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Abstract—Employee attrition is a pervasive problem for many
organizations, and reducing it has become a key goal in the
business world. Although there is a substantial body of literature
on predicting customer attrition, the literature on employee
attrition is comparatively limited. Moreover, even studies that
do address employee attrition often fail to consider the impact of
time and duration on attrition rates. In this context, the present
paper aims to fill this gap in the literature by combining frequent
pattern mining in sequences of events and survival analysis with
Kaplan-Meier to examine how event sequences affect employee
attrition. We introduce the notion of survival-changing sequen-
tial patterns that highlight events that significantly impact the
survival estimator. Our findings suggest that certain patterns are
associated with a higher rate of employee retention, while the
addition of specific events can have a positive or negative impact
on employee survival. This research highlights the importance
of analyzing event sequences and duration when attempting to
reduce employee attrition rates. The practical implications of
this research are significant, as it provides a framework for
organizations seeking to retain their employees and enhance their
overall performance.

Index Terms—Employee attrition, survival analysis, sequential
pattern mining, interestingness metrics

I. INTRODUCTION

Employee attrition is a growing problem in technology
companies around the world, and particularly in IT companies.
According to the DARES1 [1], France recorded nearly 520,000
resignations per quarter, at the end of 2021 and the beginning
of 2022, including 470,000 resignations from permanent con-
tracts, which represents a resignation rate of 2.7%. This rate is
much higher in the consulting firms, reaching for example 19%
at Accenture, 16% at Atos and even 25% in the technology
sector in India. In fact, consultants stay in general between 3
and 8 years in their IT company [2].

Spontaneous resignations imply a decrease in productivity,
even more if the employee was specialized in a domain or
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1DARES: Direction de l’Animation de la Recherche, des Études et des
Statistiques (French Institute)

had seniority. Acquiring new employees involves many costs
and lost time, whether it is for searching in the recruitment
phase or for training and adaptation to a new environment after
hiring. The average cost of disengagement and unavailability
in France is 14,580 euros per year and per employee, of which
9,185 euros are controllable, according to the conclusions of
the IBET 2 [3]. It is therefore preferable for companies to
identify and activate the levers that will allow them to retain
their employees who wish to leave.

Many studies based on approaches from the humanities [4]
have been conducted for more than 30 years to try to determine
what factors drive employees to quit. More recently, especially
since IBM released a dummy dataset in 2016 3, work has fo-
cused on using data mining and machine learning approaches
for the primary purpose of prediction [5]–[7]. However, this
dataset provides limited information about the underlying
dynamics. [8] are the only ones who artificially introduced
temporality into their data. To do this, they randomly decided
for each person who left, whether he or she left in the middle
of the year or at the end of the year on the IBM data.

Thus, despite the growing body of research on predicting
employee attrition, we observe that little or no consideration is
given to the temporal dynamics of employee trajectories, due
to the nature of the snapshot datasets. For example, the few
time-related variables in the IBM data are not comprehensive
and/or precise enough, e.g. Years In Current Role, Years With
Current Manager. It should be noted that the reason why IBM’s
fictional data was used in many works is because the sensitivity
of the personal information that can be contained in it does not
allow us to propose datasets that are open to the community
(GDPR constraints).

To better capture the temporal aspect of attrition, we propose
to combine sequential pattern mining techniques in event se-
quences and survival analysis. Sequential pattern mining aims
to discover significant patterns in sequences of events, such

2IBET : Indice du Bien-Être au Travail (Index of Well-Being at Work)
3https://www.kaggle.com/datasets/pavansubhasht/

ibm-hr-analytics-attrition-dataset



as the sequence of changes that an employee has undergone.
Survival analysis is used to model the time to event data, such
as the time from hiring to resignation, and to estimate the
survival function of a population.

The objective of this paper is to propose an approach to
extract employee attrition/retention factors by considering the
temporal aspect of the phenomenon through sequential pattern
mining and survival analysis. Our approach aims to answer the
following questions:

1) What are the successions of events (pattern) leading to
a resignation?

2) What are the succession of factors (survival-changing
patterns), appearing after a succession of events, that
can prevent/delay or accelerate the resignation of an
employee?

3) How to link sequential pattern mining and survival
analysis?

The contributions of this paper are twofold. First, we pro-
pose a new method for extracting survival-changing patterns.
Second, we leverage this approach to analyze the phenomenon
of attrition using real data from an IT firm, with the goal of
identifying patterns that have a significant impact on employee
attrition within their internal trajectory in the company.

The structure of the rest of this paper is as follows: Section
II focuses on the related work that pertains to the concepts
used in this study. Section III provides background information
and presents the formal framework. Section IV introduces
our proposed method, called survival-changing analysis. This
section exposes how to extract survival-changing patterns.
Following that, we present the experimental evaluations of
our method on our dataset in Section V. Finally, Section VI
provides our conclusions and outlines our future work.

II. RELATED WORKS

This section provides an overview of related work in relation
to the concepts utilized in this study. We review relevant prior
research to contextualize our approach within the existing
literature. By exploring previous contributions, we aim to
highlight the relevance and novelty of our method combining
survival analysis and sequential pattern mining.

A. Survival analysis

Survival analysis is a general term referring to any analysis
of the occurrence of all-or-nothing events over time, such as
death, in the presence of censored data [9], [10] (data not
fully observed during the study period, e.g., if the event being
studied is death, patients who did not die during the study or
who were not “lost to follow-up” during the study). This type
of analysis is widely used in clinical research. It can be used
to describe the survival rate of a group of patients (the time
between the start of treatment and the occurrence of death)
and also to compare the survival rates of two or more groups
of patients to study prognostic factors, i.e., what might explain
the occurrence of death (or another event) over time.

Recall that, although survival is the term used for death for
historical reasons (a term first used in oncology where patient

survival is one of the criteria for treatment efficacy), survival
analysis methods are not only applicable to the study of deaths
but can also be applied to the study of any “single” event that
may occur during a trial: the apparition of a specific type
of cancer [11], student dropout [12], click on an ad [13], or
attrition which is the event considered in this paper.

In survival analysis, three types of statistical methods
are used to calculate survival rates: parametric [14], non-
parametric [15]–[17], and semi-parametric [18], [19] methods.
Parametric methods require specific assumptions about the
distribution, while non-parametric methods do not. Semi-
parametric methods combine both approaches. In our study,
we have chosen a non-parametric method due to the absence
of underlying distribution regarding employee attrition, which
allows for a more accurate modeling of survival. The authors
in [20] conducted a comprehensive survey on various statistical
and non-statistical methods used in survival analysis.

B. Sequential pattern mining

In the data mining domain, a sequence refers to a series
of ordered events or transactions that occur over time. These
sequences can be represented in various formats, such as
strings, arrays, or graphs, depending on the nature of the data
and the context of the analysis.

Sequential pattern mining is a specialized subfield of data
mining that is focused on identifying recurrent patterns in
sequences. The main objective of sequential pattern mining
is to discover patterns that occur frequently in the data, which
can then be used for analytical purposes such as prediction,
classification [21], and more. The mining of frequent patterns
in sequences is a powerful tool for identifying recurring
patterns in time-ordered data. Sequential pattern mining can be
found across many domains such as financial transaction [22],
biotechnology [23], Web Usage [24], and so on. For instance,
it can be employed to identify common customer purchase
patterns, detect anomalies in medical data, or forecast future
web browsing behavior. Sequential pattern mining is a highly
active research area, with numerous surveys conducted to
explore this domain comprehensively [25], [26]. Few works
have specifically addressed the analysis of attrition in compa-
nies. Our approach combines sequential pattern mining with
survival analysis.

C. Sequential pattern mining for survival analysis

In this subsection, we examine related works combining
sequential pattern mining and survival analysis. The authors
of [27] propose an approach combining pattern mining and
survival analysis for finding meaningful links between events
in sequences. Traditional association rule mining methods rely
primarily on event frequency, but this may be insufficient to
capture links between infrequent but highly associated events.
This work, therefore, propose a duration model approach and
use a semi-parametric proportional hazards model to estimate
the influence of events on each other. This method handles
censored data and takes into account statistical significance
for rule selection. In our context, this approach allows us to



extract the successions of events that may produce resignation
and it will give the risk to produce it, therefore it could be
useful to predict the resignation but it will not give how an
event sequence will delay the resignation.

[28] have proposed a novel data mining algorithm that
combines survival analysis with sequence mining to evaluate
the survival associated with sequential medical treatments.
Their algorithm efficiently analyzes sequences of renal re-
placement therapies, providing valuable insights into patient
survival patterns. The algorithm incorporates frequent gaps
between treatments, evaluates survival time during treatment
execution, and applies pruning strategies based on support
and median survival. It focuses on prefixed temporal windows
and the extracted patterns are subsequences in these temporal
windows. This approach does not allow extracting patterns,
and thus survival-changing patterns, that may group events
that are not directly consecutive which is also our goal.

In [29], survival prediction using health insurance data
is enhanced through graph pattern mining. This approach
leverages frequent patterns extracted from a representation of
patient data. An improved random forest model is employed
to handle censored data and predict survival time. Experi-
mental results demonstrate superior performance compared to
traditional survival prediction models. This paper is focused
on graph pattern mining and its general idea is more on the
prediction of the survival time than on the identification of
survival-changing events/patterns.

A data-driven approach is proposed in [30] to identify
frequent sets of course failures that increase the risk of student
dropout. Survival analysis determines the overall probability
distribution of dropout, while event analysis incorporates the
impact of different course failures. This paper has some
weaknesses for our case study as it does not consider the
sequential aspect of the events (not based on sequential pattern
mining), and the analysis is more global than contextualized.

Using interval sequential pattern mining, [31] analyzed
hospitalization records to evaluate disease progression and
identify potential factors leading to short-term death after
myocardial infarction diagnosis. The analysis revealed five
disease pathways, which covered a significant portion of the
cohort. These trajectory patterns provide insights for early
identification of high-risk individuals and the potential for
more aggressive interventions to lower mortality rates.

[32] used an extension of subgroup discovery which is
the field of exceptional model mining [33], which applies
subgroup discovery algorithms to investigate heterogeneous
groups in statistical models that somehow deviate from the
norm. The survival response significantly differs from the
overall behavior. Therefore, these last two works [31], [32]
result in a global asset of the patterns’ interestingness than a
contextual one that is wanted to identify the survival-changing
patterns.

In conclusion, to the best of our knowledge, there is a gap in
the literature about the extraction of survival-changing patterns
(and not rules) in sequences, and there is no work that exploits
this concept for employee attrition analysis. The following

section will present the background necessary to introduce our
method that fills this gap.

III. BACKGROUND

A. Basic definitions for sequential patterns

Let A = {A1, A2, ..., An} be a set of attributes. Let C
= {C1, C2, ..., Cn} represent the set of changes. A change
corresponds to the variation of an attribute. For example,
attribute A1 transitioning from one state to another is a change
of attribute (C1 occurs). We define E as the set of events, where
an event is a pair containing a change and a time. Thus, E
⊆ C × N. For instance, E4 = (C4, t1) is an event, indicating
that attribute A4 changed state at time t1. A sequence of
events Seq ∈ S is a set of events ordered in time, such as
Seq1 = ⟨E3, E8, ..., E2⟩ = ⟨(C3, t0), (C8, t1), ..., (C2, tf )⟩,
where ∀i, Ei ∈ E , and for all ti, tj , i < j ⇒ ti ≤ tj .

To illustrate our definitions, Table I provides a toy
dataset containing 8 sequences described by the changes
{S,M,P,A,B,C,D,E, F,G,H, J} where we removed the
timestamps for sake of simplicity by keeping only the duration
between the hiring and the resignation.

TABLE I
TOY DATASET

ID Sequences Duration
(in days)

1 ⟨S,M,P,A⟩ 500
2 ⟨S,B,C⟩ 1,500
3 ⟨S,D,E,M,P⟩ 500
4 ⟨S,C⟩ 1,500
5 ⟨S,M,F,G,P⟩ 1,000
6 ⟨S,M,P,J⟩ 2,000
7 ⟨S,P,M,P,J⟩ 2,000
8 ⟨S,H,C⟩ 2,000

TABLE II
CHANGES

Items Meanings
S Hiring
C Compensation
M Mission
P Pricing profile
J Job

A,B,D,E,F,G,H Other changes

A (sequential) pattern X is an ordered sequence of changes
(e.g., ⟨S,M,P ⟩). P denotes the set of all sequential patterns.
A sequential pattern X = ⟨X1, . . . , Xn⟩ is included in a
sequential pattern Y = ⟨Y1, . . . , Ym⟩, denoted by X ⊑ Y ,
iff there exist n indexes ik for k ∈ {1, . . . , n} such that
Xk = Yik and ik < ik+1 for k ∈ {1, . . . , n− 1}. The support
of the pattern is the proportion of sequences that contain the
pattern: supp(X) = |S∈S|X⊑S|

|S| . A pattern X is frequent if
its support exceeds a user-defined threshold. Let α be this
threshold, we define F as the set of frequent patterns: F
= {X ∈ P|supp(X) ≥ α}. It is better to restrict ourselves to

TABLE III
SET OF CHANGES

Items Meanings
S Hiring
C Compensation
M Mission
P Pricing profile
J2 Job
J3 Title
J4 Entity



closed patterns that constitute a lossless representation. Fre-
quent patterns are not numerous but we have still used closed
patterns as there is no real benefit in retaining two patterns that
have exactly the same support with one included in the other.
More precisely, the closure of a pattern X , denoted by h(X),
is the largest sequential pattern including X with the same
support: h(X) = max⊑{Y ⊒ X : supp(Y ) = supp(X)}. A
pattern is closed iff X = h(X). Considering the minimum
support threshold α = 2/8, the changes in {S,C,M,P, J}
are the only ones that contribute to the presence of frequent
patterns and these changes lead to 4 closed frequent patterns:
⟨S⟩ (with 8/8 as support), ⟨S,M,P ⟩ (5/8), ⟨S,C⟩ (3/8) and
⟨S,M,P, J⟩ (2/8). Note that other frequent patterns (e.g.,
⟨S, P ⟩) are not closed.

B. Description of the Kaplan-Meier survival curve

The survival curve is the most commonly used representa-
tion to describe the dynamics of the occurrence of death over
time. It shows the probability of survival as a function of time.
Most survival curves are constructed using the Kaplan-Meier
estimator [15] which is a non-parametric method. The Kaplan-
Meier estimator, also known as the product-limit estimator,
is an estimator for estimating the survival function based on
lifetime data. In this method, the observed participation time
is divided into time intervals and survival is estimated over
each time interval. This estimator takes into account right-
censored data. The observed participation time is divided into
time intervals, starting at the time ti when one death occurs
and ending just before the next death, and survival is estimated
over each time interval, which will give the curve a stair step
appearance. It will have m steps with m being the number of
times that death occurs, not to be confused with the number
of deaths (several deaths can happen at the same time). ∆
denotes the duration of the employee who stayed the longest
in all the population.

The Kaplan-Meier estimator at time t for the individuals that
have the pattern X in their sequences, denoted by ŜurX(t),
is defined as follows:

ŜurX(t) =
∏
ti≤t

(
1− dXi

nX
i

)
where:
• ti is the time of the ith event.
• nX

i is the number of individuals with the pattern X at
risk just before the ith event.

• dXi is the number of individuals with the pattern X who
experience the ith event.

The formula calculates the probability that an individual
survives until a given time t, given that they have survived
until the previous time ti and that there have been dXi events
that occurred at that time. The Kaplan-Meier estimator is often
used in medical research to measure the fraction of patients
alive for a certain time after treatment, but it is also used in
economics and ecology. In this paper, we will use it to plot
the survival curve of employees.

Let’s visualize the survival curve for the entire population
(i.e., X = ∅) in our toy dataset, assuming that attrition has
occurred for each employee. Initially, at time 0, no resignation
has taken place, resulting in a survival probability of one on the
Kaplan-Meier survival curve until the next resignation event.
At time 500, two employees have resigned, resulting in a

probability of
(
1− 2

8

)
= 0.75 between 500 and the next

resignation. Subsequently, one employee quits at time 1000,

causing the probability to become 0.75×
(
1− 1

6

)
= 0.625.

At time 1500, two additional events occur, reducing the proba-

bility to 0.625×
(
1− 2

5

)
= 0.375. Finally, the last employees

resign at time 2000, resulting in a survival probability of

0.375×
(
1− 3

3

)
= 0.

Figure 1 represents the visualization of this survival curve.

0 250 500 750 1000 1250 1500 1750 2000
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

< >: AUC = 0.730

Fig. 1. Survival Curve for the entire population of the toy dataset

IV. SURVIVAL-CHANGING ANALYSIS

A. Overview of the method

In this study, we employ a comprehensive methodology to
analyze sequences and the factors that contribute to survival
improvements from one sequence to another. Our approach
extends traditional frequent pattern mining by benefiting from
the Kaplan-Meier estimator. More precisely, we start by
identifying a context pattern, which serves as the starting
point for the survival analysis. From this context pattern, we
aim at finding the simplest suffixes that change the survival
rate above a predefined threshold. In this case, the identified
suffixes are referred to as survival-changing patterns (see
Section IV-B). The mining process consists of two steps: ex-
traction of closed frequent sequential patterns and enumeration
of pairs formed by a survival-changing pattern and its context
(see Section IV-C). This approach allows us to pinpoint the
most influential and actionable patterns that have a direct
effect on the likelihood of survival within the given context.
By emphasizing simplicity and frequency, we can identify
meaningful survival-changing patterns that provide valuable
insights for making informed decisions and implementing
targeted interventions.

B. Interestingness measures for survival analysis

In this section, we introduce the two original interestingness
measures of our proposal. The first one evaluates the interest of



a pattern by measuring its area under the survival curve (see
Definition 1). The second measure considers the difference
between the survival curve of the assessed pattern and that of
a contextual pattern (see Definition 2).

Even if there is a loss of information to reduce a curve to
a single point, the machine learning community most often
uses the AUC statistic for model comparison. The following
definition formalizes the notion of Survival AUC:

Definition 1 (Survival AUC): The normalized area under the
curve of the Kaplan-Meier survival function for a pattern X
is defined as below:

AUCSur(X) =

∫
ŜurX(t) dt

∆
=

∑m−1
i=0 ŜurX(ti) · (ti+1 − ti)

∆

Intuitively, the survival AUC calculates the area under
the Kaplan-Meier curve by normalizing it between 0 and
1 using the maximum duration ∆. Overall, the higher the
survival AUC for a pattern, the longer the covered population
survives. For instance, the survival AUC for the pattern ⟨S⟩
corresponds to the AUC of the Kaplan-Meier Curve for the

entire population: AUCSur(⟨S⟩) =
1375

2000
= 0.688. Similarly,

the survival AUC for ⟨S,M,P ⟩ is slightly worse with 0.60,
while the survival AUC for ⟨S,C⟩ is slightly better with 0.83.
Considering our toy dataset, Figure 2 shows the Kaplan-Meier
curves of four closed frequent patterns with their survival
AUC. Finally, since a pattern X and its closure h(X) share
the same population, they have the same survival AUC:
AUCSur(X) = AUCSur(h(X)). It means that restricting
to only closed patterns is sufficient to keep the information
complete for all patterns.
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Fig. 2. Survival curves of the closed frequent patterns in the toy dataset

Survival AUC is a relevant interestingness measure to
identify whether a pattern increases or decreases survival.
In the case of changes that are known to be negative, it is
important to be able to remedy them by taking action. In
our toy dataset, the changes M and P worsen the situation
compared to S with a reduction of 0.60 − 0.687 = −0.087
of its survival AUC. It would be interesting to know what
subsequent changes might remedy this decline. In order to
identify such actionable patterns, we propose to measure the
difference between the survival AUC of pattern X and that
corresponding to a reference pattern, named contextual pattern
(or context in short):

Definition 2 (Survival gain): Given a contextual pattern C,
the survival gain of pattern X corresponds to the difference
between the survival AUC of C ·X and that of C:

GainC(X) = AUCSur(C ·X)−AUCSur(C)

It is easy to see that survival gain is a measure whose
value is between -1 and 1. A positive (resp. negative) sur-
vival gain means that X improves (resp. deteriorates) the
survival rate. For instance, as mentioned before, we find that
Gain⟨S⟩(⟨M,P ⟩) = −0.087 underling the negative impact of
⟨M,P ⟩ in the context ⟨S⟩. Conversely, pattern ⟨C⟩ improves
the survival rate as Gain⟨S⟩(⟨C⟩) = AUCSur(⟨S,C⟩) −
AUCSur(⟨S⟩) = 0.833− 0.687 = 0.146.

The further the survival gain of a pattern is from zero, the
more relevant that pattern is. For this reason, the following
definition introduces the notion of survival-changing pattern
that have a sufficiently strong impact on the survival rate:

Definition 3 (Survival-changing pattern): A pattern X is
survival-changing for the context C iff its survival gain
in absolute is greater than a user-specified threshold σ:
|GainC(X)| > σ.

At first sight, Definition 3 could be reminiscent of sequential
association rules [34] where the context C is the body and the
survival-changing pattern X is the head. But, the semantics of
the survival gain is quite different from traditional measures
such as confidence whose objective is to identify a correlation
between C and X .

Let us illustrate this definition with our example. The
patterns ⟨M,P ⟩ and ⟨C⟩ respectively act as negative and
positive survival-changing patterns within the same context
⟨S⟩ for the threshold σ = 0.05. Interestingly, it is possible that
a negative survival-changing pattern is in turn the context of
a positive survival-changing pattern. For instance, as we have
Gain⟨S,M,P ⟩(⟨J⟩) = 1− 0.687 = 0.313, the pattern ⟨J⟩ is a
positive survival-changing pattern for the context ⟨S,M,P ⟩.
In the case of employee attrition, this means that if events
⟨M,P ⟩ cannot be prevented, then it is relevant to consider
⟨J⟩ in order to retain the employee. Such patterns obviously
provide very valuable information and the next section details
how to extract them.

C. Mining survival-changing patterns

Rather than trying to extract all survival-changing patterns
from all possible contexts, we restrict the context either to the
empty sequence (i.e., corresponding to the whole population),
or to a pattern being itself survival-changing. Indeed, the
contexts resulting from survival-changing patterns are those
where the end-user can be led to wonder about the next actions
to take. For this purpose, we introduce the notion of relevant
survival-changing pattern:

Definition 4 (Relevant survival-changing pattern): Given a
minimum support threshold α and a minimum gain threshold
σ, a pattern X is said to be a relevant survival-changing pattern
for the context C iff:



• C ·X is a closed frequent pattern w.r.t α,
• C is either ⟨∅⟩ or equal to C ′ ·X ′ where X ′ is a relevant

survival-changing pattern for C ′ and
• X is a survival-changing pattern for C w.r.t σ.

Basically, Definition 4 is a recursive definition where the
context of the survival-changing pattern is based itself on
a relevant survival-changing pattern. Typically, ⟨M,P ⟩ is a
relevant survival-changing pattern for the context ⟨S⟩ and ⟨J⟩
is also a relevant survival-changing pattern for the context
⟨S,M,P ⟩.

From a minimum support threshold α and a minimum
gain threshold σ, Algorithm 1 extracts all relevant survival-
changing patterns. This algorithm computes the set of closed
frequent patterns (line 1). Then, line 2 initializes the initial
collection with an empty sequence for both the context and the
survival-changing pattern. The main loop (lines 4-6) extracts
all the survival-changing patterns, stopping as soon as Li

is empty. At each iteration of the loop, line 5 extracts the
survival-changing patterns before incrementing i. This extrac-
tion first builds all the pairs (C ·Y,X) by ensuring that Y was
previously a survival-changing pattern in Li for the context C,
C ·Y ·X is a closed frequent pattern and the gain of pattern X
is sufficiently high (with respect to the context C ·Y ). Note that
Li+1 only preserve the minimum patterns (e.g., (C, ⟨M,P ⟩)
will be eliminated by (C, ⟨M⟩)). Finally, line 7 returns all the
layers of the collection.

Algorithm 1 Survival-changing mining algorithm
Require: A minimum support threshold α and a minimum

gain threshold σ
Ensure: The collection L containing all the pairs (C,X)

where X is a survival-changing pattern and C is its context
1: F ← {X ∈ P : supp(X) ≥ α ∧X = h(X)}
2: L0 ← {(⟨∅⟩, h(⟨∅⟩))}
3: i← 0
4: while Li ̸= ∅ do
5: Li+1 ← min⊆{(C · Y,X) ∈ F × P : (C, Y ) ∈ Li ∧

C · Y ·X ∈ F ∧ |GainC·Y (X)| > σ}
6: i← i+ 1

7: return L ←
⋃

i Li

The sequential pattern mining in line 1 has exponential
complexity, whereas the complexity of the while loop in lines
4 to 6 is polynomial. By applying Algorithm 1 with a threshold
of 0.05, we obtain the following collection of layers :
L={(⟨∅⟩, ⟨S⟩), (⟨S⟩, ⟨M,P ⟩), (⟨S⟩, ⟨C⟩), (⟨S,M,P ⟩, ⟨J⟩)}

V. EXPERIMENTATION ON OUR DATA

This experimental section evaluates the quantity and the
type of the relevant survival-changing sequential patterns.
After presenting our real-world dataset, we provide answers
to the following key questions:

• What is the influence of the frequency threshold, α, on
the results of the algorithms?

• What is the influence of the gain threshold, σ, on our
findings?

• How to combine both thresholds to obtain the best results
in our context of attrition?

Evaluating the effectiveness of our approach is out of the scope
of this paper where we focus instead on a real-world dataset
(where all experiments were performed within a few minutes).

A. Description of the data

In this work, we have restricted ourselves to employees who
are or have been on permanent contracts. In order to study
their attrition, we are interested in 4 tables obtained through
3 different data sources from an IT company including two
human resources management software. The constitution of
our data warehouse has a non-negligible cost because of the
different Extract-Transform-Load processes to manage while
respecting the General Data Protection Regulation (GDPR)
which is particularly sensitive to this type of personal data.

The 4 tables used in this paper are Job History, Mission
History, Pricing Profile History, and Compensation History.
Job History contains changes related to the position such
as the date of hire, and/or the name of new positions (e.g.
Business Analyst, Controller, Product Owner) or the new
Business Title. Mission History contains the different missions
carried out for the different clients of the company with the
start and end dates. Pricing Profile History has the different
changes linked to the types of profiles sold to the client
(Junior Consultant, Senior Consultant, Expert Director, etc.).
Finally, Compensation History contains the salary history.
Each change for an employee leads to create a new record
in the corresponding table.

Due to some bias in our data (not having resignation date
before 2020 in the new software and some other issues) and in
order to have the most complete data possible, we decided for
the rest of the paper that we would restrict ourselves only to
employees who were hired after January 1, 2020. Because of
these restrictions, we go from a total of approximately 16,000
employees to only 7,527. Note that our data ends on December
19, 2022.

Table IV succinctly describes these different tables by
indicating the number of records, the number of employees
still in the company and the number of employees who have
resigned.

TABLE IV
DESCRIPTION OF DATASETS (ACTIVE EMPLOYEE DENOTED BY Active = 1

/ RESIGNED EMPLOYEE DENOTED BY Active = 0).

Name #records #Employees
Active = 1

#Employees
Active = 0

Job History 19,159 4,213 2,281
Mission History 1,483 787 323
Pricing Profil History 7,003 2,216 1,125
Compensation History 8,615 4,763 2,105

Once our data was cleaned and prepared according to the
steps presented previously, we proceeded to merge our data



tables. This merge allowed us to consolidate all relevant in-
formation into a single sequence of events for each employee.
Each row in our merged table represents a change associated
with a specific date and employee. By performing this merge,
we obtained a total of 7,527 sequences, each with varying
duration and length based on the events that have occurred for
each employee. The minimum length is 2, the maximum length
is 26 and the mean length is 5.25. This sequence representation
provides us with a comprehensive view of individual paths
within the company and will allow us to analyze patterns and
trends in these sequences.

There are a total of 7 changes considered in our analysis: S
denotes the hiring event, C represents a compensation change,
M signifies a mission change, P indicates a pricing profile
change, J2 represents a job change, J3 denotes a title change,
and J4 signifies a transfer within the company.

Among all the employees in our population, the maximum
duration of employment within the company is 1185 days.
Figure 3 is the Kaplan-Meier curve representing the survival
curve of all the considered employees.

B. Study of the threshold frequent impact

We initially decided to explore the impact of different
support thresholds on the frequency of patterns. To inves-
tigate this, we applied the CloSpan algorithms [35] (but
any algorithm that extracts sequential closed patterns can be
used) where we varied the support threshold in increments
of 1% starting from 1%. We then analyzed the results and
visualized them using an informative histogram in Figure 4.
The histogram illustrates the number of closed frequent pat-
terns discovered for each support threshold. We observed a
significant increase in the number of patterns identified as
the support threshold is increasing. This finding highlights
the sensitivity of pattern discovery to changes in the support
frequency threshold, indicating that even small variations can
lead to a substantial growth in the number of identified closed
frequent patterns. Figure 5 plots the survival curve of the top 5
closed frequent patterns with their corresponding pattern and
AUC.

Afterward, we applied our Survival-changing mining algo-
rithm (Algorithm 1) to our dataset, considering various values
of α and σ ranging from 0.01 to 0.1 in increments of 0.01.
For each combination of α and σ, we obtained a collection
of survival-changing patterns. Each collection consisted of
multiple layers, where each layer Li contained patterns where
the prefix is contained in the previous layer Li−1 (except
for L0) and the remainder is a survival-changing pattern.
Table V displays the counts of distinct survival-changing
patterns discovered by our algorithm, with respect to different
values of α and σ.

Table V offers valuable insights into the relationship be-
tween the frequency support threshold (α) and the gain
threshold (σ) in determining the number of distinct survival-
changing patterns. By analyzing the table, we can observe
that: as the frequency support threshold decreases and the gain
threshold increases, the number of unique survival-changing

TABLE V
NUMBER OF DISTINCT SURVIVAL-CHANGING PATTERN VARYING WITH α

AND σ

σ / α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.01 39 29 25 22 18 17 16 15 14 13
0.02 48 31 27 24 21 20 19 19 17 16
0.03 65 46 40 37 35 34 30 28 24 23
0.04 80 60 52 45 43 38 34 31 26 23
0.05 105 81 66 57 51 46 40 36 30 26
0.06 151 116 95 81 74 58 50 45 41 35
0.07 186 139 114 97 86 67 58 52 47 41
0.08 232 180 148 123 106 84 73 62 53 43
0.09 290 216 182 141 117 95 82 67 55 40
0.1 401 277 216 158 130 107 80 61 50 35

patterns significantly grows. This finding suggests that impos-
ing more gain in term of survival leads to a broader range of
survival-changing patterns being identified.

As expected, when the frequency support threshold is set to
a lower value, it allows for the discovery of a larger number of
closed frequent patterns. This increased pool of patterns pro-
vides more opportunities to uncover diverse survival-changing
patterns. Each closed frequent pattern serves as a potential
candidate for a survival-changing pattern.

Besides, as the gain threshold is raised, it indicates a
higher requirement for improving survival. This leads to the
identification of more complex survival-changing patterns.
These patterns reflect intricate combinations of events that
have a significant impact on survival outcomes. With a higher
gain threshold, the algorithm focuses on capturing patterns that
contribute to substantial improvements in survival, resulting in
a greater diversity of survival-changing patterns.

Therefore, the combination of a lower frequency support
threshold and a higher gain threshold offers a favorable
setting for discovering diverse and impactful survival-changing
patterns. The larger pool of closed frequent patterns facili-
tates the exploration of different patterns, while the higher
gain threshold emphasizes the identification of patterns with
significant survival implications. This creates an environment
where the algorithm is more likely to identify a variety of
unique survival-changing patterns.

In the subsequent subsection of the paper, we decided to
compare the results obtained by varying the parameter σ while
keeping α at 0.05. We chose this value for α because it
corresponds to a support threshold of 376, which is a suitable
number for representing employees. Below this threshold, the
patterns may not be sufficiently representative.

C. Study of the gain threshold impact

Table VI provides the depth of each layer of the collection
returned by our algorithm for different minimum gain thresh-
olds σ when α = 0.05.

We can observe that regardless of the variables, the first
layer L0 always contains a single element, here, the closure
of the empty set h(⟨∅⟩) = ⟨S⟩ representing the “hire” event
that is common to everyone. The number of layers varies
depending on the value of σ. The lower the σ value, the
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Fig. 3. Survival Curve of all the population
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<S>: len=7527, AUC=0.603
<S,C>: len=6868, AUC=0.615
<S,J2>: len=3811, AUC=0.670
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<S,P>: len=3332, AUC=0.576

Fig. 5. Survival curve of the top 5 frequent
pattern

TABLE VI
DEPTH OF EACH LAYER OF THE CONTEXT/SURVIVAL-CHANGING PATTERN

COLLECTION VARYING WITH σ

σ / layer L0 L1 L2 L3 L4 L5 L6 L7

0.01 1 6 38 99 100 51 4 0
0.02 1 11 66 97 69 12 0 0
0.03 1 25 111 87 7 0 0 0
0.04 1 32 122 50 1 0 0 0
0.05 1 39 127 25 0 0 0 0
0.06 1 57 107 9 0 0 0 0
0.07 1 74 89 0 0 0 0 0
0.08 1 98 51 0 0 0 0 0
0.09 1 112 23 0 0 0 0 0
0.1 1 126 7 0 0 0 0 0

easier it is to increase the AUC to reach the fixed gain
threshold, resulting in smaller survival-changing patterns in
general. This allows for multiple successive survival-changing
patterns within a single frequent pattern, resulting in a larger
number of layers. For instance, with σ equal to 0.01, we have
7 layers, whereas with σ equal to 0.1, we only have 3 layers.

Let us now examine an example graphically with σ = 0.01
and σ = 0.05. We will take an initial pattern from the last
layer of the collection and trace back through the layers to
reconstruct the sequence of survival-changing patterns in the
correct order. Then, we will display the corresponding AUC
curve for each pattern state.

On Figure 6, where the gain threshold is set to 0.01, we
observe 7 curves that accurately represent the number of
layers in the collection. Since we selected a pattern from
L6, we have 6 successive survival-changing pattern within the
chosen pattern. Starting from the sequence ⟨S⟩, we eventually
reach the sequence ⟨S,C, J2, J3, P, J2, J3⟩ composed of 7
events. Consequently, each survival-changing pattern in this
case consists of a single event.

In contrast, on Figure 7 with a gain threshold of
0.05, we have 4 layers, indicating 3 successive survival-
changing patterns. Starting from ⟨S⟩, we progress towards
⟨S,C, J2, J2, J2, J3⟩ which is also a pattern of length 7.
Here, we observe slightly longer survival-changing patterns
in general.

This can be attributed to the fact that with a higher gain
threshold, a more efficient survival-changing pattern is re-

quired. As a result, the survival-changing patterns become
more complex.
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Fig. 6. Survival curves for successive modified patterns with σ = 0.01
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<S>: Gain=0
<S,C,J2>: Gain=0.075
<S,C,J2,J2>: Gain=0.065
<S,C,J2,J2,J2,J3>: Gain=0.053

Fig. 7. Survival curves for successive modified patterns with σ = 0.05

In the first example, where the gain threshold is set at
0.01, the range of gains observed is from 0.012 to 0.104.
Consequently, the corresponding survival curves are more or
less close from each other, as they are influenced by the
magnitude of the gain. Conversely, in the second example with
a higher gain threshold of 0.05, the range of gains narrows
down to 0.053 to 0.075. As a result, we observe distinct and
well-separated survival curves, highlighting the impact of the
gain threshold on the shape and characteristics of the curves.



D. Interpretation of results in the context of attrition

The findings of our study hold particular relevance in the
context of employee attrition within an organization. When
aiming to improve the survival prospects of an individual
employee based on their context pattern, it becomes crucial
to identify a survival-changing pattern that is not only highly
effective in terms of gain but also manageable in terms of
complexity. Implementing a multitude of events within a short
period of time for a single employee can be challenging, if not
impossible such as applying the same event multiple times.

We proceeded to plot boxplots representing the 10 most
prevalent survival-changing patterns in each collection of the
two previously chosen values of σ. The number at the top
of each boxplot represents the number of occurences of the
survival-changing pattern in the whole collection of layers
(i.e., |{C ∈ P|(C,X) ∈ L}|).
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Fig. 8. Boxplots of the top 10 survival-changing pattern when σ = 0.01
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Fig. 9. Boxplots of the top 10 survival-changing pattern when σ = 0.05

According to Table V, we observe 18 distinct survival-
changing patterns for σ = 0.01 and 51 for σ = 0.05.
However, when examining the numbers displayed at the top
of the boxplots of Figures 8 and 9, we can see that beyond
the first 5 survival-changing patterns, the remaining patterns
have fewer than 10 occurrences in the whole collection of
layers. This suggests that, in general, the first 5 patterns are
survival-changing patterns for many contexts compared to the
others. We can observe that in both figures, the survival-
changing pattern with the highest average gain is the pattern
⟨C⟩ (change of compensation). We noticed that only the

pattern ⟨P ⟩ (change of pricing profile) occasionally appears
as a negative survival-changing pattern when σ = 0.01 (but
not visible in the Figure 8). In this case, it occurs three times,
whereas in the remaining 59−3 = 56 instances, it is a positive
survival-changing pattern.

Figure 9 shows that in average the survival-changing pat-
terns in top-10 are slightly more complex, suggesting that
achieving a significant gain in survival AUC for a given
context may require multiple events rather than a single event.
For instance, consider the survival-changing pattern ⟨P, J2⟩
(change of pricing profile and job change), which is the second
most occurring survival-changing pattern in the collection.
This pattern alone enables at least 22 different context patterns
to improve the survival AUC by more than 0.05.

The identified survival-changing patterns provide a strategic
approach to addressing employee turnover. By focusing on the
most simple patterns with the highest average gain, such as
the pattern ⟨C⟩, organizations can prioritize interventions or
strategies that directly target these events or event sequences.
This enables them to make targeted efforts towards improving
the survival rate of individual employees.

Moreover, the emphasis on simplicity in our methodology
is of great significance. The patterns that exhibit the most
significant gains are not excessively complex (thanks to the
constraint of minimum line 5 of Algorithm 1), making them
more feasible to implement within a short time frame. This
consideration aligns with the practical constraints faced by
organizations when attempting to improve employee survival.
It acknowledges the need for interventions that are efficient,
achievable, and realistic within the context of day-to-day
operations.

By leveraging the insights gained from our survival-
changing patterns, organizations can design tailored interven-
tions and strategies to mitigate attrition risks. These may in-
clude adjustments in job responsibilities or work environment,
or personalized career development plans. Such interventions,
when based on data-driven survival-changing patterns, have
the potential to enhance employee satisfaction, engagement,
and overall retention within the organization.

It is important to note that the interpretation and application
of these results should be done with careful consideration of
the specific organizational context and employee characteris-
tics. The identified survival-changing patterns provide valuable
guidance, but their implementation should be contextualized
and aligned with the organization’s culture, resources, and
strategic goals. Additionally, monitoring the effectiveness of
implemented interventions and continuously refining the ap-
proach based on empirical feedback is crucial for maximizing
the impact on attrition reduction.

In summary, our study contributes to the understanding
of attrition dynamics within organizations by providing a
methodology to identify survival-changing patterns based on
employee context patterns. These patterns offer insights into
event sequences that significantly influence an employee’s
likelihood of survival. By prioritizing patterns with high gain
and manageable complexity, organizations can develop tar-



geted interventions to improve employee retention and reduce
attrition rates. However, the application of these findings
should be context-specific, considering the unique character-
istics and constraints of the organization and its workforce.

VI. CONCLUSION

In this study, we presented a novel approach for sequence
analysis by identifying survival-changing patterns. These se-
quential patterns highlight events that significantly impact
the Kaplan-Meier survival estimator with respect to a given
context. By adjusting these thresholds appropriately, we were
able to identify a wide range of unique patterns, from simple
to complex patterns with significant impact on survival. In the
context of employee attrition, our methodology offers practical
insights. Using our results, organizations can target effective
and manageable survival change motives to improve employee
retention prospects. Of course, our methodology could also be
applied to other domains where survival analysis makes sense.
It would be interesting to generalize our results by applying
them to different domains and using larger and more varied
datasets.

For future work, it would be promising to expand our
analysis by considering not only the time between hiring
and quitting, but also the time between individual events
within each sequence. This could be accomplished by forming
itemsets that group events that are very close to each other.
We will look more finely at sequences of specific events and
analyze how the temporal proximity (or not) between these
events affects survival outcomes. Furthermore, an interesting
extension of our work would be to incorporate more specific
elements about employees, such as gender, age, or other
relevant characteristics, while complying with GDPR. With
this additional information, we could examine how these
individual factors interact with sequence patterns and influence
employee survival. This would provide deeper insights into
differences in survival based on these variables, and identify
potential mismatches or biases in the context of attrition in
a company. By combining fine-grained event timing analysis
with specific individual data, we could better understand
the complex mechanisms underlying employee career paths,
paving the way for more targeted interventions and more
equitable human resource management policies.
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de 14580C/an/salarié,” Groupe APICIL, Tech. Rep., June 2019.
[Online]. Available: https://www.groupe-apicil.com/newsroom/presse/
desengagement-des-salaries/

[4] W. H. Mobley, “Intermediate linkages in the relationship between job
satisfaction and employee turnover.” Journal of applied psychology,
vol. 62, no. 2, p. 237, 1977.

[5] Y. Zhao, M. K. Hryniewicki, F. Cheng, B. Fu, and X. Zhu, “Employee
turnover prediction with machine learning: A reliable approach,” in Proc.
of SAI intelligent systems conference. Springer, 2018, pp. 737–758.

[6] İ. O. Yiğit and H. Shourabizadeh, “An approach for predicting employee
churn by using data mining,” in 2017 International IDAP. IEEE, 2017,
pp. 1–4.

[7] M. L. Kane-Sellers, “Predictive models of employee voluntary turnover
in a north american professional sales force using data-mining analysis,”
Ph.D. dissertation, Texas University, 2007.

[8] N. Brockett, C. Clarke, M. Berlingerio, and S. Dutta, “A system for
analysis and remediation of attrition,” in 2019 IEEE International
Conference on Big Data (Big Data), 2019, pp. 2016–2019.

[9] J. P. Klein and M. L. Moeschberger, Survival analysis: techniques for
censored and truncated data. Springer, 2003, vol. 1230.

[10] E. T. Lee and J. Wang, Statistical methods for survival data analysis.
John Wiley & Sons, 2003, vol. 476.

[11] D. G. Beer, S. L. Kardia, C.-C. Huang, T. J. Giordano, A. M. Levin,
D. E. Misek, L. Lin, G. Chen, T. G. Gharib, D. G. Thomas et al.,
“Gene-expression profiles predict survival of patients with lung adeno-
carcinoma,” Nature medicine, vol. 8, no. 8, pp. 816–824, 2002.

[12] P. A. Murtaugh, L. D. Burns, and J. Schuster, “Predicting the retention
of university students,” Research in higher education, vol. 40, no. 3, pp.
355–371, 1999.

[13] N. Barbieri, F. Silvestri, and M. Lalmas, “Improving post-click user
engagement on native ads via survival analysis,” in Proc. of the 25th
International Conference on World Wide Web, 2016, pp. 761–770.

[14] J. Buckley and I. James, “Linear regression with censored data,”
Biometrika, vol. 66, no. 3, pp. 429–436, 1979.

[15] E.L.Kaplan and P. Meier, “Nonparametric estimation from incomplete
observations,” Journal of the American Statistical Association, vol. 53,
no. 282, pp. 457–481, 1958.

[16] S. J. Cutler and F. Ederer, “Maximum utilization of the life table method
in analyzing survival,” Journal of chronic diseases, vol. 8, no. 6, pp.
699–712, 1958.

[17] W. Nelson, “Hazard plotting for incomplete failure data,” Journal of
Quality Technology, vol. 1, no. 1, pp. 27–52, 1969.

[18] J. L. Powell, “Estimation of semiparametric models,” Handbook of
econometrics, vol. 4, pp. 2443–2521, 1994.

[19] D. R. Cox, “Regression models and life-tables,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 34, no. 2, pp. 187–
202, 1972.

[20] P. Wang, Y. Li, and C. K. Reddy, “Machine learning for survival analysis:
A survey,” ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36,
2019.

[21] M. S. Nawaz, P. Fournier-Viger, M. Z. Nawaz, G. Chen, and Y. Wu,
“Malspm: Metamorphic malware behavior analysis and classification
using sequential pattern mining,” Computers & Security, vol. 118, p.
102741, 2022.

[22] A. Verma, A. Taneja, and A. Arora, “Fraud detection and frequent
pattern matching in insurance claims using data mining techniques,” in
2017 tenth international conference on contemporary computing (IC3).
IEEE, 2017, pp. 1–7.

[23] C.-M. Hsu, C.-Y. Chen, B.-J. Liu, C.-C. Huang, M.-H. Laio, C.-C.
Lin, and T.-L. Wu, “Identification of hot regions in protein-protein
interactions by sequential pattern mining,” BMC bioinformatics, vol. 8,
no. 5, pp. 1–15, 2007.

[24] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan, “Web usage
mining: Discovery and applications of usage patterns from web data,”
Acm Sigkdd Explorations Newsletter, vol. 1, no. 2, pp. 12–23, 2000.

[25] C. H. Mooney and J. F. Roddick, “Sequential pattern mining–approaches
and algorithms,” ACM Computing Surveys (CSUR), vol. 45, no. 2, pp.
1–39, 2013.

[26] T. Truong-Chi and P. Fournier-Viger, A Survey of High Utility Sequential
Pattern Mining. Cham: Springer International Publishing, 2019, pp.
97–129.

[27] G. Ritschard, A. Gabadinho, N. S. Muller, and M. Studer, “Mining event
histories: A social science perspective,” International Journal of Data
Mining, Modelling and Management, vol. 1, no. 1, pp. 68–90, 2008.

[28] A. Silva, W. Meira Jr, O. Queiroz, and M. Cherchiglia, “Sequential
medical treatment mining for survival analysis,” in SBBD, 2009, pp.
166–180.

[29] Y. Ren, K. Zhang, and Y. Shi, “Survival prediction from longitudinal
health insurance data using graph pattern mining,” in 2019 IEEE



International Conference on Bioinformatics and Biomedicine (BIBM).
IEEE, 2019, pp. 1104–1108.
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