ . (9)

Note that with such initial condition, r(i,j)(t) > 0 for all t ∈ [0,+∞) and

r(i,j)(t) = e−
∫ t
0
γ(∥yi(τ)−yj(τ)∥)dτr(i,j)(0) .

Thus, for each t ≥ 0, each set S(i,j)(t) is compact and convex, and it contracts asymptotically to the singleton
{0} as time grows towards infinity.

The following example shows that the proposed coupling strategy (6) is not only a mathematical abstrac-
tion, but it can emerge, for instance, in the context of electrical circuits.

Example 3. Let us consider the nonsmooth diode network in Figure 1 carrying out the interconnection
between vertices νi and νj.

νi νj

u(i,j)

ID1 −+

s(t)

− +s(t)ID2

u(j,i)

+

−
yi

+

−
yj

Figure 1: Ideal electrical circuit realizing the coupling (6) between systems νi and νj .

Let us assume that each diode satisfies an ideal complementarity condition as (see e.g., [1, Section 1.1])

0 ≤ IDk ⊥ V ∗ − VDk ≥ 0 ,

where the notation 0 ≤ P ⊥ Q ≥ 0 is the short form of the following three conditions: i) P ≥ 0, ii) Q ≥ 0,
iii) PQ = 0; IDk denotes the current flowing through the k-th diode Dk; VDk denotes the voltage across
the terminals of Dk; and V ∗ denotes the threshold voltage of Dk for k ∈ {1, 2}. The ideal complementarity
condition captures the behavior of the ideal diode in an simple way, since either: the current through the diode
is zero and the voltage is lesser or equal to V ∗, or the voltage is equal to V ∗ and the current is nonnegative.
Setting each voltage controlled source in Figure 1 as s(t) = r(i,j)(t) − V ∗, it follows from Kirchhoff’s laws
that (in what follows the explicit dependence on time is omitted in all variables for the sake of simplicity)

u(i,j) = −u(j,i) = ID2
− ID1

; (10a)

yj − yi = s+ VD2
= −s− VD1

; (10b)

0 ≤ ID1
⊥ V ∗ − VD1

≥ 0 ; (10c)

0 ≤ ID2
⊥ V ∗ − VD2

≥ 0 . (10d)

The substitution of (10b) into the complementarity conditions (10c)-(10d) yields

0 ≤ ID1 ⊥ r(i,j) + yj − yi ≥ 0 ; (11a)

0 ≤ ID2 ⊥ r(i,j) + yi − yj ≥ 0 . (11b)
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It is clear from (11) that for any value of the currents ID1 and ID2 , the mismatch between the outputs of
the i-th and j-th vertices satisfies

−r(i,j) ≤ yj − yi ≤ r(i,j) .

Hence,

1. If yj − yi = −r(i,j), then it follows from (11b) and (10a) that ID2
= 0 and u(i,j) = −ID1

≤ 0.

2. If yj − yi = ri,j, then it follows from (11a) and (10a) that ID1
= 0 and u(i,j) = ID2

≥ 0.

3. If −r(i,j) < yj − yi < r(i,j), then ID1
= ID2

= 0 and u(i,j) = 0.

Putting all cases together we arrive at the expression

−u(i,j) ∈ N([−r(i,j), r(i,j)]; yi − yj) .

Figure 2 displays the time evolution of the graph of the normal cone to the set r(i,j)(t)[−1, 1] for some function
r(i,j) so that r(i,j)(t) → 0 as t ↑ ∞. Finally, joining all vertices of G(V, E) with coupling circuits as the one
in Figure 1 produces a coupling law of the form (6) as

ui =
∑
j∼i

u(i,j) , (12)

so that (12) indeed coincides with (6) for the scalar case where each set S(i,j)(t) = r(i,j)(t)[−1, 1].

w

t

N(S(t);w(t))

−r(t0)

r(t0)

−r(t1)

r(t1)

−r(t2)
r(t2)

−r(t3)
r(t3)

Figure 2: Time evolution of the graph of the normal cone to the time-varying set S(t) = [−r(t), r(t)].

It is worth to emphasize that the general coupling strategy (6) is not exclusively implementable via analog
electrical circuits. Indeed, in Section 5 we present two algorithms for the implementation of such coupling
laws in a digital computer. Before that, the robustness of the coupled network (5)-(6) is studied in the
following section.

4 Robust output convergence of heterogeneous networks

Let Θ ∈ R|V|×|E| be the associated oriented incidence matrix of the graph G(V, E). The complete network
with nonsmooth coupling (6) is written in compact form as

ẋ(t) ∈ F (x(t)) + B̄u(t) + ḠZ(t, x(t)) (13a)

ṙ(t) = −Γ((Θ⊺ ⊗ Im)y(t))r(t) (13b)

y(t) = C̄x(t) (13c)

−u(t) ∈ (Θ⊗ Im)N (S(r(t)); (Θ⊺ ⊗ Im)y(t)) (13d)
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where x(t) ∈ Rn, n =
∑|V|

i=1 ni is the aggregated vector of all vertex states; F : Rn → Rn is such that x(t) 7→
[f1(x1(t))

⊺, . . . , f|V|(x|V|(t))⊺]⊺; r(t) ∈ R|E| contains all of the edge variables r(t) = [r(i1,j1)(t), . . . , r(i|E|,j|E|)(t)]
⊺

for {νik , νjk} ∈ E ; and Z : R×Rp ⇒ Rp, where p =
∑|V|

i pi, is the set-valued map Z(t, x(t)) = Z1(t, x1(t))×
· · · × Z|V|(t, x|V|(t)). The matrices B̄ ∈ Rn×|V|m, C̄ ∈ R|V|m×n and Ḡ ∈ Rn×p, are block diagonal given by

B̄ = Diag(B1, . . . , B|V|), C̄ = Diag(C1, . . . , C|V|), and Ḡ = Diag(G1, . . . , G|V|). The function Γ : R|E|m →
R|E|×|E| is such that

Γ
(
(Θ⊺ ⊗ Im)C̄x(t)

)
=

γ(∥[(Θ
⊺ ⊗ Im)C̄x(t)]1∥)

. . .

γ(∥[(Θ⊺ ⊗ Im)C̄x(t)]|E|∥)

 .
Finally, the set S(r(t)) is such that

S(r(t)) = ×
(i,j)
i<j

{νi,νj}∈E

r(i,j)(t)C(i,j) ⊂ R|E|m (14)

that is, S(r(t)) is the Cartesian product between all the sets indexed by the edges of the graph G.
We first formulate sufficient conditions for the existence of solutions of (13) and we defer the formal proof

up to Section 6. By a solution of (13) we mean a pair of absolutely continuous functions x : R+ → Rn and
r : R+ → R|E|, satisfying the inclusion (13) for almost all times t. To that end, we impose the following
assumption.

Assumption 4. There exists a non-singular matrix R ∈ Rn×n such that

RB̄ = R−⊺C̄⊺ . (15)

Assumption 4 constraints the relative degree (with respect to the input-output pair (u(t), y(t))) of the
network (13) to {1, . . . , 1}, which is a necessary condition for passivity of the connected system (13), see
e.g., [11]. However, since at this point the only assumption we make on the vector fields fi concerns their
Lipschitz continuity, the composed network is not necessarily passive. This lack of passivity allows us to
consider the robust agreement of systems with interesting behaviors, such as self-sustained oscillations or
chaotic solutions. It is easy to see that if for each i ∈ {1, . . . , |V|} there exists a symmetric, positive definite

matrix, Pi ∈ Rni×ni , such that PiBi = C⊺
i , then R = Diag(P

1/2
1 , . . . , P

1/2
|V| ) satisfies Assumption 4. Notice

that in a more general setting we may have some systems for which there is no symmetric, positive definite
matrix, Pi, satisfying PiBi = C⊺

i . Nevertheless, it might still exists R ∈ Rn satisfying (15). In addition to
Assumption 4 we also consider the following standing assumption.

Assumption 5. The set of admissible initial conditions is compact so that there is a constant R̄ > 0, such
that ∥r(0)∥ ≤ R̄, and

(Θ⊺ ⊗ Im)y(0) ∈ S(r(0)) .

Assumption 5 is necessary for the existence of absolutely continuous solutions. Otherwise, a state jump
at t = 0 will take place so that (Θ⊺ ⊗ Im)y(0+) = limt→0+(Θ

⊺ ⊗ Im)y(t) ∈ S(r(0+)).
We are now ready to state the main result concerning the existence of solutions of (35).

Theorem 6. Let Assumptions 1, 2, 4 and 5 hold. Then, there exist absolutely continuous functions x :
[0, T ] → Rn and r : [0, T ] → R|E| that satisfy (13) almost everywhere in [0, T ].

The proof of Theorem 6 is postponed until Section 6. We now change focus to the consequences of
Theorem 6 concerning the robust output convergence problem.
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Remark 1. Note that in Theorem 6 the final time T is arbitrary but finite, and some upper-bounds in the
proof depend on such T . In terms of the behavior, this translates into that fact that, even though there are
not finite escape times, it is possible for the trajectories to grow unbounded as time evolves. An alternative
approach consists in considering extra conditions, regarding the vertex dynamics, in order to guarantee
the existence of a compact, positively invariant region, having in this way an uniform upper-bound on the
state variables. For instance, if each vertex is assumed semipassive [44], then the trajectories of (13) are
guaranteed to be uniformly bounded in the whole domain [0,+∞). Namely, the i-th vertex is semipassive if
there exist ρ > 0 and a continuously differentiable, radially unbounded function, Vi : Rni → R+ such that
for any admissible input ui(t),

d

dt
V (xi(t)) ≤ yi(t)

⊺ui(t)−Hi(xi(t))

where Hi : Rni → R is such that Hi(xi(t)) ≥ M > 0 whenever ∥xi(t)∥ > ρ. Thus, the derivative of the

positive definite function V (x) =
∑|V|

i=1 Vi(xi) is

d

dt
V (x) ≤

|V|∑
i=1

y⊺i ui −
|V|∑
i=1

Hi(xi)

≤ −
|V|∑
i=1

∑
j∼i

y⊺i N(S(r(i,j)(t)); yi − yj)−
|V|∑
i=1

Hi(xi)

= −y⊺(Θ⊗ Im)N(S(r(t)); (Θ⊺ ⊗ Im)y)−
|V|∑
i=1

Hi(xi)

≤ −
|V|∑
i=1

Hi(xi) , (16)

where the last inequality above follows from the maximal monotonicity of the normal cone map. Since the
right-hand side of (16) is strictly negative whenever ∥xi∥ > ρ for some i ∈ {1, . . . , |V|}, and the function V
is radially unbounded, then all trajectories converge to the largest invariant region contained in the compact
set

ΩL = {x ∈ Rn|V (x) ≤ L} ,
where L is such that

√
|V|ρB ⊂ ΩL, and boundedness of trajectories of (13) follows.

The well-posedness result in Theorem 6 conveys important consequences regarding the output convergence
of general heterogeneous networks in which each agent may be subject to external persistent disturbances.
Namely, well-posedness of the network (13) implies that (Θ⊺⊗Im)y(t) ∈ S(r(t)) for all times t ≥ 0. Moreover,
it follows from the dynamics of r(t) in (13) together with the strict positivity of Γ that r(t) → 0 as t→ ∞.
Therefore,

(Θ⊺ ⊗ Im)y(t) → 0 as t→ ∞ .

The following corollary is thus an immediate consequence of Theorem 6.

Corollary 7. Under the assumptions of Theorem 6, the coupling law (6) achieves the robust asymptotic
output convergence of the family of systems (5).

Note that, in the general heterogeneous case, the full convergence of the state is not guaranteed since,
in principle, the dimension of the state of each individual system might differ from that of its neighbors.
Nevertheless, in the cases when all individual systems have the same state dimension, then extra conditions
can guarantee full convergence.

Definition 2. The network (13) is asymptotically zero-state detectable if for any two systems νa, νb such
that the output mismatch ya − yb → 0, whereas the terms ũs(t) = Bsus(t) +Gsζ(t, xs(t)), s ∈ {a, b} satisfy,
ũa(t) → 0, ũb(t) → 0 implies xa(t)− xb(t) → 0.

Corollary 8. Let all assumptions of Theorem 6 hold. If in addition the dimension of the state is the same for
each individual system and the incremental dynamics of the network is asymptotically zero-state detectable,
then the coupling (6) achieves the full-state convergence of the family of systems (5).
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The results concerning asymptotic output convergence of the network are valid only when the ideal set-
valued map in (6) is used. However, in practice, it is not possible to have a real-world implementation
of the ideal coupling as depicted in Section 3, since it requires the use of ideal components. In real-life
experiments there are losses due to parasitic resistance effects and unmodeled dynamics. In the next section
an implementable coupling law is proposed via the implicit discretization of the continuous-time coupling (6),
so that the convergence of the output towards a unique trajectory is maintained with a precision depending
on the sampling step time h (practical output convergence).

5 Numerical implementation of the coupling strategy

Nowadays, due to the great performance and accessibility of digital electronic devices, it may be useful to
implement the coupling law discussed above using a discrete-time scheme in digital microcomputers. To
make such digital implementation, it becomes necessary to pay extra attention to the discretization used, as
it is well known, explicit discretization schemes are prone to the appearance of chattering, which leads to
degradation of closed-loop performance or even loss of stability, see e.g., [1, 6]. In this section we study two
approaches for computing a discrete-time coupling law based on (6).

5.1 Implementation via implicit discretization

The discretization considered in this subsection is based on the discretization scheme presented in [2], where
the set-valued component is discretized implicitly and the disturbances are ignored for the selection process.
It is similar to the discretization used in the proof of Theorem 6 (see Section 6.2), but in the present context,
we are interested only in the output dynamics, as the full state is assumed unknown. Concretely, in order
to compute a selection of the generalized equation (6) we consider the output dynamics

ẏ(t) = C̄
(
F (x(t)) + Ḡζ(t, x(t))

)
+ C̄B̄u(t) (17a)

ṙ(t) = −Γ ((Θ⊺ ⊗ Im)y(t)) r(t) (17b)

−u(t) ∈ (Θ⊗ Im)N (S(r(t)); (Θ⊺ ⊗ Im)y(t)) , (17c)

where x(t) is the state of the network (13) at time t ≥ 0. The discretized output dynamics is

yk+1 = ỹk+1 + hC̄(F (xk)− F (C̄†yk) + Ḡζk) (18a)

ỹk+1 = yk + hC̄F (C̄†yk) + hC̄B̄uk+1 (18b)

rk+1 =
(
I + hΓ

(
(Θ⊺ ⊗ Im)yk

))−1
rk (18c)

−uk+1 ∈ (Θ⊗ Im)N(S(rk+1); (Θ⊺ ⊗ Im)ỹk+1) . (18d)

The new variable ỹk+1 in (18) plays the role of a nominal output. Its role consists in making the selection
strategy independent of unknown data, (i.e., independent of C̄(F (xk)+ Ḡζk)). Note that, in the cases when
C̄ is invertible, as for instance C̄ = In, the difference F (xk) − F (C̄†yk) = 0 for all xk and all yk. It is also
noteworthy to recall that, in general, the complete state is not available, so that the term F (xk) is unknown.
A possible way to reduce the level of uncertainty, consists in the design of state-observers as is done in [3, 37].
In this work the coupling strategy is static, so that no observer design is discussed. This, in order to keep
the numerical implementation of the coupling law as simple as possible.

The following corollary establishes the well-posedness of the implicitly defined coupling (18b)-(18d), as
well as, its effectiveness for solving the practical output convergence problem in a discrete-time context.

Corollary 9. Let all assumptions of Theorem 6 hold. For the closed-loop heterogeneous network (18) the
coupling action is given explicitly as

uk+1 = − 1

h
Λ−1

(
Id−proj(L†S(rk+1); •)

)
(L†LΛ−1(yk + hC̄F (C̄†yk))) , (19)

where L = (Θ⊺ ⊗ Im)Λ and Λ = (C̄B̄)
1
2 . Moreover, the “nominal ouput” ỹk+1 ∈ S(rk+1) for all k ≥ 0

and if the function F and ζk are uniformly bounded then the network (18)-(19) achieves practical output
convergence.
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Proof. It follows from Assumption 4 that the product C̄B̄ is symmetric and positive definite. Let Λ = Λ⊺ ≻ 0
be such that Λ2 = C̄B̄. Then, the change of variables wk = Λ−1yk, yields,

wk+1 = w̃k+1 + hΛ−1φk (20a)

w̃k+1 = wk + hpk + hvk+1 (20b)

rk+1 = Γ̃(wk)rk (20c)

−vk+1 ∈ L⊺N(S(rk+1);Lw̃k+1) (20d)

where vk+1 = Λuk+1, φk = C̄(F (xk)−F (C̄†Λwk)+Ḡζk), pk = Λ−1C̄F (C̄†Λwk), Γ̃(wk) =
(
I + hΓ

(
Lwk

))−1

and L = (Θ⊺ ⊗ Im)Λ. Note that pk is assumed to be known, as it depends only on nominal parameters and
the measurable output yk = Λwk. Setting wk

⊥ = L†Lwk and wk
q = (I − L†L)wk as the projections onto

(nullL)⊥ and nullL respectively, (similarly for pk⊥ and pkq ), it follows that

wk+1 = w̃k+1 + hΛ−1φk (21a)

w̃k+1
⊥ = wk

⊥ + hpk⊥ + hvk+1 (21b)

w̃k+1
q = wk

q + hpkq (21c)

rk+1 = Γ̃(wk
⊥)r

k (21d)

−vk+1 ∈ N(Ŝ(rk+1); w̃k+1
⊥ ) (21e)

where Ŝ(rk+1) = {s ∈ R|V|m|Ls ∈ S(rk+1)} = {s ∈ R|V|m|s ∈ L†S(rk+1)}. It follows from (21b) and (21e)
that

wk
⊥ + hpk⊥ − w̃k+1

⊥ ∈ hN(Ŝ(rk+1); w̃k+1
⊥ )

Thus, it follows from [7, Theorem 3.14] that

w̃k+1
⊥ = proj

(
Ŝ(rk+1);wk

⊥ + hpk⊥
)
, (22)

and the substitution of (22) back into (21b) gives us an explicit expression for vk+1 as

vk+1 = − 1

h

(
Id−proj(Ŝ(rk+1); •)

)
(wk

⊥ + hpk⊥) ,

from where (19) follows. Also note that (22) implies that w̃k+1
⊥ ∈ Ŝ(rk+1), that is

Lw̃k+1
⊥ = Lw̃k+1 = (Θ⊺ ⊗ Im)ỹk+1 ∈ S(rk+1) ,

and (18a) leads us to

(Θ⊺ ⊗ Im)(yk+1 − hC̄(F (xk)− F (C̄†yk) + Ḡζk)) ∈ S(rk+1) . (23)

If the map F and ζk, are uniformly bounded then there is a finite M > 0 such that

(Θ⊺ ⊗ Im)yk+1 ∈ S(rk+1) + hMB .

So that the error is dependent of the sampling time h. Finally, as (21d) is Schur stable, then practical output
convergence follows. This concludes the proof.

Remark 2. The assumption regarding the uniform boundedness of F and ζ, is sufficient but not necessary.
For instance, if F is not uniformly bounded but Lipschitz continuous instead, then it follows from (23) that

(Θ⊺ ⊗ Im)yk+1 ∈ S(rk+1) + h(M1∥xk∥+M2)B ,

for some finite M1,M2 ≥ 0, so that the outputs remain close to each other whenever the trajectories rest in
an invariant compact region and the sampling time h is small enough. Further assumptions on the individual
vector fields, such as, semipassivity [44], incremental dissipativeness [45], or QUAD-ness of the vector field
[18], are common to ensure the existence of a compact invariant region of the state, allowing to relax the
uniform boundedness of both F and ζ, see Remark 1 in Section 4.
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It is worth to point out that the implicit discretization scheme in (18) is centralized, as it uses the pseudo-
inverse of L, so that in order to compute the individual input uk+1 to each agent, it is necessary to have
access to the output of the entire network at each time step. The following subsection presents a simple way
of generating a distributed approach in order to achieve practical output convergence of the network, via a
simple regularization of the ideal coupling.

ν1ν2

ν3

ν4

...

Chua system

FitzHugh-Nagumo system

Lorenz system

Rössler system

Figure 3: Heterogeneous network of systems. At each time the input to the i-th vertex is computed from
the outputs of its neighbors. The parameters of each vertex system are different, even if they belong to the
same class.

Example 10. Let us consider an heterogenous small-world network [38] consisting of 16 vertices, where
each vertex is of one of the following four different type of systems: A) Chua chaotic system, B) FitzHugh-
Nagumo oscillator, C) Lorentz chaotic system, and D) Rössler chaotic system. Figure 3 displays the network
configuration.

Each vertex is of the form

ẋi(t) = (Ai +∆Ai)xi(t) + (Ei +∆Ei)hi(t) +Biui(t)

gi(t) = (Fi +∆Fi)xi(t)

yi(t) = Cixi(t)

Let A,B, C, D, be the sets of indices for systems of type A), B), C), and D) respectively. The set of
nominal parameters, Ai, Bi, Ci, Ei and Fi, is shown in Table 1 for each class of vertex system i ∈ A ∪ B ∪
C ∪ D. Note that the dimension of the internal states may vary from vertex to vertex. So that in this case
full convergence is not possible to achieve. The terms ∆Ai,∆Ei,∆Fi denote parametric uncertainties for
each model class. Each uncertainty term is taken as a sample from a standard distribution, of appropriate
dimensions, with zero mean and standard deviation σ = 0.1. The function γ : R+ → R+ used for setting the
rate of descend of rk is set as,

γ(η) =

{
η, if η > δ ;

0, otherwise .

where δ = 0.5. In this setting, the input to each vertex is computed in a centralized fashion via (19). Figure
4 shows the state xi(t), the output yi(t), and the input ui(t) of each vertex in the network with a sampling
time of h = 10ms.

5.2 Implementation via regularization

The coupling law (6) is largely inspired by the electrical network in Figure 1. Thus, with the end of obtaining
a distributed numerical scheme we consider a regularized version of the ideal electrical coupling discussed in
Example 3. Specifically, let us consider the circuit shown in Figure 5. After simple computations, similar to
those shown in Example 3, we obtain that the regularized coupling circuit obeys

−u(i,j) = u(j,i) ∈ N(S(i,j), yi − yj +Ru(i,j)) . (24)
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Figure 4: (Upper left) Time trajectories of states of vertex systems νi. (Upper right) Time trajectories of
coupling inputs ui for each vertex. (Bottom) Time trajectories of output signals of each vertex system. The
coupling is given by (19).

Ai Bi Ci Ei Fi hi

i ∈ A

−8.8 8.8 0
1 −1 1
0 −15 0

 10
0

 B⊺
i

8.80
0

 B⊺
i tanh(2gi) + 0.7gi

i ∈ B
[
0 −2
20 2

] [
0
1

]
B⊺

i

[
1
0

]
E⊺

i −g3i + 5.5gi

i ∈ C

−10 10 0
28 −1 0
0 0 − 8

3

 11
1

 B⊺
i

0 0
1 0
0 1

 —

[
−x1x3

x1x2

]

i ∈ D

−0.05 −0.5 −1
1 0.133 0
0 0 −1

 11
0

 15
0

⊺ 00
1

 10
0

⊺

max{0, 15(gi − 3)}

Table 1: Nominal parameters for the three classes of systems for the network in Figure 3.

νi νj

u(i,j)
R
2

ID1 −+

s(t)

− +s(t)ID2

R
2 u(j,i)

+

−
yi

+

−
yj

Figure 5: Regularized coupling circuit
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Recalling that N(S, y) = ∂ψS(y) is a convex cone it follows that for any R > 0

−Ru(i,j) ∈ N(S(i,j); yi − yj +Ru(i,j)) . (25)

Hence,
yi − yj ∈ (Id+N(S(i,j); •))(yi − yj +Ru(i,j)),

and from (4) we retrieve the explicit expression for u(i,j) as

u(j,i) = −u(i,j) =
1

R

(
Id−proj(S(i,j); •)

)
(yi − yj) . (26)

The coupling (26) is single-valued and it is shown below that it achieves practical output convergence for
values of R sufficiently small. Figure 6 depicts the coupling function (26) for the scalar case.

w

t

1
Rt

(Id − proj(S(t); •)) (w(t))

−r(t0)

r(t0)

−r(t1)

r(t1)

−r(t2)
r(t2)

−r(t3)
r(t3)

Rt0

1

1

Rt0

Figure 6: Time evolution of the graph of the coupling law in (26). In this case as t ↑ ∞, Rt ↓ 0 and the
graph of the coupling map approaches the graph of the normal cone to the set S(t), see Figure 2.

Note that, (26) is independent of the parameters of the vertices dynamics, as only the associated outputs
and the set S(i,j) are needed. Thus, (26) can be implemented in a distributed fashion. It is also important
to remark that (26) is a Lipschitz continuous function of the output mismatch yi − yj and therefore the
network (13)–(26) does not have finite-escape times, that is, it is well-posed in the entire domain [0,+∞).
Moreover, in the limit as R ↓ 0, the network is also well-posed, as in that case, the coupling (24) coincides
with the original coupling (6) via (12), see Theorem 6 and the remark after it.

Corollary 11. Under the assumptions of Theorem 6, the regularized coupling

uk+1
i =

∑
j∼i

uk+1
(i,j) , (27)

where uk+1
(i,j) is given by

−uk+1
(i,j) = uk+1

(j,i) =
1

Rk
(i,j)

(
Id− proj(S(rk+1

(i,j)); •)
)
(yki − ykj ) , (28)
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and the regularization parameters Rk
(i,j) ∈ R+ satisfy

Rk
(i,j) = Rk

(j,i) := min

{
hδ1

∥uk(i,j)∥
, δ2

}
, (29)

for some δi > 0 i ∈ {1, 2}, achieves the practical output convergence of (13) whenever the time step h is
sufficiently small.

Proof. It follows from (28) that

yki − ykj +Rk
(i,j)u

k+1
(i,j) = proj(S(rk+1

(i,j)); y
k
i − ykj ) .

Hence, ∥Rk
(i,j)u

k+1
(i,j)∥ = dist(yki − ykj ;S(r

k+1
(i,j))). Consequently,

yki − ykj ∈ S(rk+1
(i,j)) +Rk

(i,j)∥uk+1
(i,j)∥B ⊂ S(rk+1

(i,j)) + hδ1
∥uk+1

(i,j)∥
∥uk(i,j)∥

B .

In the limit as h ↓ 0,
∥uk+1

(i,j)
∥

∥uk
(i,j)

∥ → 1, (notice that such limit is well-defined, since in the limit we retrieve the

strategy (6) whose well-posedness is guaranteed by Theorem 6), so that for h sufficiently small the output
mismatch yki −ykj lies in a neighborhood of S(rk+1

(i,j)) and practical output convergence follows. This concludes

the proof.

Example 12. Let us consider again the heterogeneous network of systems described in Example 10 above.
This time each coupling is implemented in a distributed fashion using (28). The nominal parameters of each
vertex are the same as shown in Table 1 and the function γ describing the rate of descend of the variables
r(i,j) also remains unchanged. The disturbances are taken in the same manner as in Example 10. In this
example, the sampling time is decreased to h = 2.5ms, (as for a sampling time of h = 10ms, the coupling
(28) fails to achieve the ultimate boundedness of the mismatch yki −ykj ). Note that, in this case, no knowledge
regarding the vector field F is used for the computation of the coupling signals. The regularization parameters
Rk

(i,j) are set as in (29) with hδ1 = 25 and δ2 = 0.1. Figure 7 shows the time trajectories of the state, control
input, and output of each vertex system, illustrating the practical output convergence of the heterogeneous
network of Figure 3.
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Figure 7: (Upper left) Time trajectories of states of vertex systems νi. (Upper right) Time trajectories of
coupling inputs ui for each vertex. (Bottom) Time trajectories of output signals for each vertex.

Finally, Figure 8 displays the sum of square error signals for the coupling schemes (19) and (28) under
the same sampling rate. As expected, there is a trade-off between centrality and precision, since the centralized
scheme (19) leads to a lower error compared to the fully distributed scheme (28).
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Figure 8: Time evolution of the sum of squares error signal eSOS(t) :=
1
2

∑|V|
i=1

∑
j∼i ∥yi(tk) − yj(tk)∥2 for

coupling schemes (19)(black) and (28) (gray) with a common sampling period of h = 2.5ms.

6 Existence of solutions of the coupled network

This section presents the proof of Theorem 6 regarding existence of absolutely continuous solutions of the
differential inclusion (13). The proof is an adaptation and an extension of the proof in [25] and is presented
here for completeness. The proof is divided in several subsections. First, a change of coordinates and an
useful decomposition of the dynamics is performed, putting the model into a more suitable structure for its
analysis. Second, a sequence of approximate solutions is constructed based on its associated discrete-time
model. Third, it is shown that these sequences of approximate solutions converge in appropriated spaces.
Finally, it is shown that the limit functions are indeed trajectories of the continuous-time model.

6.1 State transformation and model decomposition

Let us consider the following change of variables

z(t) = Rx(t) , (30)

where R satisfies Assumption 4. Thus, (13) is transformed intoż(t) ∈ F̃ (z(t))− Θ̃⊺N
(
S(r(t)); Θ̃z(t)

)
+ (IN ⊗RG)Z(t, (I|V| ⊗R−1)z(t)) ,

ṙ(t) = −Γ
(
Θ̃z(t)

)
r(t) ,

(31)

where, F̃ = R◦F ◦R−1 and Θ̃ = (Θ⊺⊗ Im)C̄R−1 = (Θ⊺⊗ Im)B̄⊺R⊺ ∈ R|E|m×n. It follows from Assumption
2 that 0 ∈ intS(r(t)) for all t ≥ 0. Consequently, for any ϑ ∈ null Θ̃, Θ̃ϑ ∈ S(r(t)) for all t ≥ 0. Hence,
rge(Θ̃) ∩ intS(r(t)) ̸= ∅ for all t, and it follows from [7, Proposition 16.32] that

Θ̃⊺N(S(r(t)); Θ̃z(t)) = ∂(ψS(r(t)) ◦ Θ̃)(z(t)) .

It follows easily from the definition of normal cone and the chain rule for convex subdifferentials that

Θ̃⊺N(S(r(t)); Θ̃z(t)) = N(S̃(r(t)); z(t)) , (32)

where
S̃(r(t)) =

{
ϑ ∈ Rn|Θ̃ϑ ∈ S(r(t))

}
⊂ Rn , (33)

is closed and convex. Hence, (31) transforms into{
ż(t) ∈ F̃ (z(t))−N(S̃(r(t)); z(t)) + Z̃(t, z(t))

ṙ(t) = −Γ(Θ̃z(t))r(t)
(34)

where Z̃(t, z(t)) = RḠZ(t, R−1z(t)).
In what follows we denote the orthogonal projection of any η ∈ Rn onto the subspace null Θ̃ as ηq, and

the complementary projection onto (null Θ̃)⊥ as η⊥. That is, let Π be the matrix representation of the
projection onto null Θ̃. Then, for any η ∈ Rn, η = η⊥ + ηq, where η⊥ = (I −Π)η and ηq = Πη.
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Hence, letting z(t) = z⊥(t) + zq(t), (34) is rewritten as,

ż⊥(t) ∈ F̃⊥(z(t))−N(S̃(r(t)); z⊥(t)) + Z̃⊥(t, z(t)) (35a)

żq(t) ∈ F̃q(z(t)) + Z̃q(t, z(t)) (35b)

ṙ(t) = −Γ(Θ̃z⊥(t))r(t) (35c)

where we have used the fact that ΠΘ̃⊺ = 0, for Π a projector onto null Θ̃, together with (32).

6.2 Construction of approximate solutions

Clearly, that well-posedness of (13) is equivalent to that of (35). Thus, we continue by discretizing in time
the dynamics (35) using a semi-implicit Euler method.

zk+1
⊥ ∈ zk⊥ + hq̃⊥(t

k, zk)− hN(S̃(rk+1); zk+1
⊥ ) (36a)

zk+1
q = zkq + hq̃q(t

k, zk) (36b)

rk+1 =
(
I + hΓ(Θ̃zk⊥)

)−1

rk (36c)

where h := tk+1 − tk > 0 is the time-step, and

q̃(tk, zk) = F̃ (zk) + ζ̃(tk, zk) ,

so that ζ̃(tk, zk) ∈ Z̃(tk, zk) and q̃(tk, zk) = q̃⊥(tk, zk) + q̃q(t
k, zk). It thus follows from the maximal mono-

tonicity of the subdifferential map and Minty’s theorem [7, Theorem 21.1], that there exists a unique selection
zk+1
⊥ satisfying (36a). Indeed, the rearrangement of terms in (36a) and the use of (4) (see also [7, Theorem

3.14]), gives an explicit expression for zk+1
⊥ satisfying (36a) as

zk+1
⊥ = proj

(
S̃(rk+1); zk⊥ + hq̃⊥(t

k, zk)
)
= proj

(
Θ̃†S(rk+1); zk⊥ + hq̃⊥(t

k, zk)
)
, (37)

where the second equality is a consequence of Proposition 13-ii) in A. It is worth to remark that the selection
(37) is unique and it was possible to compute because of the implicit discretization of the set-value term in
(36a). From (37) and in view of Assumption 5 and Proposition 13 it follows that

zk⊥ ∈ Θ̃†S(rk), and zk ∈ S̃(rk) for all k ≥ 0 .

It is also worth mentioning that, as Γ(Θ̃zk⊥) is a diagonal matrix with non-negative entries, the inverse

in (36c) is well-defined. Moreover, since Γ(Θ̃(z⊥k)) is a non-negative diagonal matrix, it follows that all
eigenvalues of I+hΓ(Θ̃(zk⊥)) lie outside the unitary ball. Recalling that for matrices we consider the induced
norm, it is clear that

∥(I + hΓ(Θ̃(zk⊥))
−1∥ ≤ 1 for all zk ∈ Rn . (38)

Hence, the recursion on rk, given by (36c), is Schur stable regardless of the value of zk.
Let us consider the following family of piecewise linear functions parametrized by h.

zh(t) = zk +
t− tk

h
(zk+1 − zk) for t ∈ [tk, tk+1) , (39)

rh(t) = rk +
t− tk

h
(rk+1 − rk) for t ∈ [tk, tk+1) . (40)

It is clear from (39)-(40) that zh and rh are differentiable almost everywhere in [0, T ]. In what follows it is
shown that for h sufficiently small the sequences {zh}h>0, {rh}h>0, {żh}h>0, {ṙh}h>0, converge in suitable
spaces.
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6.3 Convergence of approximate solutions

Let 0 = t0 < t1 < · · · < tN = T . First, we show that the derivatives żh and ṙh are bounded for t ∈ [0, T ].
To that end, let t ∈ [0, T ] \ {t0, t1, . . . , tN} and consider the following inequality

∥żh(t)∥ =
1

h
∥zk+1 − zk∥ ≤ 1

h
∥zk+1 − zk − hq̃(tk, zk)∥+ ∥q̃(tk, zk)∥ . (41)

Let us focus on the first term on the right-hand side of the inequality. It follows from (36)-(37) and the
definition of projection that

∥zk+1 − zk − hq̃(tk, zk)∥ = ∥zk+1
⊥ + zk+1

q − zk − hq̃(tk, zk)∥
= ∥ proj

(
S̃(rk+1); zk⊥ + hq̃⊥(t

k, zk)
)
+ zkq + hq̃q(t

k, zk)− zk − hq̃(tk, zk)∥

= ∥ proj
(
S̃(rk+1); zk⊥ + hq̃⊥(t

k, zk)
)
− zk⊥ − hq̃⊥(t

k, zk)∥

= dist(zk⊥ + hq̃⊥(t
k, zk), S̃(rk+1))

≤ dist(zk⊥, S̃(r
k+1)) + h∥q̃⊥(tk, zk∥

= dist(zk⊥, S̃(r
k+1))− dist(zk⊥, S̃(r

k)) + h∥q̃⊥(tk, zk)∥ ,

where we used the fact that zk⊥ ∈ S̃(rk) on the last line. Making use of Lemma 14 in A yields the upper
bound

∥zk+1 − zk − hq̃(tk, zk)∥ ≤ LS∥rk+1 − rk∥+ h∥q̃⊥(tk, zk)∥ , (42)

and the substitution of (42) into (41) yields the estimate

∥żh(t)∥ ≤ LS

h
∥rk+1 − rk∥+ 2∥q̃(tk, zk)∥

≤ LS∥ṙh(t)∥+ 2(LF̃ + M̄ζ)∥zk∥+ 2(∥F̃ (0)∥+Mζ) , (43)

where LF̃ denotes the Lipschitz constant of F̃ and ∥ζ̃(tk, zk)∥ ≤ M̄ζ∥zk∥+Mζ follows from Assumption 1.
On the other hand, it follows from (36c) and (40) that

∥ṙh(t)∥ =
∥∥∥Γ(Θ̃zk⊥)rk+1

∥∥∥
=
∥∥∥Γ(Θ̃zk⊥)(I + hΓ(Θ̃zk⊥))

−1rk
∥∥∥

≤ ∥Γ(Θ̃zk⊥)∥
(

k∏
r=1

∥∥∥(I + hΓ(Θ̃zk⊥))
−1
∥∥∥) ∥r(0)∥ .

Note that (9) implies that there exist positive constants M̄Γ,MΓ such that

∥Γ(Θ̃zk⊥)∥ ≤ M̄Γ∥zk∥+MΓ .

Therefore,

∥ṙh(t)∥ ≤ R̄(M̄Γ∥zk∥+MΓ) , (44)

where R̄ is given by Assumption 5. Thus, the substitution of (44) into (43), and by setting α1 := LSR̄MΓ +

2
(
∥F̃ (0)∥+Mζ

)
, α2 := 2LF̃ + 2M̄ζ + R̄M̄ , yields

∥żh(t)∥ ≤ α1 + α2∥zk∥
= α1 + α2∥zh(t)− (t− tk)żh(t)∥
≤ α1 + α2(t− tk)∥żh(t)∥+ α2∥zh(t)∥
≤ α1 + α2h∥żh(t)∥+ α2∥zh(t)∥ . (45)
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Let 0 < δ < 1, then for all 0 < h < h∗ := 1−δ
α2

it follows that

∥żh(t)∥ ≤ α1

1− α2h
+

α2

1− α2h
∥zh(t)∥

≤ α1

δ
+
α2

δ
∥zh(t)∥ . (46)

The integration on both sides of (46) from t = 0 up to t = T , yields the estimate

∥zh(t)− zh(0)∥ =

∥∥∥∥∫ t

0

żh(τ)dτ

∥∥∥∥
≤
∫ t

0

∥żh(τ)dτ∥ ≤ α1

δ
t+

α2

δ

∫ t

0

∥zh(τ)∥dτ . (47)

Hence,

∥zh(t)∥ ≤ α1

δ
t+ ∥z(0)∥+ α2

δ

∫ t

0

∥zh(τ)∥dτ .

By Gronwall’s inequality, (see e.g., [53, Proposition 3.10]), it follows that

∥zh(t)∥ ≤
(α1

δ
t+ ∥z(0)∥

)
e

α2
δ t ≤

(α1

δ
T + ∥z(0)∥

)
e

α2
δ T =:MT , (48)

and therefore,

∥żh(t)∥ ≤ α1 + α2MT

δ
, (49)

∥ṙh(t)∥ ≤ R̄(M̄ΓMT +MΓ) , (50)

∥ζ̃h(t, zh(t))∥ ≤ M̄ζMT +Mζ . (51)

Consequently, {zh}0<h<h∗ , {żh}0<h<h∗ , {rh}0<h<h∗ , {ṙh}0<h<h∗ , and {ζ̃h}0<h<h∗ are uniformly bounded for
all t ∈ [0, T ]. In addition, (49) implies that {zh}0<h<h∗ is equi-Lipschitz in [0, T ], that is, there is a common
Lipschitz constant for all zh in the sequence with 0 < h < h∗. Therefore, {zh}0<h<h∗ is equicontinuous [29,
Definition 1.3.17]. Thus, it follows from the Arzelà-Ascoli theorem [10, Theorem 4.25], that there exists a
subsequence, still denoted as {zh}, such that zh → z uniformly as h ↓ 0. Moreover, it follows from (49) that
żh ∈ L1([0, T ];Rn) and it is equi-integrable, see e.g., [29, Definition 3.2.1]. Thus, it follows from the Dunford-
Pettis theorem [10, Theorem 4.30], that there exists a subsequence, still denoted as {żh}, such that żh ⇀ ż
weakly in L1([0, T ];Rn) as h ↓ 0. The same arguments apply for the sequences {rh}0<h<h∗ and {ṙh}0<h<h∗ .
That is, rh → r uniformly and ṙh ⇀ ṙ weakly in L1([0, T ];R|E|m) as h ↓ 0. Also, as ζ̃h ∈ L∞([0, T ];Rp), it

follows from the Banach-Alaoglu-Bourbaki theorem [10, Theorem 3.16], that ζ̃h
∗
⇀ ζ̃ in the weak*-topology

of L∞([0, T ];Rp). Recalling that the uniform limit of sequences of continuous functions is again continuous,
and since the sequence of derivatives {żh} and {ṙh} are equi-integrable, it follows that both limit functions,
z and r, are absolutely continuous in [0, T ], [20].

6.4 Compliance of the limit functions with the continuous time model

It rests to show that the limit functions of the previous subsection satisfy the differential inclusion (35)
for almost all t ∈ [0, T ]. To that end, let τh(t) = tk and τ+h (t) = tk+1 for t ∈ [tk, tk + h). Notice that
limh→0 τh(t) = limh→0 τ

+
h (t) = t. Hence, for all t ∈ [0, T ], zk⊥ = [zh(τh(t))]⊥, rk = rh(τh(t)), and it follows

from Lemma 14 in A that

dist(z⊥(t), Θ̃
†S(r(t))) ≤ dist(z⊥(t), Θ̃

†S(rh(τh(t)))) + LS∥r(t)− rh(τh(t))∥
≤ ∥z⊥(t)− [zh(τh(t))]⊥∥+ LS∥r(t)− rh(τh(t))∥ ,

Taking the limit as h ↓ 0 on both sides of the inequality leads us to

z⊥(t) ∈ Θ̃†S(r(t)), for all t ∈ [0, T ] ,
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and Proposition 13 implies that

z(t) = z⊥(t) + zq(t) ∈ S̃(r(t)) for all t ∈ [0, T ] . (52)

Now it follows from (48)-(49), Assumption 1, and the continuity of F̃ , that there exists a constant 0 < M̄T <
∞ such that ∥∥∥∥−zk+1 − zk

h
+ q̃(tk, zk)

∥∥∥∥ ≤ M̄T , for all t
k ∈ [0, T ] . (53)

On the other hand, [7, Example 16.49] together with Proposition 13 yield,

M̄TN(S̃(rk+1); zk+1
⊥ ) ∩ B = M̄T∂ dist(z

k+1
⊥ , S̃(rk+1))

= M̄T∂ dist(z
k+1
⊥ , Θ̃†S(rk+1)) (54)

Hence, (53) together with (36) imply that

−z
k+1
⊥ − zk⊥

h
+ q̃⊥(t

k, zk) ∈ M̄T∂ dist(z
k+1
⊥ , Θ̃†S(rk+1)) ,

Therefore,

−[żh(τh(t))]⊥ + hq̃⊥(τh(t), zh(τh(t))) ∈ M̄T∂ dist([zh(τ
+
h (t))]⊥, Θ̃

†S(rh(τ
+
h (t)))) ,

As zh → z and rh → r uniformly as h ↓ 0, then also [zh(τ
+
h (t))]⊥ → z⊥(t) and rh(τ

+
h (t)) → r(t) pointwise

for all t ∈ [0, T ] and letting l ∈ L1([0, T ];Rn) be arbitrary, it follows from Lemma 15 that∫
Ω

⟨−ż⊥(t) + q̃⊥(t, z(t)), l(t)⟩dt = lim
h↓0

∫
Ω

⟨−[żh(τh(t))]⊥ + q̃⊥(τh(t), zh(τh(t))), l(t)⟩dt

≤ lim sup
h↓0

∫
Ω

⟨−[żh(τh(t))]⊥ + q̃⊥(τh(t), zh(τh(t))), l(t)⟩dt

≤
∫
Ω

lim sup
h↓0

σ
(
M̄T∂ dist([zh(τ

+
h (t))]⊥, Θ̃

†S(rh(τ
+
h (t)))); l(t)

)
dt

≤
∫
Ω

σ
(
M̄T∂ dist(z⊥(t); Θ̃

†S(r(t))); l(t)
)
dt . (55)

Since z⊥(t) ∈ Θ̃†S(r(t)) for all t ∈ [0, T ], it follows from [13, Proposition III.35] that for almost all t ∈ [0, T ],

−[ż(t)]⊥ + F̃⊥(z(t)) + ζ̃⊥(t, z(t)) ∈ M̄T∂ dist(z⊥(t); Θ̃
†S(r(t))) ⊂ N(S̃(r(t)); z⊥(t)) .

Analogously, for any l ∈ L∞([0, T ];Rn)∫
Ω

⟨ζ̃(t, z(t)), l(t)⟩dt = lim
h↓0

∫
Ω

⟨ζ̃h(τh(t), zh(τh(t))), l(t)⟩dt

≤ lim sup
h↓0

∫
Ω

⟨ζ̃h(τh(t), zh(τh(t))), l(t)⟩dt

≤
∫
Ω

lim sup
h↓0

σ
(
Z̃(τh(t), zh(τh(t)))); l(t)

)
dt

≤
∫
Ω

σ
(
Z̃(t, z(t)); l(t)

)
dt .

Since Z is assumed upper-semicontinuous with compact convex values, it follows from [13, Proposition III.35]
that ζ̃(t, z(t)) ∈ Z̃(t, z(t)) for almost all t ∈ [0, T ]. Continuing with the proof, it follows from (36b) and (36c)
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that for any l(t) ∈ L1([0, T ];Rn)∫
Ω

⟨żq(t), l(t)⟩dt = lim
h→0

∫
Ω

⟨F̃q(zh(τh(t))) + ζ̃q(τh(t), zh(τh(t))), l(t)⟩dt

=

∫
Ω

⟨F̃q(z(t)) + ζ̃q(t, z(t)), l(t)⟩dt , (56)∫
Ω

⟨ṙ(t), l(t)⟩dt = lim
h→0

∫
Ω

⟨−Γ(Θ̃zh(τh(t)))rh(τ
+
h (t)), l(t)⟩dt

=

∫
Ω

⟨−Γ(Θ̃z⊥(t))r(t), l(t)⟩dt . (57)

Therefore, for almost all t ∈ [0, T ],

żq(t) = F̃q(z(t)) + ζ̃q(t, z(t)) ∈ F̃q(z(t)) + Z̃q(t, z(t)) ,

ṙ(t) = −Γ(Θ̃z⊥(t))r(t) .

This concludes the proof.

7 Conclusions and further research

A set-valued coupling protocol achieving robust output convergence in networks of heterogeneous systems
is presented. The general case in which each vertex system may have a different dynamical model, with
possible different state space, is considered. The proposed scheme uses only the information from the
outputs of vertices. It provides a generalization of the funnel coupling strategy in [30] to the multivariable,
set-valued setting, and it is also an extension of the adaptable dead-zone coupling in [12]. Two numerical
algorithms for the implementation of the coupling law in digital computers are also discussed. The former
is based on the implicit discretization of the proposed set-valued coupling leading to a centralized coupling
scheme in discrete time. The latter is based on a regularization from the analog circuit and it follows a
black-box approach, as no parameter from the nominal dynamics of the vertices is necessary to compute the
coupling signal, but it requires a faster sampling frequency in order to maintain the error bounded. Further
extensions include the analysis of splitting algorithms to get a distributed way of approximating the coupling
(19).

A Some technical results

In this appendix section some technical results, used mainly in the proof of Theorem 6, are presented.

Proposition 13. For any ρ ∈ R|E|
+ , the set S̃(ρ) in (33) is nonempty with nonempty interior whenever

ρ ∈ intR|E|
+ , and

S̃(ρ) = Θ̃†S(ρ) + null Θ̃ . (58)

Moreover,

i) β ∈ Rn ∈ S̃(ρ) if, and only if, β⊥ ∈ Θ̃†S(ρ).

ii) N(S̃(ρ);β⊥) = N(Θ̃†S(ρ);β⊥) ∩ (null Θ̃)⊥.

Proof. First notice that S̃(ρ) is nonempty as, by construction, for any ρ ∈ R|E|
+ , 0 ∈ S(ρ), so that 0 ∈ S̃(ρ).

Moreover, since Θ̃ as a continuous (linear) mapping from Rn to R|E|m, then for any ρ ∈ intR|E|
+ , there exists

ε > 0 such that εB ⊂ S̃(ρ), and int S̃(ρ) ̸= ∅. Now, to show that (58) holds, notice that ϑ ∈ S̃(ρ) if, and
only if, there is v ∈ S(ρ) such that Θ̃ϑ = v. Moreover, the last equation holds if, and only if, (see e.g., [8,
Proposition 6.1.7]),

ϑ ∈ Θ̃†v + null Θ̃ ,
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from where (58) easily follows. Now, item i) follows from (58), the fact that rge Θ̃† = (null Θ̃)⊥ [8, Proposition
6.1.6-vii)], and the uniqueness of the splitting β = β⊥+βq. For the second item, let ϑ ∈ N(S̃(ρ);β⊥). Hence,
from (58) we have that

0 ≥ ⟨ϑ, η − β⊥⟩ for all η ∈ S̃(ρ)

⇔0 ≥ ⟨ϑ, ηq + η⊥ − β⊥⟩ for all ηq ∈ null Θ̃, η⊥ ∈ Θ̃†S(ρ) . (59)

Since (32) implies that ϑ ∈ rge(Θ̃⊺) = (null Θ̃)⊥, it follows that ⟨ϑ, ηq⟩ = 0 for all ηq ∈ null Θ̃ and then (59)
implies thatN(S̃(ρ);β⊥) ⊆ N(Θ̃†S(ρ);β⊥)∩(null Θ̃)⊥. For the converse, take ϑ ∈ N(Θ̃†S(ρ);β⊥)∩(null Θ̃)⊥.
Then, ⟨ϑ, ηq+η⊥−β⊥⟩ = ⟨ϑ, η⊥−β⊥⟩ for any ηq ∈ null Θ̃, and the equivalence (59) implies thatN(S̃(ρ);β⊥) ⊇
N(Θ̃†S(ρ);β⊥) ∩ (null Θ̃)⊥. This concludes the proof.

Let U ,V ⊂ Rl be two nonempty, compact sets. The Pompeiu-Hausdorff distance between U and V,
denoted as dH(U ,V), is given as

dH(U ,V) = sup
x∈U∪V

|dist(x,U)− dist(x,V)| , (60)

or equivalently
dH(U ,V) = inf {ε ≥ 0| U ⊆ V + εBl, and V ⊆ U + εBl} , (61)

Thus, it follows from (60), that for any η ∈ Rl,

|dist(η,U)− dist(η,V)| ≤ dH(U ,V) . (62)

The Pompeiu-Hausdorff distance measures how far two sets are from each other and it provides a notion
of continuity to the motion of time-varying sets. Roughly speaking, the following lemma shows that the set
S̃ in (33) “moves in a Lispchitz continuous way”.

Lemma 14. For the set S̃ defined in (33) there exists a positive constant LS > 0 such that for any two
η1, η2 ∈ R|E| and any β⊥ ∈ (null Θ̃)⊥, the following holds

|dist(β⊥, S̃(η1))− dist(β⊥, S̃(η2))| ≤ LS∥η1 − η2∥ . (63)

Proof. It follows from Proposition 13 and (62) that,

|dist(β⊥, S̃(η1))− dist(β⊥, S̃(η2))| = |dist(β⊥, Θ̃†S(η1))− dist(β⊥, Θ̃
†S(η2))|

≤ dH(Θ̃
†S(η1), Θ̃

†S(η2)) . (64)

Additionally, (14) implies that Θ̃†S(η2) ⊆ Θ̃†S(η1) + ∥Θ̃†(η1 − η2)∥∞B and Θ̃†S(η1) ⊆ Θ̃†S(η2) + ∥Θ̃†(η1 −
η2)∥∞B. Consequently,

dH(Θ̃
†S(η1), Θ̃

†S(η2)) ≤ ∥Θ̃†(η1 − η2)∥∞ ≤ ∥Θ̃†(η1 − η2)∥2 ≤ ∥Θ̃†∥∥η1 − η2∥ . (65)

Finally, the combination of (64) and (65) leads us to (63). The proof is thus complete.

Lemma 15. Let {βk}k∈N ⊂ Rn, {ρk}k∈N ⊂ R|E| be two convergent sequences such that βk → β and ρk → ρ
as k → ∞. Then, for any q ∈ Rn,

lim sup
k→∞

σ
(
∂ dist(βk, Θ̃

†S(ρk)); q
)
≤ σ

(
∂ dist(β, Θ̃†S(ρ)); q

)
. (66)
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Proof. Let p ∈ ∂ dist(βk, Θ̃S(ρk)), it thus follows from Lemma 14 that, for any s ∈ Rn,

⟨p, s− βk⟩ ≤ dist(s, Θ̃†S(ρk))− dist(βk, Θ̃
†S(ρk))

≤ dist(s, Θ̃†S(ρ))− dist(βk, Θ̃
†S(ρ)) + 2LS∥ρk − ρ∥ .

Hence, for any ε > 0 there exists k∗ ∈ N such that, for all k ≥ k∗,

∂ dist(βk, Θ̃
†S(ρk)) ⊂ ∂ dist(βk, Θ̃†S(ρ)) + εB . (67)

For any nonempty, closed, convex set Θ̃†S(ρ) ⊂ Rn the distance function dist(•, Θ̃†S(ρ)) is a proper, lower
semicontinuous, convex function [7, Corollary 12.12 and Proposition 12.14]. Hence, ∂ dist(•, Θ̃†S(ρ)) is an
upper-semicontinuous set-valued map. It thus follows from (67) that, for any ε > 0 there is k∗ ∈ N such that
for all k ≥ k∗,

∂ dist(βk, Θ̃
†S(ρk)) ⊂ ∂ dist(β, Θ̃†S(ρk)) + εB . (68)

Thus, for any ε > 0, the support function satisfies,

σ(∂ dist(βk, Θ̃
†S(ρk)); q) = sup

p∈∂ dist(βk,Θ̃†S(ρk))

⟨p, q⟩

≤ sup
p∈∂ dist(β,Θ̃†S(ρ))

⟨p, q⟩+ ε sup
b∈B

⟨b, q⟩

= σ(∂ dist(β, Θ̃†S(ρ)); q) + ε∥q∥ . (69)

Finally, taking the lim sup on both sides of(69) leads us to the desired result.
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