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Heterogeneity: geology, topology, climate, driving resource distribution 
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in Czech Republic

Altitudinal range Bedrock type
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CONTEXT Community ecology → How spatial heterogeneity of resources
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Subalusky et al. 2015, Freshwater Biology

~260 to 1563 ha of
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Metaecosystems, zoobiochemistry → Animals move resourcesCONTEXT

2/12

There is a feedback between
communities and abiotic resources



Loreau et al. 2003 Ecology Letters, Gounand et al. 2018 TREE, Schmitz et al. 2018 Science

Subalusky et al. 2015, Freshwater Biology

~260 to 1563 ha of
savanna production

Abbas et al. 2012 Oikos

N

P

up to 20% of N
deposition

Aurignac, France

Metaecosystems, zoobiochemistry → Animals move resourcesCONTEXT

2/12

There is a feedback between
communities and abiotic resources



Nutrient

Homogeneous 
landscape
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How can biotic interactions generate
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→ recycled within the

foraging range
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Metaecosystems, zoobiochemistry → Plants deplete nutrientsCONTEXT
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Nutrient

Homogeneous 
landscape

Metaecosystems, zoobiochemistry → Plants deplete nutrients
→ Herbivorie pressure

CONTEXT

Herbivory pressure modulates plant abundance

How can biotic interactions generate
resource heterogeneity?
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Nutrient

Homogeneous 
landscape

Metaecosystems, zoobiochemistry →Organisms disperseCONTEXT

Limited dispersal drives species distribution

How can biotic interactions generate
resource heterogeneity?
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RESEARCH QUESTIONS 

Q1 How do the scales of dispersal and foraging of plants and herbivores 
affect the spatial heterogeneity of abiotic resources?

Q2 How does resource patchiness depend on recycling level?

4/12



THE MODEL

Resource dynamics at local scale

uptake

background

diffusion

recycling

Occupancy model (presence/ absence, no abundance)
100 x 100 lattice, R, P, H layers, 1 cell = plant population foraging range

- Background: tends to come back to 𝑹𝟎
- Diffusion: tends to homogenize (#8 neigh)

- Uptake: tends to decrease to 0

- Recycling: tends to increase
𝑷

𝑯

𝑹
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THE MODEL
P dispersal range, Π!

Colonization, 𝑐, of an empty cell depends on

- basal colonisation rate, 𝑐"
- proportion of colonizers in Π

Colonization-extinction dynamics
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Extinction 𝑒 of a population depends on

- random events (basal rate), 𝑒"
- resource availability

THE MODEL
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SIMULATIONS AND ANALYSIS

Q1 Plant dispersal range, Π#
Herbivore dispersal range , Π$
Herbivore foraging range , 𝜋$

Q2 Recycling levels : ø low, high

1, 2, 5 radius
Colonization- extinction
basal rates, 𝑐", 𝑒": slow / fast

9, 25, 121 # cells

With and without H

Full factorial x 25 replicates
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Results Q1

Dominant effect of plant dispersal range → homogenizing effect

General effects of the ranges
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Dominant effect of plant dispersal range → homogenizing effect

Results Q1

At low Π$, plant escape less herbivory pressure and 𝑃 and 𝐻decrease 

General effects of the ranges

8/12



Interaction between herbivore foraging range and recycling

When recycling allow sufficient 𝐻, increasing 𝜋% increases resource patchiness
Recycling decreases patchiness
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Interaction between herbivore foraging range and recycling
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competition→ clustering +
higher 𝐻→more recycling
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Results Q2 Interaction between herbivore foraging range and recycling

Herbivore foraging range, 𝜋"
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Take home messages

11/12

Q1 High resource patchiness is generated by moderate plant occupancy and 

high population clustering:

→ limited Plant dispersal

→ high Herbivore foraging range

Q2 Recycling decreases resource patchiness but allow higher H occupancies

No effect of Herbivore dispersal range → have to track plant populations
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Q1 High resource patchiness is generated by moderate plant occupancy and 

high population clustering:

→ limited Plant dispersal

→ high Herbivore foraging range

Q2 Recycling decreases resource patchiness but allow higher H occupancies

No effect of Herbivore dispersal range → have to track plant populations

Next step: Vary top-down interactions, integrate environmental heterogeneity
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Thank you !
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