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Abstract 

For single neuron models, reproducing characteristics of neuronal activity such as the firing rate, 

amplitude of spikes, threshold potentials etc. as functions of both synaptic current and 

conductance is a challenging task. In the present work, we measure these characteristics of 

regular spiking cortical neurons using the dynamic patch-clamp technique, compare the data with 

predictions from the standard Hodgkin-Huxley and Izhikevich models, and propose a relatively 

simple five-dimensional dynamical system model, based on threshold criteria. The model contains 

a single sodium channel with slow inactivation, fast activation and moderate deactivation, as well 

as, two fast repolarizing and slow shunting potassium channels. The model quantitatively 

reproduces characteristics of steady-state activity that are typical for a cortical pyramidal neuron, 

namely: firing rate not exceeding 30 Hz; critical values of the stimulating current and conductance 

which induce the depolarization block not exceeding 80 mV and 3, respectively (both values are 

scaled by the resting input conductance); extremum of hyperpolarization close to the midpoint 

between spikes. The analysis of the model reveals that the spiking regime appears through a 

saddle-node-on-invariant-circle (SNIC) bifurcation, and the depolarization block is reached 

through a saddle-node bifurcation of cycles. The model can be used for realistic network 
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simulations, and it can also be implemented within the so-called mean-field, refractory density 

framework.  

Keywords: pyramidal neuron, dynamic patch-clamp, shunting effect, Hodgkn-Huxley 

approximation, dynamic threshold 
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1. Introduction 

Relatively simple models of single neurons that are quantitatively fitted to experiments are helpful 

for biophysically detailed large-scale simulations and also to derive mean-field limits. Many such 

models have been developed, but to date none of them reproduce all features of neuronal activity. 

Specifically, to the best of our knowledge, there is no model that reproduces the following 4 

characteristics of neuronal steady-state firing of the principal neurons of the cerebral cortex. First, 

a typical pyramidal cortical neuron shows maximum firing rate in a range from 20 to 50 Hz 

(Fernandez et al. 2011; Bianchi et al. 2012). Second, the depolarization block (DB) appears at a 

critical value of the injected current values from 40 to 100 mV, if scaled by the resting input 

conductance (Bianchi et al. 2012; Smirnova et al. 2015). Third, there is a critical value of the 

synaptic conductance that shunts spiking activity for any injected current; it is typically on the 

order of 1 to 10 times the value of the resting-state input conductance. And fourth, in a typical 

spike train, the time elapsed since the last spike until the moment when the membrane potential 

reaches its minimum, is typically between 10 and 30 ms.  

In contrast to those facts, even complex multicompartmental models tend to overestimate the 

firing rate and the size of the domain of steady-state firing in the 2D space of synaptic current and 

conductance. They also tend to produce a more abrupt rapid transition towards the minimum of 

membrane voltage following a spike than it is observed in experiments with pyramidal cortical 

neurons. Moreover, in most studies proposing neuronal models, important aspects such as the 

depolarization block, the shunting effect of synaptic conductance and/or the voltage trace shape, 

are ignored or not considered together.  

We strongly emphasize the significance of these characteristics. Our first condition is essential 

because the maximum firing rate is the most important characteristic of a neuron as a pulse 

generator. Many of the existing models based on the Hodgkin-Huxley formalism predict much 

higher maximal firing rates and critical values of injected current inducing the depolarization block. 

Because of this reason, the f-I curves are usually plotted only for the limited range of currents. 

Such overestimation of firing rate might lead to inadequate simulations of neuronal network 

phenomena. For instance, overestimated firing rates might result in altered relationship between 
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neuronal firing and dynamics of ionic concentrations, which is crucial for the development of 

epilepsy models (Cressman et al. 2009; Krishnan and Bazhenov 2011; Wei et al. 2014; Chizhov 

et al. 2019). As shown, the transition of neurons into depolarization block plays a crucial role in 

some regimes of epileptic activity (Krishnan and Bazhenov 2011; Wei et al. 2014), however 

models used in those works are based on single neuron models that are too “strong” in the sense 

of maximum firing rates and the range of input currents and conductances. This quantitative 

discrepancy leads to a biased tuning of ionic dynamics parameters for reproduction of network 

activity patterns, thus making the comparison with experiments rather qualitatively but not 

quantitatively correct. 

Most simplified models of neuronal firing aim to reproduce the realistic firing pattern in response 

to a current injection at a fixed level of membrane conductance, but not at different values of 

conductance within physiological range. However, under physiological conditions, neurons fire in 

response to the activation of synaptic conductances, and moreover, the synaptic activation cannot 

provide pure current-clamp conditions. The importance of shunting effect is shown, for instance, 

in studies of visual cortex, in experiments (Borg-Graham et al. 2003) and simulations (Chizhov 

and Graham 2021). In contrast, the fitting of neuronal models to experiments and their comparison 

are typically done with datasets obtained from only current-clamp recordings (Gerstner and Naud 

2009). Our second and third criteria require the fitting and comparison to a set of data that include 

various input conductances. The criteria characterize the domain of steady-state spiking in the 2d 

space of the main control signals received by the neuron, namely, the synaptic current and 

conductance (Pokrovskii 1978; Shriki et al. 2003). These signals determine the first two, voltage-

independent and linearly voltage-dependent components of the total input current received by a 

neuron from synaptic populations (Pokrovskii 1978). The input conductance might be modulated 

with the help of the dynamic clamp technique (Destexhe and Bal 2009; Graham and Schramm 

2009) or optogenetics (Berndt et al. 2014). These techniques have not been used specifically for 

the purpose of neuron model construction. Instead, a canonical technique was based on the 

voltage-clamp and current-clamp recordings (Hodgkin and Huxley 1952). Whereas this technique 

is able, in principle, to reveal full information about the dynamics of each of pharmacologically 

isolated voltage-dependent channels, it does not allow to probe a pharmacologically intact neuron 

as a complex dynamical system in the full range of its input (synaptic) signals. Such probing 

requires a separate consideration, similar to the one proposed in the present work. 

The fourth one, the voltage minimum, is an important aspect of the voltage evolution between 

spikes that features the composition of underlying ionic currents, determines the state of 

inactivation of sodium channels and, consequently, the probability and amplitude of the next spike 

(Shao et al. 1999; Vervaeke et al. 2006).  
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The mentioned four features are in the focus of the present work. We build a model that belongs 

to the class of minimal single-compartment conductance-based models realistically reproducing 

voltage traces and shape of spikes, like those considered in the study by Pospischil et al. 

(Pospischil et al. 2008). In addition, our model is targeted to reproduce the four aforementioned 

characteristics, as well as to maintain biophysical details at the level of distinction of different 

gating variables for the most effective ionic channels. In contrast to more simplified models like 

the Izhikevich model (Izhikevich 2003), the adaptive exponential integrate-and-fire (AdEx) (Brette 

and Gerstner 2005) or the conductance-based adaptive exponential integrate-and-fire (CAdEx) 

(Gorski et al. 2020), able to simulate different types of neurons with their different patterns of 

spiking activity corresponding to different settings of intrinsic parameters, our model mimics just 

an individual real neuron which, however, is typical within the class of regular spiking cortical 

neurons in the rat’s brain. Therefore, our work does not contain any analysis on variation of 

intrinsic parameters, but instead studies neuronal dynamics as a function of input signals. For 

illustrative purposes, we compare our experimental data and model with one of the simplified 

models.We propose a dynamic threshold model. In terms of single-compartment modeling of a 

neuron, the approximation of spike activation with a dynamic threshold lies behind the conceptual 

framework of the independence of activation and inactivation within the Hodgkin-Huxley 

formalism. An example of a model with inter-dependent activation and inactivation gating 

variables can be found in (Naundorf et al. 2006), where the proposed one-compartment model 

captures two observations that are contradictory in the frameworks of the standard Hodgkin-

Huxley one-compartment description. These observations are the large variability of somatically 

registered spike thresholds and the sharp kinks of voltage at spike initiation. It is known (Gutkin 

& Ermentrout 2006; McCormick et al. 2007) that these effects are explained by spatial dynamics 

of action potential initiated at the axonal initial segment. However, within the framework of a 

single-compartment description, the former model from (Naundorf et al. 2006) is still a useful 

phenomenological model. In (Chizhov et al. 2014), we considered an additional experimental 

observation, the so-called divisive effect of rate-versus-current gain decrease with additional 

shunt. These three observations together have been reproduced using a 3-state Markov model, 

in which the activation threshold was dependent on the slow inactivation. The present work is 

more focused on quantitative comparison of the four characteristics mentioned above with data.  

We present experimental data obtained from principal, presumably pyramidal neurons of rat 

cortex using the whole-cell patch-clamp method. The data illustrate the variability of the above-

mentioned characteristics of neuronal activity. Within the recorded cells, we choose a single 

representative one and fit the model to this particular cell. We propose a hybrid model of moderate 

complexity (5 ordinary differential equations (ODEs)) which satisfies the above-mentioned criteria. 

It includes a dynamic threshold-based approximation for one type of sodium channels and 

Hodgkin-Huxley-type approximations for fast and slow potassium channels. The model reveals a 
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few elements that are crucial for consistency with the experiments: the medium-scale inactivation 

of sodium channels, the prolonged high-conductance state between spikes, the slow inactivation 

of potassium channels and the dependence of the activation threshold on slow inactivation for 

sodium channels. 

The proposed model distinguishes three types of voltage-dependent channels and reveals their 

role in spike generation, which is a prediction that is testable in experiments with pharmacological 

blockade of distinct fast and slow potassium channels. The model also highlights the 

interdependence of sodium channel activation on inactivation. Note, that these gating 

characteristics are the ones observable with somatic recordings, and are, in this sense, effective 

gating variables. That interdependence and the threshold dynamics are also testable predictions. 

However, even considering the proposed model as just a mechanistic description of spike 

generation that captures its important characteristics, it is useful for the development of neuronal 

population models that can be further employed to simulate realistic large-scale network 

simulations, for instance with the help of the refractory density approach (Schwalger and Chizhov 

2019).   

The rest of the article is organized as follows. In Section 2, we present experimental results on 

pyramidal neurons’ firing activity and characteristics, which are challenging for existing models. 

In Section 3, we highlight the limitations of existing models in reproducing key characteristics from 

these data, and we introduce our model, showing that it matches the experiments according to 

all four above-mentioned criteria. In Section 4, we summarize our findings and propose a few 

perspectives. Finally, the experimental and computational methods are reviewed in the Appendix. 

2. Experimental results 

2.1 The firing rate of a representative cortical neuron is a function of 

stimulating current and conductance 
 

With the help of the dynamic-clamp technique (Prinz et al. 2004; Destexhe and Bal, 2009), we 

injected into neurons the voltage-dependent current 𝐼𝑖𝑛𝑗(𝑈, 𝑡) = 𝑢(𝑡) − 𝑠(𝑡)(𝑈(𝑡) + 60𝑚𝑉), 

setting the steps of current 𝑢(𝑡) and conductance 𝑠(𝑡) with a duration of 1500ms. Notice that the 

assignment of the two signals 𝑢(𝑡) and 𝑠(𝑡) is equivalent to the assignment of an arbitrary set of 

synaptic conductances 𝑔𝑠(𝑡) and reversal potentials 𝑉𝑠, assuming the conductances to be 

independent of the membrane potential 𝑈(𝑡) (Smirnova et al. 2015). This is the reason why 𝑢(𝑡) 

and 𝑠(𝑡) are expressed via the voltage-independent synaptic conductances: 𝑠(𝑡) = ∑ 𝑔𝑠(𝑡)𝑠  and 

𝑢(𝑡) = ∑ 𝑔𝑠(𝑡)(𝑉𝑠𝑠 + 60𝑚𝑉), where the chosen reversal potential, -60mV, is an arbitrary fixed 

constant. In order to characterize the steady-state firing regime, we calculated for each pair of 

values (𝑢, 𝑠) the firing rate 𝑓(𝑢, 𝑠) as the number of spikes per time unit starting at 1/3 of the 
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stimulus duration. As seen from Fig.1A plotted for a representative pyramidal cortical neuron, the 

domain of nonzero stationary firing rate is limited; on the left, the inclined boundary corresponds 

to subthreshold currents and on the right, the almost vertical boundary does to currents leading 

to the depolarization block. As seen from several representative traces with the same firing rate 

(Fig1A, insets), corresponding to the points inside the excitation domain and lying on the same 

isoline, the spike shape, the dynamics of the spike amplitudes, and the minimum voltage depend 

on the conductance 𝑠(𝑡). At the same time, the timing of voltage reaching its minimum does not 

significantly depend on the shunting conductance 𝑠(𝑡).  

A,   Experiment           B,   Proposed model 

    

        

Figure 1.  Experimental (A) and simulated (B) plots for the steady-state firing rate as a function of input 

current and conductance. The f-I curves at the bottom of each panel is an alternative representation of the 

same data. A, the data from pyramidal neuron of the medial frontal cortex of the rat brain. B, the model 

proposed in the present paper. In the bottom plots, the values of the conductance 𝑠 are given in the units 

of the input conductance 𝐺𝐿.  

The f-u-s plot (Fig.1A) is in focus of the present study; it is used as a benchmark for comparison 

between different mathematical models (Fig.1B, Fig.2). 
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A,  Hodgkin-Huxley model   B, Izhikevich model  

 

                      

C,     HH-like model for cortical RS neuron 

 

Figure 2.  Simulated plots for the steady-state firing rate as a function of input current and conductance. A, 

the standard Hodgkin-Huxley model. B, the Izhikevich model for regular spiking neuron. C, the Hodgkin-

Huxley-like minimal model for cortical regular spiking (RS) neuron (Pospischil et al. 2008). 

 

2.2 Real neurons have dispersed characteristics  
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The obtained plots for the firing rate 𝑓(𝑢, 𝑠) are shown in Fig.3 for several pyramidal neurons of 

the prefrontal cortex, which were recorded in similar experimental conditions. The plots have 

similar “tongue”-like shapes and represent a tendency for the firing rate to increase with the 

stimulating current 𝑢 and to decrease with the stimulating conductance 𝑠.  The variability of the 

plots reflects the individual characteristics of the neurons. The observed range for the DB critical 

current 𝑢/𝐺𝐿 is from 40 to 150 mV; the range for the maximum of 𝑠/𝐺𝐿 is from 0 to 6 (for a number 

of cells n=10); the maximum firing rate varies from 18 to 32 Hz. As the variability of these firing 

characteristics is high, we decided to not average them, but to focus on a single representative 

neuron instead. 

 

Figure 3. Experimentally measured firing rate versus current and conductance for 8 neurons. 

2.3 The characteristics of spike shapes and voltage evolution are 

functions of both stimulating current and conductance 
 

Not only the firing rate but also the other characteristics of stationary firing, including the shape 

of spikes and the voltage evolution between the spikes, depend on the two stimulation 

parameters, 𝑢 and 𝑠. As seen from Fig.4A (top row, middle), the somatically observed voltage 

threshold of a spike initiation, 𝑉𝑇, is varied in a range of at least 10mV. It reaches the highest 

values at the brink of DB, so the approach to DB is reflected in the increase of 𝑉𝑇.  

The average voltage between spikes (see the Appendix) (Fig.4A, top row, right) increases by 

about 15mV for the 60 mV increase of 𝑢/𝐺𝐿. Dividing these two values, we estimate the 

conductance averaged across time and all traces, and thus obtain 4𝐺𝐿. This conductance is 4 

times bigger than the membrane conductance at rest, 𝐺𝐿, because of the contribution of voltage-

gated channels that remain to be opened on interspike intervals. Moreover, these channels 

dominate over the passive leak, meaning that the real neuron can hardly be represented by a 

leaky integrate-and-fire model. Because of the shunting provided by the slow voltage-gated 
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channels, the average depolarization is much smaller than the one predicted by a passive leak 

model based on the input conductance 𝐺𝐿. For instance, the average voltage deflection from the 

resting value (-65mV) at 𝑢/𝐺𝐿 = 50𝑚𝑉 and 𝑠 = 0 is about 25mV, which is twice as less as 𝑢/𝐺𝐿. 

These observations indicate that the persistent or slow changing shunting affects the neuronal 

membrane potential. 

The peak voltage at spikes (Fig.4A, bottom row, left) is maximal at the threshold current and 

minimal at the DB boundary, dropping by about 20mV. The spikes widen with the current (Fig.4A, 

bottom row, middle), doubling the half-amplitude width at the DB boundary in comparison to the 

spikes at the threshold current. The minimum between spikes, which we call the post-spike 

hyperpolarizing potential (𝑉𝑃𝐻𝑃), varies in a range of about 14mV, increasing towards the DB 

boundary (Fig.4A, bottom row, right). The voltage difference 𝑉𝑇 − 𝑉𝑃𝐻𝑃 decreases with the 

stimulating current or with 𝑉𝑃𝐻𝑃. Presumably, the decrease of 𝑉𝑇 − 𝑉𝑃𝐻𝑃 results in DB. 
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A, experiment 

 

B, Hodgkin-Huxley model 

 

C, proposed model 

 

Figure 4. Experimentally measured and simulated neuronal characteristics versus current and 

conductance: firing rate, spike threshold, average voltage, peak voltage, half-width of action potential (AP) 
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and post-spike hyperpolarization potential (PHP). Left top panels in A and C for the firing rate are the same 

as in Fig.1. 

3. Models 

3.1 Canonical Hodgkin-Huxley model versus experiments 

We ran the same protocols as in experiments with the standard one-compartment Hodgkin-

Huxley model (Appendix A.2.1), based on the following equation for membrane potential 

𝑑𝑈

𝑑𝑡
= −𝑔𝐿(𝑈 − 𝑉𝐿) − 𝑔

𝑁𝑎
 𝑚3 ℎ (𝑈 − 𝑉𝑁𝑎) − 𝑔

𝐾
 𝑛4(𝑈 − 𝑉𝐾) + 𝐼𝑖𝑛𝑗(𝑈, 𝑡) 

The details of the model and the notations are given in Appendix A.2.1.The only modification of 

the original model was the resting potential set to be -65mV. The input conductance at the resting 

potential was fitted to 5nS by setting the membrane area to be equal to 1.4 ∙ 10−5𝑐𝑚2. 

The standard Hodgkin-Huxley model correctly reproduces the experiments in many aspects, but 

with some notable disagreements (Fig.2A and 4B), namely:  

(i) the shape of the domain of stationary firing is “tongue”-shaped (Fig.2A and Fig.4B, top left);  

(ii) the firing rate increases with the stimulating current;  

(iii) the maximum stimulating conductance is 4𝐺𝐿 (Fig.2A and 4B), which is in the experimental 

range (Fig.3);  

(iv) the variability range of the spike threshold 𝑉𝑇 (see the definition in the Methods section) was 

about 13mV (Fig.4B, top middle), which is as large as in experiments. However, the voltage 

evolution at the spike initiation is too smooth, which is because of the smooth sodium activation 

dependence. In the Hodgkin-Huxley approximation framework, it is impossible to sharpen the 

spike initiation without a decrease of the threshold variability range.  

(v) the average voltage (see Appendix) range (about 18mV) (Fig.4B, top right) is consistent with 

the experiment, but the average conductance derived from this value and the underlying current 

𝑢/𝐺𝐿 range (300mV) is about 16𝐺𝐿, which is 4 times bigger than in real neurons. So, the HH model 

overestimates the contribution of voltage-gated channels. 

(vi) the peak voltage range (Fig.4B, bottom left) is large, between -30 and 30mV. 

(vii) the spike width at the half-height (see Appendix) (Fig.4B, bottom middle) does decreases, 

which contradicts the experimental observatons. 
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(viii) the minimal voltage 𝑉𝑃𝐻𝑃  (Fig.4B, bottom right) decreases with the current in a consistent 

range of about 25mV. This range is larger than for 𝑉𝑇, which means that 𝑉𝑇 − 𝑉𝑃𝐻𝑃 is decreasing, 

as in the experiment.  

(ix) the time elapsed since last spike until reaching the minimum of the membrane potential 

crucially differs from that in the experiment (3 versus 20ms; compare Fig.5B to 5A).   

       A, Experiment            B, Hodgkin-Huxley model  C, Proposed model  

     

Figure 5. Experimentally measured and simulated spike trains. The timing of voltage minima in the 

Hodgkin-Huxley model significantly differs from those in the experiment and in the proposed model (insets) 

because of an overestimation of the total membrane conductance (blue).   

 

Summarizing our observations, we conclude that the HH model reproduces qualitatively well the 

steady-state characteristics of firing of our representative neuron, but the quantitative comparison 

is not satisfactory. Presumably, the main crucial discrepancy is the overestimation of the shunting 

provided by voltage-gated channels. 

3.2 Minimal Hodgkin-Huxley-like model for regular spiking neuron  

A reader may suppose that the above mentioned discrepancies between the standard Hodgkin-

Huxley model and our experimental data might be due to the difference in registered neurons. 

The original model has been developed for a giant squid axon, whereas our data are for cortical 

regular spiking neurons. To verify this aspect, we have considered a minimal Hodgkin-Huxley-like 

model (Appendix A.2.2) fitted to experimental data obtained in cortical regular spiking neurons of 

rodents (Pospischil et al. 2008): 

𝑑𝑈

𝑑𝑡
= −𝑔𝐿(𝑈 − 𝑉𝐿) − 𝑔

𝑁𝑎
 𝑚3 ℎ (𝑈 − 𝑉𝑁𝑎) − 𝑔

𝐾
 𝑛4(𝑈 − 𝑉𝐾) − 𝑔

𝑀
𝑝(𝑈 − 𝑉𝐾) + 𝐼𝑖𝑛𝑗(𝑈, 𝑡), 

where a slow potassium channel with the activalion variable 𝑝(𝑈, 𝑡) was added to the original 

Hodgkin-Huxley model. 

The experimental data set was obtained in the current-clamp mode, so the fitting was performed 

for only an injected current as a stimulus, using voltage traces with spike trains and f-I curves. 

The examples of a simulated spike train and an f-I curve are presented in Fig.2C (left and middle). 
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However, the extended simulations with additional input conductance show atypical behaviour 

with a widening of excitation domain for large 𝑠 (Fig.2C, right). This comparison underlies the 

importance of fitting models to data that probe shunting effects. 

3.3 Izhikevich model versus experiments  

The simple model proposed by Izhikevich (Izhikevich 2003) is the model of a different level of 

description, aimed to reproduce spiking patterns for different types of neurons depending on the 

intrinsic parameter settings. We use this model here for illustrative purposes, as a representative 

of the class of simplified, two-dimensional models. By construction, this family of models does not 

allow modeling of depolarization block. For a regular spiking cell (Appendix A.2.3), the model 

shows spikes that are similar to the real neuron’s spikes (Fig.2B), in sense of their sharp shapes, 

amplitude and duration; and the firing rate depends on both of the input signals, 𝑢 and 𝑠. On the 

other hand, contrary to the experiments, the model does not reproduce the depolarization block, 

overestimates the maximum firing rate (Fig.2B), underestimates the dependence of spike 

amplitude on 𝑢 and 𝑠, and reaches the voltage minimum too early after each spike.   

3.4 Our proposed model  

We propose a model that consists of one sodium and two potassium channels with the Kirchhoff 

equation for the membrane potential 𝑈(𝑡) given as eq.(1) (see Appendix A2.4):  

𝑑𝑈

𝑑𝑡
= −𝑔𝐿(𝑈 − 𝑉𝐿) − 𝑔

𝑁𝑎
 𝑚2(𝑈, 𝑡; ℎ(𝑈, 𝑡), 𝑉𝑇(𝑖))  𝑖(𝑈, 𝑡) (𝑈 − 𝑉𝑁𝑎) − 𝑔

𝐾,𝑓
 𝑛(𝑈, 𝑡)(𝑈 − 𝑉𝐾)

− 𝑔
𝐾,𝑠

 𝑤(𝑈, 𝑡)(𝑈 − 𝑉𝐾) + 𝐼𝑖𝑛𝑗(𝑈, 𝑡) 

The sodium channel approximation is of threshold-type, however it is written via the gating 

variables of non-dimensional conductance 𝑚(𝑈, 𝑡) and slow inactivation 𝑖(𝑈, 𝑡) (eq.(2)). At any 

time instant where the voltage 𝑈(𝑡) reaches the threshold 𝑉𝑇(𝑡), if the fast inactivation ℎ(𝑈, 𝑡) is 

above 0.5, then the sodium channel is instantaneously activated (Fig.6A). This activation is 

described by instantaneous resetting of the variable 𝑚(𝑈, 𝑡) to 1 and ℎ(𝑈, 𝑡) to 0, according to 

eq.(3), so activation implicitly depends on inactivation. The variables 𝑚 and ℎ then passively 

decay, according to eqs.(5,6). The variable 𝑚 produces the typical time-course of the sodium 

conductance after a voltage-step activation (Fig.6C), which implicitly takes into account fast and 

moderate inactivation of the channels of pyramidal cells in adult animals (Hamill et al. 1991). The 

conductance depends not only on variable 𝑚(𝑈, 𝑡), but also on the slow inactivation 𝑖(𝑈, 𝑡), which 

is conventionally described in HH-like form, eq.(7). The threshold 𝑉𝑇(𝑡) also depends on the slow 

inactivation 𝑖(𝑈, 𝑡) according to eq.(4). 
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Figure 6. Simulated responses in current- and voltage-clamp modes. A,B, stimulation with 300pA current 

(𝑢/𝐺𝐿 = 60𝑚𝑉). A, membrane potential, threshold potential (blue) and gating variables: sodium channel 

activation 𝑚, slow inactivation 𝑖, fast potassium activation 𝑛 and slow potassium activation 𝑤. B, effects of 

the blockade of fast (top), or slow (middle) potassium currents, or the reduction of sodium current (bottom). 

C, voltage-clamp, currents and conductances as responses to a voltage-step. 

 

Once activated at a spike, the sodium channels close on the time scale of milliseconds and thus 

terminate the spike even if potassium channels are blocked. However, fast potassium channels, 

activating at the initial phase of a spike, contribute to the repolarization and significantly shorten 
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the spike. We approximate this by one fast potassium channel, which is a conventional direct 

rectifier, eq.(8), with a single activation variable 𝑛(𝑈, 𝑡) evolving according to eq.(9). According to 

the approximation, the channel activates and deactivates at about 𝑉1/2 = −25𝑚𝑉, which 

approximately corresponds to the middle voltage level of a spike. 

The slowly-evolving shunting is modelled with the slow potassium channel. It is approximated with 

one activation variable 𝑤(𝑈, 𝑡) according to eqs.(10,11). The channel activates at about the top 

of the spike 𝑉1/2 = 0, and it deactivates passively with the time scale 1/𝑏 = 20𝑚𝑠. As a result, we 

have constructed a model based on 5 ODEs for the state variables 𝑈, 𝑚, 𝑖, 𝑛𝑓 and 𝑛𝑠.  

As seen from the comparison between simulations and the experimental data, the model 

reproduces most of the experimental observations (compare Fig.1B to 1A and Fig.4C to 4A): 

1) the shape of the domain of stationary firing is “tongue”-shaped (Fig.4C, top left), and the DB 

boundary is almost vertical;  

2) the firing rate increases up to the maximum rate about 28 Hz, as in the experiment;  

3) the maximum current 𝑢 at the DB boundary is about 80𝑚𝑉 ∙ 𝐺𝐿 (versus 70𝑚𝑉 ∙ 𝐺𝐿) 

4) the maximum stimulating conductance 𝑠 is 2.2 (versus 2.8);  

5) the spike threshold 𝑉𝑇 variability range (about 10mV) is as large as in the experiment;  

6) due to threshold initiation of sodium channel the modelled spike has a sharp initiation and the 

discontinuous voltage increase rate with a distinguishable threshold, which is comparable to the 

experimental recordings; 

7) the average voltage range is almost as large as in the experiment (12 versus 15mV); 

8) the average voltage relative to the resting potential (-65mV) at, for instance, 𝑢/𝐺𝐿 = 50𝑚𝑉 and 

𝑠 = 0, is about 15mV, which leads to the average shunting 50𝑚𝑉 ∙ 𝐺𝐿/15𝑚𝑉 ≈ 3.3𝐺𝐿, which is 

close to and does not exceed the experimentally estimated value of  4𝐺𝐿. Thus, the model does 

not overestimate the contribution of voltage gated channels. 

9) the peak voltage is up to 25mV, and its range is about 15mV (versus 20mV). 

10) the spike width is almost unchanged, in contrast to the experiment, however it at least does 

not decrease as in the HH model. 

11) the minimal voltage 𝑉𝑃𝐻𝑃 decreases with the current in the consistent range of about 14mV 

(versus 12 mV). The difference 𝑉𝑇 − 𝑉𝑃𝐻𝑃 is decreasing, as in the experiment. 
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12) the time passed since spike until reaching the minimum by the membrane potential well 

corresponds to the experiment, with the voltage minimum being almost in the middle between the 

spikes (compare Fig.5C to 5A).   

Among these observations, the items 2-4 and 12 justify that the proposed model satisfies the four 

conditions initially formulated in the Introduction. 

3.4.1 Overestimation of membrane conductance in HH model 

The above-mentioned estimates of the average conductance in the experiment and in the HH 

model have shown that the HH model overestimates the contribution of voltage-gated channels. 

Comparing the two models, we see that the proposed model generates a membrane conductance 

that is twice as small as the one generated by the HH model (Fig.5B,C). 

3.4.2 Threshold dynamics and DB 

The dynamic threshold dependence on slow inactivation, eq.(4), not only affects the firing rate as 

a function of input, but also determines the sequence of threshold values in a spike train. As seen 

from Fig.7A-D (green dots), this sequence is increasing in both experiment and model. The 

threshold variability is larger for strong stimuli; compare Fig.7A to 7B and Fig.7C to 7D. Because 

the slow inactivation 𝑖(𝑡) affects not only the threshold but also the sodium current, eq.(2), the 

thresholds reversely correlate with the peak membrane potential values (orange dots). The level 

of slow inactivation is approximately determined by the voltage minimum 𝑉𝑃𝐻𝑃 (cyan dots), which 

is why the voltage difference between the minimum and the threshold, 𝑉𝑇 − 𝑉𝑃𝐻𝑃, varies across 

spike trains, and within aspike train, less than the threshold 𝑉𝑇 does across spike trains for 

different inputs. In this sense, 𝑉𝑃𝐻𝑃 is a predictor of the threshold  𝑉𝑇 at each following spike. For 

the case with strong stimulus, DB emerges after a gradual increase of 𝑉𝑇 (Fig.7B,D) towards its 

steady-state, voltage-dependent values (Fig.7F), i.e., due to rising inactivation, that is, the 

decrease of 𝑖(𝑡) (Fig.7E, left blue). The inactivation 𝑖(𝑡) affects the firing properties by increasing 

the threshold and decreasing the peak values of the potassium channel activation variables, 𝑛(𝑡) 

and 𝑛𝐴(𝑡), which depend on the spike amplitude. In turn, the weakened potassium channels 

enhance the inactivation, i.e., decrease 𝑖(𝑡) from spike to spike. Therefore, the rising threshold is 

a cause of DB in the model. 
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Figure 7. Experimental (A and B) and simulated (C -E) responses showing the dynamics of the spike 

threshold (green dots), the peak voltage (orange) and PHP (cyan) during the weak current stimulation (A 

and C) and during strong stimulus that leads to DB (B, D, and E). The blue solid line shows the modelled 

threshold, the blue dashed line is the linear fit for the threshold values at all spikes except the first two ones.  
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F, the steady-state voltage dependence of the threshold potential, 𝑉𝑇(𝑈) = −51 + ((𝑈 + 60)/5)2 𝑚𝑉 

(red), which is derived from eq.(4) after substitution 𝑖 = 𝑖∞. The dashed straight lines shows the bisector 

(black) and the initial threshold level (blue).  

3.5 The roles of the different channels included in the model 

Each of the gating variables contributes to the spiking pattern. Their roles are revealed in 

simulations with the blockade of the channels (Fig.6B). The blockade of slow potassium channel 

leads to early DB (Fig.6B, top). In this case, the prolonged sodium current is no longer shunted 

between spikes, which leads to an accumulation of inactivation, an elevation of the threshold, and 

eventually DB. Thus, the slow potassium channel significantly affects the domain of spike 

generation. Another effect of this blockade is shortening the time since the last spike until the 

voltage minimum. 

Blocking the fast potassium channel widens the spikes and decreases the firing rate (Fig.5B, 

middle). The decrease of sodium channel’s maximum conductance results in the decrease of 

spike amplitudes, facilitates DB, and thus decreases the domain of spike generation (Fig.6B, 

bottom).   

Overall, we conclude that the gating variables that we have introduced are important for the model 

to reproduce the four biophysical characteristics mentioned in the Introduction. 

3.6 Bifurcation analysis 

The scenario of initiation of the spike generation and the transition to DB can be explained with 

the help of bifurcation analysis (Fig.8), obtained for the continuous-time version of the proposed 

model, given in the Appendix A.2.5. Bifurcation diagrams characterize the asymptotic behavior of 

the model depending on given system’s parameters that we choose to vary. They are represented 

with the main bifurcation parameter, the constant input u at zeroed 𝑠, on the horizontal axis, and 

the voltage variable on the vertical axis. We consider two different cases, namely, for intact 

threshold 𝑉𝑇(𝑡) (Fig.8A) and fixed threshold 𝑉𝑇 = −51 𝑚𝑉 (Fig.8B). In the transient case of time-

dependent 𝑢(𝑡), the trajectory of the system may approach one of those two extreme cases. In 

the case of a response to a current step, the trajectory starts following the case of 𝑉𝑇 = −51 𝑚𝑉 

(Fig.8B) and then gradually switches to the former case (Fig.8A). The bifurcation responsible for 

spike initiation corresponds to a saddle-node on invariant circle (SNIC) bifurcation, whereas the 

bifurcation responsible for the transition to DB corresponds to a saddle-node bifurcation of limit 

cycles (SNC) at large input values.  Interestingly, the limit cycles in the case of intact 𝑉𝑇(𝑡) form 

an isola, whereby the fixed-point solution is stable in the entire range of 𝑢. Similar behavior has 

been found in, e.g., the simple model of a dopaminergic neuron (Dovzhenok and Kuznetsov, 2012). 

In our case, the isola exists because the steady-state voltage-dependent threshold is above the 

membrane potential itself in its entire range (the red line is above the dashed black bisector in 
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Fig.7F. Therefore, the dynamic threshold, eq.(4), determines the main features of the model’s 

behavior.  

 

Figure 8. Bifurcation diagrams for the proposed model in the cases for the intact  𝑉𝑇(𝑡) (A) and the fixed 

threshold 𝑉𝑇 = −51 𝑚𝑉 (B). Bifurcations: SNC, saddle-node bifurcation of limit cycles; HB, Andronov-Hopf 

bifurcation; SNIC, saddle-node on invariant circle bifurcation. Black and red are stable and unstable fixed 

points, green and blue are stable and unstable limit cycles, respectfully. The dark green solution 

corresponds to the response to ramp shown in Fig.9C. 

The presence of isola is reflected in the model’s behavior in response to ramping stimuli for 𝑢(𝑡) 

(Fig.9). It is interesting that the response to “weak” ramp, where neuron does not reach DB 

(Fig.9B), shows more spikes than the response to “strong” ramp with DB (Fig.9C). The behavior 

is determined by the dynamics of the threshold, shown in blue in Fig.9, which in turn follows the 

slow inactivation variable. The DB is accompanied by strong inactivation that corresponds to a 

high level of the threshold, which is maintained during the ramp down (Fig.9C). On the bifurcation 

diagram (Fig.8B), the response to “strong” ramp is initially close to the fixed point solution (black 

line), then it turns into the large-amplitude oscillations and later, with some delay, close to the 

middle of the ramp, it returns to the fixed point. The delay effect is well known and due to the slow 

speed of the ramp; see e.g. (Rinzel & Baer, 1988). The quasi steady-state voltage level at this 

stage is always below the threshold, according to Fig.7F. Only fluctuations of voltage can transfer 

the system to spiking, which happens in presence of noise. Such spontaneous spike generation 

is seen in Fig.9D. 



20 

 

 

Figure 9. Responses to ramp stimuli (A) of the proposed model in the cases of relatively weak (up to 400pA) 

stimulus (B), strong (600pA) stimulus (C), and in presence of noise (D). The current-noise was realized as 

the Ornstein-Uhlenbeck process with the time constant 5ms and the amplitude 50pA. 

4. Discussion 

4.1 Control signals of a neuron and comparison of models 

In natural situation of brain functioning, the membrane potential of a neuron is governed by 

external signals coming to the neuron, which are synaptic channel conductances. Therefore, any 

characteristics of neuronal activity must be measured as functions of the synaptic conductances. 

In assumption of their voltage independence, there are only two linear combinations of the 

synaptic conductances that control a neuron, and they can be chosen in the form of the total 

synaptic current measured at fixed voltage, 𝑢, and the total conductance 𝑠. Hence, the behavior 

of any neuronal model must be testified by changing 𝑢 and 𝑠, at least. Unfortunately, not many 

models were compared with real neurons or to the HH model in this regard. Instead, alternative 

models are subject to tests with only current giving as an input. Here we impose the conditions of 

correct modelled responses to the both input signals. We focus on only steady-state spiking 

regime of neuronal activity, obtain experimental characteristics of this regime and compare 

models to experiments starting with the classical HH model.   
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4.2 Experimental 2d characteristics 

In the paper, we have presented experimentally measured characteristics of a neuronal activity 

during prolonged stimulation. In order to avoid transient processes of adaptation, we excluded 

from the estimates the initial 500ms of the responses and took into account only the following 1s-

lasting responses. With this clause, we consider the obtained characteristics as the ones for the 

steady state. As we have shown, the domain of the steady-state spiking is nontrivial in the planar 

space of the two input parameters, the input (“synaptic”) current and conductance. Such domain 

has been previously visualized in the theoretical work with the HH model (Pokrovsky 1978) and 

in the experimental works (Chizhov et al. 2014; Smirnova et al. 2015), and it is consistent with the 

data presented as a series of f-I-curves in (Fernandez&White 2009, 2010; Fernandez et al. 2011; 

Graham & Schramm 2009). Such characteristics of the spiking regime as the spike threshold etc. 

have not been previously reported as functions of the two input parameters. 

4.3 Advantages and disadvantages of the HH model 

The HH model is a benchmark in mathematical neuroscience. It has been derived from the set of 

voltage-clamp experimental data that fully testifies possible behavior of ionic channels when the 

internal variable, the membrane potential is arbitrary changeable. In natural situation, as 

mentioned above, the membrane potential is governed by external signals coming to neuron, the 

synaptic channel conductances, and the effects of these signals can be mimicked by changing 

only 𝑢 and 𝑠. The HH model which, by construction, combines the contributions of ionic currents, 

each being correctly governed by voltage, is expected to reproduce correctly the responses to 

arbitrary 𝑢(𝑡) and 𝑠(𝑡). Our comparison to experiments has confirmed this point for steady-state 

spiking regime. At least qualitatively, the model correctly reflects the shape of the domain of 

persistent spiking and the dependences of the firing rate on 𝑢 and 𝑠, spike amplitude etc. 

However, quantitative agreement with data obtained from mammalian brain neuron has not been 

reached, even with the help of parameter fitting. We believe that this disagreement is based on 

contradictory requirements of high amplitude of spikes and low total conductance necessary for 

sensitivity to the external conductance 𝑠. In other words, the HH model qualitatively describes 

well the steady-state firing regime but quantitatively overestimates the conductances of voltage-

gated channels.  

4.3.1 Proposed model 

A significant delay between a spike and the minimum of the membrane potential before the next 

spike is observed in a majority of experimental recordings in cortical and hippocampal pyramidal 

neurons (Amakhin et al. 2022; Ergina et al. 2021). The mechanisms underlying the delay are not 

fully understood. Hypothetically, this delay can be explained by either the delayed activation of 

hyperpolarizing currents like the potassium ones or by slow decay of depolarizing currents. The 

depolarizing currents are either membrane (presumably, sodium) currents or the currents 
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between neuronal branches. Although two-compartmental models (Pinsky and Rinzel 1994; 

Mainen and Sejnowski 1996) are able to reproduce this effect, in our work we could not find a set 

of parameters that would provide the match to all our requirements. This is the reason why, and 

also for the sake of simplicity, we supposed that this delay is caused by the relatively slow 

inactivation of sodium channels. Commonly, these channels are considered as persistent sodium 

channels comparatively to the fast-transient sodium channels. However, first, this consideration 

involves at least two activation variables for two types of channels. Second, the slowly inactivating 

channels are experimentally observed together with the fast channels, for instance, in pyramidal 

neurons of adult rats in contrary to their absence in new-born animals (Hamill et al. 1991). And 

third, the two currents differ in their kinetics because of different modes of gating rather than 

because of separate channel proteins (Alzheimer et al. 1993; Stafstrom 2007). For this reason, 

we approximate the sodium current as an exponentially closing one with a time constant of 7ms, 

thus cumulatively describing both transient and slow inactivating fractions of the channels, which 

provide voltage-clamp responses similar to that from (Hamill et al. 1991). Together with the slow 

potassium current, this current provides late voltage minimum and low firing rate. The fast 

potassium current shapes the repolarization phase of spikes. Its blockade in simulations affects 

similarly to the pharmacological blockade of fast potassium channels (Chen et al. 1996). 

Regarding DB, one can interprets this phenomenon in terms of the dynamic threshold, showing 

that the threshold “runs away” from the membrane potential, thus extending the dynamic threshold 

concept proposed in (Platkiewicz Brette 2010).  

The shortcomings of the proposed model include too broad spikes and the lack of tendency to 

broaden spikes with the increasing stimulating current.  

4.4 Depolarization block 

As noted in (Bianchi et al. 2012), a model with only fast sodium and fast potassium currents is 

able to generate DB. With the help of a multicompartment model, the authors have found the 

necessary relations between the two currents, namely, relatively small window current for the 

sodium channels and relatively high-threshold of the potassium channel activation. At the same 

time, their single compartment model that matches experiments includes as many as ten currents, 

which points to the complexity of the problem. In (Tucker et al. 2012), it was found that DB results 

from the low density of somatic channels, and that low firing rate requires low window current. In 

contrast to that consideration, our explanation of DB mechanism is based on the threshold 

dynamics, i.e., the dependence of sodium channel activation on slow inactivation, where the slow 

inactivation is affected by the potassium channels. So, although DB is evident even in single 

compartment HH models because of the interaction between fast sodium and potassium 

channels, our modeling approach predicts that the DB effect at lower stimulating currents and 

conductances requires the dependence of sodium channel activation on inactivation, at least in 

single-compartment consideration. The importance of the slow inactivation of sodium channels 
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and the threshold dynamics for DB have been shown in (Qian et al. 2014). The authors notice 

that in the presence of slow inactivation, the effect occurs near or below the spike threshold, which 

ranges from -45 to -30mV in vitro. Otherwise, in the lack of slow inactivation, DB is qualitatively 

different, occurring at higher voltages and not possible in the experimentally observed range near 

-40mV. This study explains the difference in entering into DB, as suggested by (Bianchi et al. 

2012) and our model. 

4.5 Application of the proposed model for population model 
Single-neuron models provide a base for mean-field models. An effective model of neuronal 

population has been proposed in (Chizhov and Graham 2007; Chizhov 2017), where such 

population was defined as a set of large number of similar neurons each receiving the same  𝑢(𝑡) 

and 𝑠(𝑡), and individual noise. The refractory density approach has been developed for the 

conductance-based neurons. One step of the method construction is the reduction of the full HH-

like neuron to a threshold one. The proposed hybrid model is already a threshold-type model, so 

it can be implemented in the refractory density approach as an alternative to such basic neuron 

models as HH or integrate-and-fire ones. The implementation is straightforward. In this case, the 

advantages of the proposed model of a neuron are inherited by the population model, in particular, 

the reproduction of DB.  

A. Appendix 

A.1. Experimental technique 

A.1.1. The whole-cell patch clamp recordings in rat brain slices 

Animal handling and experimentation were performed in accordance with European Community 

Council directives 86/609/EEC. Male Wistar albino rats were used for the experiments (N=4, 18-

21 days postnatal). Rats were sacrificed by decapitation, each brain was rapidly removed and 

immersed in ice-cold, preoxygenated (95 % O2 and 5 % CO2) artificial cerebrospinal fluid (ACSF) 

of the following composition (in mM): 126 NaCl, 2.5 KCl, 1.25 Na2HPO4, 24 NaHCO3, 2 CaCl2, 

1 MgSO4, 10 D-glucose; pH 7.3-7.4. Coronal slices (300 μm thick) of medial frontal (prelimbic) 

cortex were cut with a vibratome (Microm HM 650 V; Microm, Walldorf, Germany). Slices were 

incubated at room temperature for at least 1 h before recordings. Neurons were visualized using 

transmitted illumination on a fixed-stage upright Axioscop 2 microscope (Zeiss, Oberkochen, 

Germany) equipped with differential interference contrast optics and a video camera 

(Grasshopper 3 GS3-U3-23S6M-C; FLIR Integrated Imaging Solutions Inc., Wilsonville, OR, 

USA). Pyramidal neurons were identified by their apical dendrites and triangular somata. Whole-

cell recordings were made from layer 3 pyramidal neurons using Model 2400 (AM-Systems; 

Sequim, WA, USA) patch-clamp amplifier. Patch electrodes (3–5 MΩ) were pulled from 

borosilicate capillary glass (Sutter Instrument, Novato, CA, USA). The following internal solution 
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was used (in mM): 136 K-gluconate, 10 NaCl, 5 EGTA, 10 HEPES, 4 ATP-Mg, 0.3 GTP, pH 7.25 

(adjusted with KOH).  

A.1.2. Acquisition and dynamic-clamp 

Signals were digitized with a sampling frequency of 33 kHz for acquisition with NI DAQ PCI-6221-

37pin (National Instruments, Austin, TX) and filtered with 5KHz by the amplifier. Whole-cell 

recordings were done in the dynamic clamp mode to introduce additional leaky channel. The 

custom software ``DC-project” was used1. The applied current is calculated as 𝑢(𝑡) − 𝑠(𝑡)(𝑉(𝑡) −

𝑉𝑈𝑆), where 𝑢(𝑡) and 𝑠(𝑡) are the voltage-independent input signals, current and conductance, 

respectively; 𝑉(𝑡) is the membrane voltage and 𝑉𝑈𝑆 is the reference voltage which was set to -

60mV, close to the resting membrane potential 𝑉𝑟𝑒𝑠𝑡. This reference voltage level is not essential, 

because its shift is equivalent to the shift of u. We included it for analysis only cells with stable 

input conductance and membrane potential, and with high access conductance. The access 

resistance was compensated in real time. For every neuron the recordings were started from 

estimations of the resting membrane potential 𝑉𝑟𝑒𝑠𝑡, input conductance 𝐺𝐿, and the membrane 

time constant 𝜏𝑚. Intrinsic membrane properties were assessed from the voltage responses to 

the series of 500-ms current steps providing hyperpolarization up to 5–10 mV.  

To estimate the f-u-s-function in the whole domain of u and s that provide spike generation, a 

series of recordings were performed with the injected steps of input signal calculated for different 

values of current 𝑢 and conductance 𝑠 and lasting for 0.5 s with the frequency 0.5 Hz. The 

increments of u and s were constant, the typical grid was 25 by 12 for u and s, respectively. For 

each step of stimulation, the firing rate ν was calculated as a total number of spikes per the last 

2/3 of step duration. The values of u and s in the plots were scaled by the input conductance 𝐺𝐿, 

in order to compare Ω-domains for different neurons, following (Graham and Schramm, 2009).  

The threshold was measured at the point where 𝑑𝑉 𝑑𝑡⁄  reaches 5 𝑚𝑉/𝑚𝑠 or 𝑑2𝑉 𝑑𝑡2⁄  reaches 

2 𝑚𝑉/𝑚𝑠2. The spike half-width was measured for each spike at the half-height defined as the 

middle voltage level between the threshold and the peak, and averaged across all spikes of a 

trace. The post-spike hyperpolarization potential (PHP) was measured as a minimum value 

between spikes, and averages across spikes. The average membrane potential was calculated 

for each trace on interspike intervals since the time moment of the peak plus 2ms to the time of 

the next crossing of threshold.  

 

A.2 Mathematical models  

A.2.1 Hodgkin-Huxley model 

We considered the classical one-compartmental Hodgkin-Huxley model, described by the 

following equations (Hodgkin and Huxley 1952): 

 
1 Available at: http://www.ioffe.ru/CompPhysLab/AntonV3.html 
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𝐶
𝑑𝑈

𝑑𝑡
= −𝑔𝐿(𝑈 − 𝑉𝐿) − 𝑔

𝑁𝑎
 𝑚3 ℎ (𝑈 − 𝑉𝑁𝑎) − 𝑔

𝐾
 𝑛4(𝑈 − 𝑉𝐾) + 𝑢(𝑡) − 𝑠(𝑡)(𝑈 − 𝑉𝑢𝑠) 

𝑑𝑚

𝑑𝑡
=

𝑚∞−𝑚

𝜏𝑚
,     

𝑑ℎ

𝑑𝑡
=

ℎ∞−ℎ

𝜏ℎ
,     

𝑑𝑛

𝑑𝑡
=

𝑛∞−𝑛

𝜏𝑛
, 

𝜏𝑚 =
1

𝛼𝑚 + 𝛽𝑚
,          𝜏ℎ =

1

𝛼ℎ + 𝛽ℎ
, 𝜏𝑛 =

1

𝛼𝑛 + 𝛽𝑛
,  

𝑚∞ =
𝛼𝑚

𝛼𝑚 + 𝛽𝑚
,        ℎ∞ =

𝛼ℎ

𝛼ℎ + 𝛽ℎ
,        𝑛∞ =

𝛼𝑛

𝛼𝑛 + 𝛽𝑛
, 

𝛼𝑚 =
(𝑈 + 35)/10

1 − exp(−(𝑈 + 35)/10)
, 𝛽𝑚 = 4 exp (−

𝑈 + 60

18
),   

𝛼ℎ = 0.07 exp (−
𝑈 + 60

20
) , 𝛽𝑚 =

1

1 + exp(−(𝑈 + 30)/10)
, 

𝛼𝑛 =
(𝑈 + 50)/100

1 − exp (−(𝑈 + 50)/10)
, 𝛽𝑚 = 0.125 exp (−

𝑈 + 60

80
) 

where 𝑈(𝑡) is the membrane potential, 𝐶 is the capacitance, 𝑉𝐿, 𝑉𝑁𝑎 and 𝑉𝐾 are the leak, sodium 

and potassium reversal potentials, 𝑚(𝑈, 𝑡) is the sodium channel activation, ℎ(𝑈, 𝑡) is the sodium 

channel activation, 𝑛(𝑈, 𝑡) is the potessium channel activation, 𝑔𝐿 is the leak conductance,  

𝑔
𝑁𝑎

  and 𝑔
𝐾

 are the sodium and potassium channel maximum conductances. 

 𝐶 = 1
𝜇𝐹

𝑐𝑚2 ,   𝑔𝐿 = 0.3
𝑚𝑆

𝑐𝑚2 , 𝑔
𝑁𝑎

= 120
𝑚𝑆

𝑐𝑚2 ,  𝑔
𝐾

= 36
𝑚𝑆

𝑐𝑚2 

𝑆 = 1.4 ∙ 10−5𝑐𝑚2, (𝐺𝐿 = 𝑔𝑡𝑜𝑡
0  𝑆 = 5𝑛𝑆), 

𝑉𝑟𝑒𝑠𝑡 = −65 𝑚𝑉, (𝑉𝐿 = −63 𝑚𝑉),  𝑉𝑢𝑠 = −60 𝑚𝑉, 𝑉𝐾 = −72 𝑚𝑉, 𝑉𝑁𝑎 = 55 𝑚𝑉 

Here, in comparison with standard parameterization, the leak reversal potential 𝑉𝐿 was modified 

to provide the desired resting potential 𝑉𝑟𝑒𝑠𝑡, and the membrane area was set such that the input 

conductance at rest, 𝐺𝐿, would be equal to 5nS as in the other model.  

A.2.2. Izhikevich model 

The simple model of a regular spiking cell was used according to (Izhikevich, 2003), where to we 

introduced the input terms 𝑢(𝑡) − 𝑠(𝑡)(𝑈 − 𝑉𝑢𝑠): 

𝐶 
𝑑𝑈

𝑑𝑡
= 𝑘(𝑈 − 𝑉𝑟)(𝑈 − 𝑉𝑡) − 𝑤 + 𝑢(𝑡) − 𝑠(𝑡)(𝑈 − 𝑉𝑢𝑠) 

𝑑𝑤

𝑑𝑡
= 𝑎 (𝑏 (𝑈 − 𝑉𝑟) − 𝑤) 

with the after-spike resetting 
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 if 𝑈 ≥ 30𝑚𝑉, then 𝑈 = 𝑐, 𝑤 = 𝑤 + 𝑑. 

The parameters were normalized so that the neuron has an input conductance of 5nS, namely: 

𝐶 = (100 ∗
5

35
) 𝑝𝐹, 𝑘 = (3 ∗

5

35
) 𝑛𝑆/𝑚𝑉, 𝑉𝑟 = −60 𝑚𝑉, 𝑉𝑡 = −50 𝑚𝑉, 𝑎 = (0.01 ∗

35

5
) 𝑚𝑠−1, 𝑏 =

(5 ∗
5

35
) 𝑛𝑆, 𝑐 = −60𝑚𝑉, 𝑑 = 400 𝑝𝐴. 

A.2.3. Minimal Hodgkin-Huxley-like model for rodent’s cortical regular spiking neuron The model 

is taken from (Pospischil et al. 2008). A slow potassium channel with the activalion variable 𝑝(𝑈, 𝑡) 

was added to the original Hodgkin-Huxley model: 

𝐶
𝑑𝑈

𝑑𝑡
= −𝑔𝐿(𝑈 − 𝑉𝐿) − 𝑔

𝑁𝑎
 𝑚3 ℎ (𝑈 − 𝑉𝑁𝑎) − 𝑔

𝐾
 𝑛4(𝑈 − 𝑉𝐾) − 𝑔

𝑀
𝑝(𝑈 − 𝑉𝐾) + 𝑢(𝑡)

− 𝑠(𝑡)(𝑈 − 𝑉𝑢𝑠) 

𝑑𝑚

𝑑𝑡
=

𝑚∞−𝑚

𝜏𝑚
,     

𝑑ℎ

𝑑𝑡
=

ℎ∞−ℎ

𝜏ℎ
,   

𝑑𝑛

𝑑𝑡
=

𝑛∞−𝑛

𝜏𝑛
,   

𝑑𝑝

𝑑𝑡
=

𝑝∞−𝑝

𝜏𝑝
, 

𝜏𝑚 =
1

𝛼𝑚 + 𝛽𝑚
,          𝜏ℎ =

1

𝛼ℎ + 𝛽ℎ
, 𝜏𝑛 =

1

𝛼𝑛 + 𝛽𝑛
,  

𝑚∞ =
𝛼𝑚

𝛼𝑚 + 𝛽𝑚
,        ℎ∞ =

𝛼ℎ

𝛼ℎ + 𝛽ℎ
,        𝑛∞ =

𝛼𝑛

𝛼𝑛 + 𝛽𝑛
, 

𝛼𝑚 =
0.32(𝑈 − 𝑉𝑇𝑟 − 13)

1 − exp(−(𝑈 − 𝑉𝑇𝑟 − 13)/4)
, 𝛽𝑚 =

−0.28(𝑈 − 𝑉𝑇𝑟 − 40)

1 − exp(−(𝑈 − 𝑉𝑇𝑟 − 40)/5)
,   

𝛼ℎ = 0.128 exp (−
𝑈 − 𝑉𝑇𝑟 − 17

18
) , 𝛽𝑚 =

4

1 + exp(−(𝑈 − 𝑉𝑇𝑟 − 40)/5)
, 

𝛼𝑛 =
0.032(𝑈 − 𝑉𝑇𝑟 − 15)

1 − exp (−(𝑈 − 𝑉𝑇𝑟 − 15)/5)
, 𝛽𝑚 = 0.5 exp (−

𝑈 − 𝑉𝑇𝑟 − 10

40
) , 

𝑝∞ =
1

1 + exp(−(𝑈 + 35)/10)
,         𝜏𝑝 =

𝜏𝑚𝑎𝑥 

3.3 exp((𝑈 + 35)/20) + exp(−(𝑈 + 35)/20)
, 

𝐶 = 1
𝜇𝐹

𝑐𝑚2 ,   𝑔𝐿 = 0.1
𝑚𝑆

𝑐𝑚2 , 𝑔
𝑁𝑎

= 50
𝑚𝑆

𝑐𝑚2 ,  𝑔
𝐾

= 5
𝑚𝑆

𝑐𝑚2 ,  𝑔
𝑀

= 0.07
𝑚𝑆

𝑐𝑚2,  𝑆 = 29 ∙ 10−5𝑐𝑚2, 𝑉𝐿 =

−70 𝑚𝑉,  𝑉𝑢𝑠 = −60 𝑚𝑉, 𝑉𝐾 = −90 𝑚𝑉, 𝑉𝑁𝑎 = 50 𝑚𝑉, 𝑉𝑇𝑟 = −60 𝑚𝑉, 𝜏𝑚𝑎𝑥 = 1 𝑠. 

 

A.2.4. The proposed hybrid model 

The proposed model contains three channels: one sodium channel 𝐼𝑁𝑎 and two potassium 

channels, one fast 𝐼𝐾,𝑓 and one slow 𝐼𝐾,𝑠. The voltage equation hence reads: 

𝐶
𝑑𝑈

𝑑𝑡
= −𝑔𝐿(𝑈 − 𝑉𝐿) − 𝐼𝑁𝑎 − 𝐼𝐾,𝑓 − 𝐼𝐾,𝑠 + 𝑢(𝑡) − 𝑠(𝑡)(𝑈 − 𝑉𝑢𝑠) (1) 
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The sodium current is defined by: 

 𝐼𝑁𝑎(𝑈, 𝑡) = 𝑔
𝑁𝑎

 𝑚2(𝑈, 𝑡) 𝑖(𝑈, 𝑡) (𝑈(𝑡) − 𝑉𝑁𝑎), (2) 

 if   (𝑈(𝑡) > 𝑉𝑇(𝑡)) 𝑎𝑛𝑑 (ℎ > 0.5)  then   𝑚 = 1, ℎ = 0        (3) 

 𝑉𝑇(𝑡) = −51 + ((𝑖∞
−1(𝑖(𝑡)) + 60)/5)2 𝑚𝑉 (4) 

 
𝑑𝑚

𝑑𝑡
=

𝑚∞−𝑚

𝜏𝑚𝑚
  (5) 

 
𝑑ℎ

𝑑𝑡
=

𝑖∞−ℎ

𝜏ℎ
 (6) 

 
𝑑𝑖

𝑑𝑡
=

𝑖∞(𝑈)−𝑖

𝜏𝑖(𝑈)
 (7) 

 𝜏𝑚𝑚 = 7 𝑚𝑠,  𝜏ℎ = 10𝑚𝑠,  𝜏𝑖 = 40 𝑚𝑠,  𝑚∞ = 0,  

 𝑖∞ = 1/(1 + 𝑒𝑥𝑝( (𝑈 + 44)/4)),    hence  𝑖∞
−1(𝑥) = −44 + 4 ln (1/𝑥 − 1) 

The fast voltage-dependent potassium current 𝐼𝐾,𝑓 is defined by: 

 𝐼𝐾,𝑓(𝑈, 𝑡) = 𝑔
𝐾,𝑓

 𝑛(𝑈, 𝑡)(𝑈(𝑡) − 𝑉𝐾), (8) 

 
𝑑𝑛

𝑑𝑡
=

𝑛∞(𝑈)−𝑛

𝜏𝑛(𝑈)
,  (9) 

 𝜏𝑛 = 1/(𝑎 + 𝑏) + 2 𝑚𝑠;  𝑛∞ = 𝑎/(𝑎 + 𝑏), 

 𝑎 = 0.1 𝑒𝑥𝑝( (𝑈 + 25)/7) 𝑚𝑠−1, 𝑏 = 0.1 𝑒𝑥𝑝( − (𝑈 + 25)/7) 𝑚𝑠−1 

The slow voltage-dependent potassium current 𝐼𝐾,𝑠 is defined by: 

 𝐼𝐾,𝑠(𝑈, 𝑡) = 𝑔
𝐾,𝑠

 𝑤(𝑈, 𝑡)  (𝑈(𝑡) − 𝑉𝐾), (10) 

 
𝑑𝑤

𝑑𝑡
=

𝑤∞(𝑈)−𝑤

𝜏𝑤(𝑈)
,  (11) 

 𝜏𝑤 = 1/(𝑎 + 𝑏) + 4 𝑚𝑠,  𝑤∞ = 𝑎/(𝑎 + 𝑏), 

 𝑎 = 5exp (𝑈/4) 𝑚𝑠−1, 𝑏 = 0.05 𝑚𝑠−1 

Parameters values are given by: 

 𝐶 = 0.7 𝜇𝐹/𝑐𝑚2,  𝜏𝑚 = 𝐶/𝑔𝑡𝑜𝑡
0 = 14.4 𝑚𝑠, (𝑔𝐿 = 0.048 𝜇𝑆/𝑐𝑚2), 

 𝑆 = 10−4 𝑐𝑚2, (𝐺𝐿 = 𝑔𝑡𝑜𝑡
0  𝑆 = 5𝑛𝑆), 

 𝑉𝑟𝑒𝑠𝑡 = −65 𝑚𝑉, (𝑉𝐿 = −65 𝑚𝑉),  𝑉𝑢𝑠 = −60 𝑚𝑉, 𝑉𝐾 = −80 𝑚𝑉, 𝑉𝑁𝑎 = 55 𝑚𝑉, 
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 𝑔
𝑁𝑎

= 2
𝜇𝑆

𝑐𝑚2 ,  𝑔
𝐾,𝑓

= 2
𝜇𝑆

𝑐𝑚2 ,    𝑔
𝐾,𝑠

= 0.5
𝜇𝑆

𝑐𝑚2 .  

For a fast-spiking interneuron, not considered in the present paper, we modified two parameters: 

𝑔
𝐾,𝑠

= 0.1
𝜇𝑆

𝑐𝑚2 and  𝜏𝑚𝑚 = 3 𝑚𝑠, which increases the gain of the f-I curve, increases the maximum 

firing rate and approaches the DB limit.    

A.2.5. The proposed continuous model 

A continuous version of the sodium channel approximation is obtained from the system of eqs.(1-

11) by omitting the threshold condition, eq.(3), and introducing in eqs.(5,6) the variable time 

constants and steady-state functions in the following form: 

 𝜏𝑚𝑚 = 0.1 𝑚𝑠 + 7𝑚𝑠 (1 − 𝑆𝑉𝑆ℎ),  

 𝜏ℎ = 0.1 𝑚𝑠 + 10𝑚𝑠 (1 − 𝑆𝑉𝑆𝑚),  

 𝑚∞ = 𝑆𝑉𝑆ℎ, 

 ℎ∞ = (1 − 𝑆𝑉𝑆𝑚) 𝑖∞(𝑈(𝑡)),  

   𝑆𝑉 = 1/(1 + exp(−(𝑈(𝑡) − 𝑉𝑇(𝑡))/0.1𝑚𝑉)), 

 𝑆ℎ = 1/(1 + exp(−(ℎ(𝑡) − 0.5)/0.01)), 

 𝑆𝑚 = 1/(1 + exp(−(𝑚(𝑡) − 0.8)/0.01)). 

A.2.6 Statistical analysis  

For each spike, the threshold potential in the model was measured at 1.2ms before the peak of 

the spike. The spike half-width was measured for each spike at the voltage level -20mV, and 

averaged across all spikes of a trace. The post-spike hyperpolarization potential (PHP) was 

measured as a minimum value between spikes, and averages across spikes. The average 

membrane potential was calculated for each trace on interspike intervals since the time moment 

of the peak plus 2ms to the point where 𝑑𝑉 𝑑𝑡⁄  reaches 5 𝑚𝑉/𝑚𝑠.  
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