Arnaud Soulet
email: arnaud.soulet@univ-tours.fr

Should We Consider On-Demand Analysis in Scale-Free Networks?

Keywords: Decision support system, Analytical queries, On-demand system

Networks are structures used in many fields for which it is necessary to have analytical systems. Often, the size of networks increases over the time so that the connectivity of the nodes follows a power law. This scale-free nature also causes analytical queries to be concentrated on nodes with higher connectivity. Rather than computing the query results for each node in advance, this paper considers an on-demand approach to evaluate its potential gain. To this end, we propose a cost model dedicated to scale-free networks for which we compute the cost for both the offline and on-demand systems. It is reasonable in an on-demand approach to cache part of the results on the fly. We study theoretically and on real-world networks three policies: caching nothing, caching everything and minimizing the total cost. Experiments show that the on-demand approach is relevant if some of the results are cached, especially when the query load is low and the query complexity is reasonable.

Introduction

Networks are complex structures often used to represent information where vertices are entities and edges are their relationships. For example, in citation networks, articles are connected by their references. The Web is a set of pages connected by their links. Social networks connect people through directed ("follower" relationship) or non-directed links ("frienship"). Finally, knowledge graphs connect entities by directed and labeled relations. Most often these networks are characterized by a rapid growth of the number of nodes where the connectivity follows a preferential attachment mechanism leading to nodes that concentrate links -see the Web [START_REF] Barabási | Emergence of scaling in random networks[END_REF], social networks [START_REF] Csányi | Structure of a large social network[END_REF] or knowledge graphs [START_REF] Ding | Characterizing the semantic web on the web[END_REF].

In many fields including bibliometrics [START_REF] Broadus | Toward a definition of "bibliometrics[END_REF] or webometrics [START_REF] Björneborn | Toward a basic framework for webometrics[END_REF], network analytics aims to analyze and extract insights from networks. Many analytical systems produce rich indicators for each node of the network. Typically, Google Scholar offers the same page for each author (with citation number, h-index, and so on). Producing these analyses is a challenge because of the volume of data and the complexity of some indicators. In the era of Big Data, these challenges have mostly been met by resorting to cluster computing frameworks (e.g., MapReduce or Spark) [START_REF] Shi | Clash of the titans: MapReduce vs. Spark for large scale data analytics[END_REF]. Scaling up is not a difficulty for this kind of approach where it is always possible to add computer nodes if the volume of data increases or if the difficulty of the analysis requires it. With this approach, the results once computed are kept and then, when the system is online, the results are returned instantly to the users following their queries. However, since networks evolve rapidly, it is necessary to repeat the costly offline processing regularly. Moreover, with the preferential attachment mechanism, the most popular nodes are also the most accessed. For instance, Yann LeCun's page will be more accessed than those of the PhD students in deep learning publishing their first paper. The undifferentiated processing of nodes thus leads to the generation of analyses that will be computed and stored uselessly because they will never be consulted before the next refresh. It would be possible not to analyze the less popular nodes of the network to reduce costs, or even forget them [START_REF] Kersten | A database system with amnesia[END_REF][START_REF] Davidson | Disposal by design[END_REF]. But, such an approach would be detrimental to the diversity of the analytical system, especially since some rare entities are sometimes the most important (e.g., some little-known entries in a dictionary like DBnary studied in Section 6). In order to reduce costs while preserving the diversity of the network, this paper aims at determining whether it would not be preferable to produce the analyses on-demand.

In this paper, we propose a generic model to understand the impact of different computational and storage strategies for analytical systems in scale-free networks. More specifically, our contributions are as follows:

-We propose a cost model specific to analytical systems in scale-free heterogeneous networks based on types (source entities) and their items (produced entities). -We theoretically compare offline systems with on-demand systems by distinguishing several caching policies (all, nothing, compromise). In particular, we study the utility ratio of cached results. -We evaluate our approach on several real-world graphs showing the interest of using on-demand systems in certain scenarii.

The outline of this paper is as follows. Section 2 reviews some related work about decision support systems. Section 3 introduces basic definitions and the cost model framework. We compute the cost of offline and on-demand systems in Sections 4 and 5 respectively. We apply these models on real-world networks in Section 6 and conclude in Section 7.

Related Work

In the introduction, we have already mentioned approaches based on the MapReduce paradigm to implement distributed and parallel algorithms on clusters. Typically, [START_REF] Liu | Large-scale social network analysis based on MapReduce[END_REF] proposes a method for large-scale social network analysis based on MapReduce. There are generalist frameworks based on MapReduce to analyze data like Apache Pig or Apache Hive [START_REF] Fuad | Processing performance on Apache Pig, Apache Hive and MySQL cluster[END_REF]. In-memory analytics frameworks, such as Apache Spark, that also well-adapted for graph-based analytics [START_REF] Andersen | Evaluating the scaling of graph-algorithms for big data using graphx[END_REF] have also been designed to better handle iterative processes. [START_REF] Lehmann | Distributed semantic analytics using the sansa stack[END_REF] shows how to exploit in-memory frameworks to analyze knowledge graphs. All these approaches process the entirety of the data indiscriminately to produce analyses for each entity. For simplicity, we will refer to this type of approach as offline analytical systems.

Many works in the literature have been interested in analytical queries in the database field (where by nature, the system returns the result of its query on the fly). In particular, they have proposed caching policies and cost models dedicated to this type of queries in relational model [START_REF] Ioannidis | Query optimization[END_REF][START_REF] Shim | Dynamic caching of query results for decision support systems[END_REF] and non-relational models [START_REF] Müller | Aggregates caching in columnar in-memory databases[END_REF][START_REF] Hewasinghage | A cost model for random access queries in document stores[END_REF]. However, the goal of these decision support systems is to be able to answer very diverse queries, whereas in our case we are always interested in the same query applied to a large number of distinct entities. Consequently, most of these works seek to minimize the cost of executing a query while we seek to minimize the cost of a set of queries. More specifically, it is our query set that is unbalanced (few frequent queries, many rare ones) rather than the data associated with a query (which may require the use of histograms [START_REF] Ioannidis | Balancing histogram optimality and practicality for query result size estimation[END_REF]). Moreover, in the following, the cost function of a query is an input to our problem. Another consequence of the variety of queries is that database systems cannot store all the results, contrary to our setup. They therefore implement cache replacement policies [START_REF] Lee | On the existence of a spectrum of policies that subsumes the least recently used (lru) and least frequently used (lfu) policies[END_REF] such as least recent used or least frequently used. In contrast, in this work, we implement a global cache policy that avoids any replacement.

Preliminaries

Scale-free heterogeneous network Let us consider a (heterogeneous) network N = ⟨I, T, τ ⟩ made of a set of items I, a set of types T and a membership relation τ ⊆ I × T . (i, t) ∈ τ means that the item i belongs to the type t. Considering that I ⊆ V and T ⊆ V , we can also consider non-heterogeneous network. The number of types is denoted by s: s = |T |. The degree of the type t ∈ T is the number of items in relation with that t: deg τ (t) = |{i ∈ I : (i, t) ∈ τ }|. The frequency n τ (k) in τ counts how many types t ∈ T are exactly in relation with k items (i.e., its degree deg

τ (t) = k): n τ (k) = |{t ∈ T : deg τ (t) = k}|. The total degree is defined as m τ = ∞ k=1 k × n τ (k) = |τ |.
When the membership relation τ is clear, we omit it: deg(t) refers to deg τ (t), n(t) refers to n τ (t) and so on. A scale-free network is a network whose frequencies n(k) follow a power law (at least asymptotically): n(k) ∼ k -γ with γ > 2. For instance, Figure 1 shows on the left the in-degree distribution of entities in Wikidata (see Section 6 for more details) with the magenta dots. The distribution can be approximated by a power law of exponent γ = 2.058 (see the dash lines).

Analytical system

The end users are interested in an analytical query Q on the network N for different types t. This query Q may lead to complex manipulations of the items of t. For instance, if the types are authors and the items are their publications (with years and citation numbers), a query may compute at the same time the total number of citations, the number of papers per year, the h-index, and so on. An analytical system S Q (or simple S) is a decision support system that efficiently evaluates the analytical query Q on the network N to obtain the result Q(t, N). In the following, we consider that the network evolves and that a result remains valid for a period ∆.

Cost model Given a type t and a network N , we assume that the cost of the query Q for t in N only depends on its degree deg(t): C(deg(t)) where C is a cost function. In the following, our goal is to evaluate the (average) cost C(S, q, N) of the system S when it receives q queries during the validity period ∆. Naively, we could think that this average cost of executing q queries is equal to the average query cost repeated q times:

C(S, q, N) = q • 1 s • t∈T C(deg(t))
This formula is wrong for two reasons: 1) types do not have the same probability of being queried and 2) the system S (whether offline or on-demand) can store query results avoiding the repetition of some queries. For the first point, it is clear that some types will be queried more because of their popularity (as illustrated in the introduction with the Yann LeCun's page). For this purpose, we make the important and realistic assumption that the probability of querying a type t is proportional to its degree deg(t). It is difficult to find data to justify this assumption. Nevertheless, Figure 1 on the right illustrates this phenomenon with the pages of Wikipedia where we see that globally the longest pages are also the most viewed. For the second point, we will see the impact of storing all query results in advance (see offline analytical system in Section 4) or caching a part of the query results on the fly (see on-demand analytical system in Section 5).

Offline Analytical Systems

The principle of an offline system is to compute in advance the queries for all types in order to cache them. When the system is online, it will be enough to return the appropriate result already cached. For the end-user, this approach has the advantage of providing instant answers. Of course, once the validity period ∆ has expired, it will be necessary to invalidate what has been cached to refresh the results. Unfortunately, the cost of this caching is very important since it corresponds exactly to the cost of executing each of the queries:

Property 1 (Offline system cost). Given a network N and a cost function C, the cost of the system S off for q queries is:

C(S off , q, N) = ∞ k=1 n(k) • C(k)
Due to the lack of space, we omit most of the proofs. For simplicity, Property 1 ignores the parallelization costs which can be significant in some cluster computing architectures. Nonetheless, this cost remains very high because all network types in T are considered without distinction. Unfortunately, a large part of the cached results will never be used. Considering a linear cost C(k) = αk and a scale-free network with exponent γ > 2, we can demonstrate that the cost of the system S off is simply s × α × γ-1 γ-2 as the mean degree is given by (γ -1)/(γ -2) [START_REF] Newman | Power laws, pareto distributions and zipf's law[END_REF].

To evaluate the quality of a system, we calculate the utility ratio (denoted by UR) that is the proportion of the caching cost that was reused. The idea is to evaluate how much of the caching effort was worthwhile. The utility ratio is close to 1 when each caching cost involved a query that was queried again. Conversely, it is close to 0 when what was cached was not queried again resulting in unnecessary caching costs. The following property gives this measure for an offline system: Property 2 (Utility ratio). Given a network N and a cost function C, the utility ratio of the system S off for q queries is:

UR(S off , q, N) = 1 C(S off , q, N) • ∞ k=1 1 -1 - k m q • n(k) • C(k)
This property calculates the average probability that a type is queried at least once (i.e., 1 -(1 -k/m) q) in order to obtain the average number of types queried at least once. Only the costs corresponding to these queries are really useful. It is easy to see that the utility ratio tends towards 1 when the number of queries q becomes large. In contrast, offline systems may not be very relevant in very high velocity networks where the refresh are numerous leading to low query number q.

On-Demand Analytical Systems

The principle of an on-demand system is to evaluate the query for a type t at the time the user requests it. However, it may make sense to cache some frequently requested queries. The challenge is to choose which queries to cache to minimize the overall cost of the query set. To address this problem, we first compute the on-demand system cost (see Section 5.1) and then, we study several caching policies (see Section 5.2).

Cost of on-demand systems

With our cost model, the higher the degree of a type, the more likely it is to be queried. Intuitively, we must therefore determine a degree k cache beyond which we must cache all queries. Below this threshold k cache , the queries will be systematically computed on-demand without any storage. Above this threshold k cache , we check if the result is already cached for returning it directly. If the result is not cached, it is computed and cached. The following property provides the theoretical cost of the system S on : Property 3 system cost). Given a network N and a cost function C, the cost of the system S on for q queries and the degree k cache is:

C(S on , q, N) = k<k cache q • k m • n(k) • C(k) + k≥k cache 1 -1 - k m q • n(k) • C(k)
This property sums the costs degree by degree by separating them into two parts with respect to the threshold k cache . For degrees less than k cache , the cost for a degree k is the product of the number of performed queries q × k/m × n(k) and the cost of a query C(k). For degrees greater than k cache , only the types queried incur a cost and this cost is unique (because a second query exploits the cache).

It is important to note that the part without cache increases linearly with the number of queries q while the part with cache is upper bounded by k≥k cache n(k) × C(k). To estimate the computation cost C c , these two parts are useful and we have, in the linear case, the following cost per degree: C c (k) = α c k. Conversely, for the storage cost C s , the part without cache has no cost which can be modeled with the following cost per degree:

C s (k) = 0 if k < k cache α s k otherwise
As in the previous section, we compute the utility ratio: Property 4 (Utility ratio). Given a network N and a cost function C, the utility ratio of the system S on for q queries (assuming that q ≫ 1) is:

UR(S on , q, N) ≈ 1 C(S on , q, N) • k≥k cache 1 -1 - k m q 1 + q • k m •n(k)•C(k)
It is again necessary to calculate the cost of what is really useful by normalizing it by the cost of what has been cached. Caching is useful if a type of degree greater than degree k cache is queried at least twice (1 time for caching and 1 time for use). The probability of querying a type at least twice is 1 -

1 i=0 q i (1 -k/m) q-i (k/m) i which simplifies if q is large by assuming that (1 -k/m) q-1 ≈ (1 -k/m) q .
As previously, this utility ratio tends towards 1 when the number of queries q becomes large.

Cache policies

Based on the cost model for the on-demand system, we can now consider different policies: caching nothing, caching everything or minimizing the overall cost. Other policies could be considered such as having a maximum cache size.

Let us first consider the extreme cases. The policy of caching nothing (i.e., k cache = +∞) boils down to a linear cost with the number of queries. Therefore, as soon as the number of queries is very large, this strategy has a high cost making it inefficient. On the opposite, the policy of caching everything (i.e., k cache = 0) appears interesting if you have an unlimited amount of storage space. However, the results cached for queries concerning types with a low degree have little chance of being used again. Even if they have a low storage cost, it is a waste of storage.

For this reason, we propose to choose the degree k best that minimizes the total linear cost C t (k) = C c (k) + C s (k) (see above for the definition of C c (k) and C s (k)). Intuitively, the idea is to choose the degree where the costs with cache and without are in equilibrium. In the case of a linear complexity, the below property approximates k best : Property 5 (Theoretical result). Given a network N and the total linear cost function C t (k), the degree k best minimizing the overall cost is given by:

k best ≈ m q • α c • W -(αc+αs)e -αs/αc -1 αc + α c + α s α c
where W is the Lambert W function.

Proof. We give the main steps of the proof. First, we look for the degree k such that the cost without cache is equal to that with cache (see Property 3) by injecting the costs (i.e., C t (k) = α c k for "with cache" and C t (k) = (α c + α s)k for "without cache"):

q • k m • n(k) • α c k = 1 -1 - k m q • n(k) • (α c + α s)k
It is possible to approximate (1 -k/m) q by exp (-q • k/m) as k/m ≪ 1 (that explains the approximation ≈ in the final result). After simplification, we obtain the following equation:

q • k m • α c = 1 -exp - q • k m • (α c + α s)
Solving this equation gives the right-hand side of the result in Property 5.

⊓ ⊔

This property gives a theoretical approximation of the degree k cache which is based on the Lambert W function, quite complex to compute in practice. Therefore, it is simpler to determine k cache by performing a dichotomic search between 0 and k max looking for the minimum cost C(S on , q, N). Interestingly, this algorithmic approach works for any convex cost function. Furthermore, considering the total linear cost C t (k) and a scale-free network with exponent γ > 2, we simplify the approximation k best by neglecting the Lambert function term and injecting the mean:

k approx = m q • α c + α s α c = s q • γ -1 γ -2 • α c + α s α c

Experimental Study

This experimental study applies our cost models on real-world networks in order to identify the evolution of the total cost and the utility ratio with the number of queries and the complexity of the query. Experimental setting We prepare two knowledge graph benchmarks (denoted by Wikidata and DBnary) based on crowdsourcing projects of Wikimedia Foundation: Wikidata [START_REF] Vrandečić | Wikidata: a free collaborative knowledgebase[END_REF] and DBnary [START_REF] Sérasset | Dbnary: Wiktionary as a lemon-based multilingual lexical resource in rdf[END_REF]. For Wikidata, we used a truthy dump (February 2022) 1 and we filtered each dump to remove literals and external entities whose Uniform Resource Identifier (URI) is not prefixed by http:// www.wikidata.org/. For DBnary, we simply used a dump in turtle format (May 2022) 2 . We also use two existing networks from the SNAP repository: Cell-Cell [START_REF] Zheng | Massively parallel digital transcriptional profiling of single cells[END_REF] and Twitch [START_REF] Rozemberczki | Twitch gamers: a dataset for evaluating proximity preserving and structural role-based node embeddings[END_REF]. Table 1 provides the main characteristics of these four networks. We set the same complexity for storage and computation (e.g., C c (k) =

1 https://dumps.wikimedia.org/other/incr/wikidatawiki/ 2 http://kaiko.getalp.org/static/ontolex/latest/ C s (k) = k 2 for quadratic complexity). For reproducibility, the source code and frequency distributions corresponding to the four networks are available online: https://github.com/asoulet/ida2023ondemand Total cost study We will start by evaluating which strategy is the most parsimonious i.e., with the lowest total cost (computation plus storage). Considering a linear complexity, Figure 2 presents the evolution of the cost with the number of queries for 5 approaches: the offline system, the on-demand system with everything cached (i.e., k cache = 0), nothing cached (i.e., k cache = +∞), best (using k best) and scale-free approximation (using k approx). Note that the scales are logarithmic. The offline system (denoted by offline) is obviously independent of the number of queries. Therefore, the more the load increases, the more relevant this approach is. But for the largest datasets, a very high number of queries must be reached, which is unlikely to be achieved due to the data velocity of most networks. Unsurprisingly, the no-cache system (denoted by no cache) is unattractive because its linear cost grows rapidly with the number of queries, exceeding the offline system. The on-demand system caching all queries (denoted by all cache) is not far from te best policy. It is therefore probably the most reasonable policy if the distribution over the whole network is not known. Of course, the on-demand system with cost minimization (denoted by best) is the least expensive approach whatever the number of queries even if its gain is significant for low volumes of queries. Finally, the proposed approximation (denoted by approx) works particularly well since the deviation is not large enough to distinguish the approx curve from the best curve. Now considering 100,000 queries, Figure 3 gives the total cost with different cost function complexity for the same 5 approaches as above. Of course, the higher the complexity of the cost function, the higher the total cost. Typically, there is an order of magnitude increase from constant to linear and from linear to quadratic. The gain of the on-demand system decreases when the complexity is higher. Nevertheless, depending on the network, the on-demand system can remain relevant as it is the case for Cell-Cell with 100,000 queries. As in the previous experiment, the no-cache policy appears to be of little relevance (except for low complexity). Finally, the policy where everything is cached remains competitive with the best and approx policies which, although more subtle, are not significantly better.

Utility ratio study We now study the interest of what has been cached. Considering a linear complexity, Figure 4 presents the evolution of the utility ratio with the number of queries for 4 approaches: the offline system, the on-demand system with three policies: all cache, best and approx. The no-cache policy is Twitch offline all cache best approx Fig. 4. Utility ratio of offline/on-demand systems w.r.t. load of queries not relevant for this study. It clearly appears that the least good approaches are offline and all-cache where a large part of the stored information is never queried. The utility ratio for Cell-Cell is zero up to 10,000 queries because the best solution is to cache nothing. In this experiment, it is visible that the best and approx policies are slightly different. Most often, the best approach stores a little less data explaining a slightly higher utility ratio.

To sum up, the on-demand system is always the most parsimonious if a cache is used. Its gain is stronger when the query load is low and the cost function complexity per query is low. With the best and approx policies, on-the-fly caching is efficient guaranteeing high reuse.

Concluding Remarks

Our study based on a cost model shows the importance of considering an analytical system as a whole. It determines the advantages and weaknesses of different strategies depending on the query complexity and the number of queries: On-demand system interest When the query load is low or network velocity quickly invalidates the cache, on-demand systems are preferred. This avoids performing computation and storing data for types that will never be queried. It should be noted, however, that in our study we did not consider a mechanism for updating the cache of the query result. For example, when a new publication arrives, it is easy to update the different bibliometric indicators without recalculating everything from scratch. Such mechanisms are possible for certain queries, as it is the case with materialized views [START_REF] Gupta | Maintenance of materialized views: Problems, techniques, and applications[END_REF] in the database field.

Cache policy recommendations The use of a cache is absolutely mandatory for on-demand systems in order to store the results of the types with the highest degrees (that are the most queried). When one knows the distribution of the data, it is easy to determine the degree above which query results should be kept. Otherwise, caching everything is still a reasonable policy because types with lower degree have lower storage complexity. However, our study has implicitly focused on a centralized context where caching and retrieval are negligible. In a decentralized context, the situation can be reversed with high storage complexity (due to network communications) while computational costs at the client can be neglected.

Interactivity challenge

The advantage of offline systems is that they guarantee excellent interactivity when their results are used online. For a query on a given type, it is fast to return to the user the result already pre-computed. For ondemand systems, this interactivity is more complicated to guarantee especially for queries with high complexity on a high degree type. We think that two main workarounds can be used. First, systems with low response time (e.g., based on anytime algorithm [START_REF] Soulet | Anytime large-scale analytics of linked open data[END_REF]) should be preferred to those with low execution time. Indeed, it is often possible to propose a partial result quickly that will be refined later. Second, a hybrid strategy could be considered by pre-computing the answers for all types above a certain degree.

Fig. 1 .

 1 Fig. 1. Rationale for our cost model

Fig. 2 .

 2 Fig. 2. Total cost of offline/on-demand systems with different cache policies

Fig. 3 .

 3 Fig. 3. Total cost of offline/on-demand systems w.r.t. cost function complexity

Table 1 .

 1 Main characteristics of networks

	Network Vertices number Edge number Maximum degree Exponent γ
	Wikidata	37,256,044 675,226,687	37,656,116	2.058
	DBnary	38,069,118 198,355,239	19,310,138	2.237
	Cell-Cell	1,018,524	49,471,006	848	2.021
	Twitch	168,116	13,595,116	35,279	2.012

Acknowledgments. This work was partially supported by the grant ANR-21-CE23-0033 ("SELEXINI").