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1. Introduction

1.1. Definition of the View/Form Factor. The goal of DOREA is to compute heat transfer
in satellites. In order to do that, one of the main tool is to compute the view factors. Given
two infinitesimal surfaces dS1 and dS2, with normal vectors −→n1 and −→n2, denoting by −→r the
vector from dS1 to dS2, the infinitesimal view factor dF1→2 from dS1 to dS2 is

(1) dF1→2 :=
cos(θ1) cos(θ2)

πr2
dS2,

where θ1 is the angle between −→r and −→n1 and θ2 is the angle between −→r and −→n2.
Now the view factor between two general surfaces is computed by integrating this formula

over S2 and taking the mean value over S1 :

(2) F1→2 :=
1

π|S1|

∫
S1

∫
S2

cos(θ1) cos(θ2)
r2

ds1ds2.

This formulation is called the Double Integral formulation of the view factor. There exists
other formulations for it. For example, if we denote by C1 := ∂S1 and C2 := ∂S2 the boundaries
of S1 and S2 respectively, using Stokes theorem, we get that

(3) F1→2 =
1

π|S1|

∮
C1

∮
C2
ln(r) d−→τ2d−→τ1 .

In the particular case of the view factor between triangles, or more generally between any
polygons, we can deduce from (3) a closed formula for the View Factor (see [2] and [1] respec-
tively for more details). By this we mean that instead of having to compute an integral, we
only have to compute a sum with index the vertices of the polygons in question.

However, in the case of interest, the view between two faces of a satellite can be obstructed
by another part of said satellite, called obstacle in what follows. With that in mind, we need
to take into account the potential obstacles and their geometry to compute view factors.
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1.2. Method employed by DOREA. In his PhD thesis [3], Vincent Vadez tackled the
problem of finding efficient ways to compute View Factors in the case of partial occlusions.
Among the several optimization strategies he proposed, we will describe in this paragraph the
ones that are used currently on real use cases. In Section 2, we detail possible improvements
to these methods.

The core idea of their approach is to perform a splitting by recursion of the receiving trian-
gle. For a given emitting triangle S1 and a given receiving triangle S2, they first check if the
receiving triangle is fully visible (resp. fully overshadowed) from the emitting triangle. If it is,
then the closed formula discussed in [2] (resp. zero) returns the desired result of view factor.
If it is not, then they split the receiving triangle into sub-triangles, and repeat this process
until each sub-triangle satisfies the return condition (fully visible or fully overshadowed), see
Figure 1 or until the number of iteration exceeds the maximum depth of recursion.

If the maximum depth of recursion is exceeded, then they use an approximation of the view
factor instead of the exact formula for the sub-triangle which do not respect the return con-
dition. The method to compute this approximate value of the view factor for small triangles
relies on the hypothesis that those triangles are small enough. Under this hypothesis, the
infinitesimal view factor is almost a constant (i.e θ1 and θ2 from equation (1) do not vary
much across the triangle). Therefore the view factor can be approximated by its value in the
case in which there is no obstacle, multiplied by the percentage of rays that reach the receiving
triangle. In practice, rays are emitted from and to points that are sampled on the emitting
and receiving triangle by using an efficient uniform sampling technique called Bounded Cen-
troidal Voronoi (BCV) sampling. This guarantees that points are optimally chosen (under no
additional prior information on the positions of obstacles).

In order to have a good polygon splitting for penumbra, Vadez (see 1.3) suggested using ad-
vanced computational tools to determine to the boundary of the shadow during recursion. The
idea behind that is to try to stop the recursion quicker, while still having enough information
to get a precise approximation of the view factor.

1.3. Linear Support Vector Machines. Even in the case in which the shadow boundary
is close to a straight line, a wide penumbra region considerably complicates the accurate com-
putation of the view factor. Vadez [3] considered using a Linear Support Vector Machine
classifier (linSVM) to learn the boundary and provide an optimal single cut candidate to split
the receiving triangle.

LinSVM is a supervised classification algorithm, meaning that given a set of points and a
set of labels associated to those points ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n, they learn a de-
cision function f : x ∈ X 7→ y ∈ Y through a training procedure. This decision function
predicts/approximates the real label y∗ associated to any x in X (that is, the training ends up
minimizing |y∗(x)− f(x)|). To do so, the algorithm learns the optimal hyperplane separating
the given classes in the feature space X. In the case of binary classification, the decision
function traditionally maps one class to the value −1, and the other to 1.

In the implementation by Vadez, several rays are sent between points sampled on the emit-
ter and the receiver, and the information of whether the rays intersect an obstacle or not



VIEW FACTOR FOR PARTIALLY OCCULTED TRIANGLES 3

Figure 1. (a) Flow chart of the method used in Vadez [3](Figure 3.3) for the
computation of the view factors. Most notably, the receiving triangle is recur-
sively split near the penumbra region until the infinitesimal view factor can be
approximated as constant over the surface of the receiving triangle. (b) Typical
use cases of the splitting procedure when partial occlusion occurs.

is stored. This information is then used as ground-truth to train a linSVM classifier, with
the points on the receiver as features. The linSVM provides the optimal hyperplane (here a
line) approximating the boundary between shadow and light. Vadez provided an implemen-
tation in this simple case, and concluded that the method was promising, but potentially slow.

In our case, the penumbra area can be seen as a mix of both classes (light and dark), and
thus the two classes are strictly speaking not linearly separable. The method can still be
applied at the cost of specifying the value of a parameter C that balances a trade-off between
robustness to outliers and accuracy. We argue that it should be possible to optimize this
parameter once and for all by defining a training set composed of many pairs of randomly
oriented triangles with known linear shadow boundary. An unbiased optimal value of the
parameter can be obtained using a classical optimization procedure like cross-validation (see
Appendix A).

In order to integrate this method in the code for real use cases, it needs to be able to
generalize to arbitrary boundaries (as opposed to linear boundaries considered until now). A
strategy to do so would be to split the initial receiving triangle into smaller sub-triangles until
the boundary can be considered locally linear on the sub-triangles close to the penumbra.
The sub-triangles can be obtained recursively by training a separate instance of a linSVM
classifier at each recursion step to check whether or not the boundary is well approximated
locally (this would manifest as a small proportion of outliers in the classification), at which
point the recursion branch is stopped. However, this procedure is expected to be particularly
slow because it requires to train a separate SVM classifier for each sub-triangle of the splitting
hierarchy.
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In Section 2, we propose two non-linear methods that can learn any shadow boundaries
up to an arbitrary level of precision, while potentially minimizing the extent of the recursion
procedure.

2. Our approach/hints of solutions

In paragraphs 2.1 and 2.2, we describe two algorithms, called respectively Kernel SVM
classifier and Decision Tree classifier.

In the strategies that we propose, both classification approaches aim at estimating the
shadow boundary up to an arbitrary level of precision. This could allow us to speed up
the computation of the view factor by providing an optimal splitting, or even to circumvent
entirely the need to use the triangle splitting recursion.

2.1. Kernel SVM classifier. Kernel SVM (kSVM) is an extension of linear SVM [5] that al-
lows for the classification of non-linearly separable data by mapping it into a higher-dimensional
space through a transformation function that defines a kernel function

k : (xi, xj) ∈ X2 7→ k(xi, xj) ∈ R.

Performing a dot product between two vectors in the transformed space is equivalent to ap-
plying the kernel on said vectors. Basically, Kernel SVM acts like linear SVM, but on the
transformed space: it finds a linear hyperplane that separates the data in the transformed
space.

The choice among the possible kernel functions provides robustness and flexibility to this
method. Most notably the Gaussian kernel, also called Radial Basis Functions (RBF),

(4) kRBF (xi, xj) := e−
|xi−xj |

2

2σ2 ,

is a popular choice due to the interpretability of its parametrization: the parameter σ can be
seen as a "typical length scale" at which points close to the boundaries are sensitive to their
neighbors. For example, the case σ → +∞ corresponds to linear SVM (each point is equally
sensible to any other point). However, kSVMs are more computationally intensive to train
than their linear counterpart, and they do not provide a closed form equation for the boundary.

Remark: an efficient implementation of kernel SVM is available in the C++ library libSVM.

2.2. Decision Tree classifier. Decision Tree is another non-linear supervised classifier algo-
rithm. It builds its decision function by recursively splitting the dataset based on the feature
that provides the best separation according to a chosen criterion (e.g. minimizing Gini im-
purity for probability of missclassification, or maximize entropy for information gain). The
process continues until a stopping criterion is met (e.g., maximum depth, minimum samples
per leaf). The final nodes are called leaf nodes and represent the predicted class. To make
predictions, a new data point traverses the tree from the root to a leaf, following the decision
criteria at each node. The majority class in the leaf is assigned as the predicted class.

The parameters to tune in order to use this method are the tree’s maximum allowed depth
and the minimum number of samples that can be considered a leaf. Similarly to Paragraph

https://github.com/cjlin1/libsvm
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2.1, we propose to optimize those parameters once and for all on a dataset composed of ran-
domly oriented triangles with known shadow boundary using cross-validation.

Remark: an efficient implementation of Decision Tree classifiers is available in the C++
library ROOT-TMVA.

2.3. Optimization strategies.

2.3.1. Optimization using kernel SVM. To address the problem of the computational cost, our
strategy consists in training the kSVM only once, at the level of the initial emitting and re-
ceiving triangles. Training points and labels are obtained by sending a relatively small amount
of rays on the receiving triangle and computing whether or not they reach the receiver. This
minimizes training time and circumvents entirely the use of the splitting recursion. Once the
training is done, because we lack a closed form for the boundary, we propose to sample a large
amounts of points on the receiving triangle using the Bounded Centroidal Voronoi sampling
scheme, and to classify these points using the trained kSVM, which is computationally cheap
even for a large amount of points. Afterwards, either the point-based quadrature formula or
a coarser approximation using the visibility ratio (ratio of points in the light over the total
number of points sampled) can be used to compute the view factor.

This strategy can in fact also be used with the Decision Tree classifier, especially since it
is particularly faster to infer with (see the Results section below). We provide a pseudo-code
implementation of the method using kernel SVM below, and a schematics of the idea (Fig. 2):

Inputs:
Emitter and receiver triangles Ti and Tj

Typical "length" scale σ
Regularization parameter C
VF approximation method: "quadrature" or "visibility ratio"
if Fully visible then

VF given by closed form
else if Full occlusion then

VF = 0
else

Sample n points X i = {xi
1, ..., x

i
n} on Ti using the BCV sampler

Sample n points Xj = {xj
1, ..., x

j
n} on Tj using the BCV sampler

for all Pair
(
xi
p, x

j
q

)
p,q

do
Store if the ray xi

p → xj
q intersects with obstacles:

yp,q := −1 if intersection, else 1
end for
Collect labels Y = {y1,1, ..., yn,n}
Train classifier using points Xj and labels Y :

f = SVM(Xj, Y, σ, C)
Sample N points X j = {χj

1, ..., χ
j
N} on Tj using the BCV sampler

Determine for each point in X j if it lies in the shadow or not using the classifier:
yk = f(χj

k), χ
j
k ∈ X j

https://root.cern/manual/tmva/
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Figure 2. First strategy relying on training on few rays, and inferring on a
fine grid to compute the View Factor integral.

Compute subset of point in the light X̄ j := {χj
k ∈ X j, f(χj

k) = 1}
if quadrature method then

Compute VF using the point-based quadrature method on subset X̄ j

else if view ratio method then
Compute view ratio r :=

#(X̄ j)
N

Compute closed form VF and multiply by view ratio
end if

end if

2.3.2. Optimization using the Decision Tree classifier. The splitting procedure can be seen as
choosing an optimal linear constraint over the features (e.g "2x+3y ≤ 5", which defines a 2D
half-plane), see more in [6, 7]. As a result, the learnt boundary is naturally polygonal (or at
least several polygonal regions are enclosed). We thus propose to train a Decision Tree clas-
sifier only once in the same spirit as in Paragraph 1.3. That is training points and labels are
obtained by sending a relatively small amount of rays on the receiving triangle and computing
whether or not they reach the receiver. Once the Decision Tree is learnt, the splitting con-
straints can be used to extract the position of the vertices of the boundary (as demonstrated
in the Python scripts provided). This allows a direct use of Schröder’s View Factor formula
for polygons [1], without the need for any additional computations. To extract the boundary
polygon, one must mix the hierarchical constraints learnt by the Decision Tree (which can
produce infinite regions with the constraint that the boundary is confined to the inside of the
triangle. This could be solved as a Linear Programming problem using the Simplex method.
A potential algorithm would imply starting with the vertices of the triangle and iteratively
progressing through the tree and adding constraints one by one to rebuild the vertices.

We provide a pseudo-code implementation of the method below, and a schematics of the
idea (Fig. 3):

Inputs:
Emitter and receiver triangles Ti and Tj

Maximum allowed depth max_depth
Minimum number of nodes that can be considered a leaf min_samples_leaf
if Fully visible then

VF given by closed form
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Figure 3. Second strategy relying on training a Decision Tree on few rays, and
extracting the polygon of constraints.

else if Full occlusion then
VF = 0

else
Sample n points X i = {xi

1, ..., x
i
n} on Ti using the BCV sampler

Sample n points Xj = {xj
1, ..., x

j
n} on Tj using the BCV sampler

for all Pair
(
xi
p, x

j
q

)
p,q

do
Store if the ray xi

p → xj
q intersects with obstacles, yp,q := −1 if intersection, else 1

end for
Collect labels Y = {y1,1, ..., yn,n}
Train classifier using points Xj and labels Y :

f = DecisionTree(Xj, Y,max_depth, min_samples_leaf)
Extract splitting constraints and compute polygonal boundary
Compute VF using Schröder’s formula for polygons

end if

2.4. Quantitative analysis of the proposed strategies. We now discuss the advantages
of the algorithm detailed in Paragraphs 2.1 and 2.2.

We wish to compare the theoretical time needed with the initial algorithm and with the
one we propose now. To do that we will compare the number of call to the costly functions
(AABB full occlusion, AABB full light, sending a ray and testing the occlusion for this ray).
To address the problem of assessing general performances, each metric computed is averaged
over a large amount of randomly generated shadows, as seen on see Fig. 5. To build a shadow,
we sample a grid of points on a triangle, and assign each point a random value between 0
and 1. Then, this image is blurred using a Gaussian filter, and finally it is thresholded (see
implementation details in the Python scripts).

First, we plot the computation time (training and inference) of the different classifiers as
a function of the number of rays (in the case of training time) or grid points (in the case of
inference) averaged for Ns = 100 random arbitrary shadow. We observe (Fig. 7) a noticeably
smaller training time with the Decision Tree, whereas both SVM methods are comparable on
that matter. Interestingly, the inference time with Decision Tree is minuscule compared to
the time for the two SVM methods, making it a good candidate for both our first and second
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Figure 4. Left, training set used to train the classifiers. The other plots rep-
resent the classification result of three classifiers (left linear SVM, middle kernel
SVM, and right Decision Tree) over a finer grid. All classifiers are used with
their default parameters as defined in the Python library Scikit-learn. The De-
cision Tree has parameter "max_depth" set to 5 to deliberately show a rough
polygonal estimation.

optimization strategies.

As for the time related to sending the probing rays used in the training set, in the code in
use today, the recursion depth is typically set to 5. This means that the initial triangles are
both divided into up to 45 = 1024 triangles (if the penumbra occupies up to 10% of the surface
of the receiver, then we have at least 100 triangles). Then the prediction formula is obtained
for each of this triangle, this formula requires to send between 10 and a 100 ray per triangle
(depending of the wished precision). In total, one can reasonably expect 1000 to 100000 rays
(depending on the complexity of the shadow and the wanted precision) to be sent in order to
compute the view factor. Moreover, this method also requires to do the full visibility and full
occlusion tests, which can be quite costly as well.

In comparison, for the algorithm without recursion using decision algorithm, a shadow
reconstruction accuracy of 90% can be reached with a few hundreds of rays (see Fig 6). We
also obtain the percentage of rays being blocked for free using the decision function. This
means that we can skip sending the rays for the prediction step. We also don’t need to do
full occlusion and full enlightenment test at each point of the recursion. However, there is the
additional cost of having to train and use the decision algorithm. Moreover for the case of
kernel SVM, if one wants to obtain the classification probabilities (which allow the estimation
of the continuous gradient of luminosity in the penumbra), the training and inference time is
longer.

Interestingly, for kernel SVM it is also possible to access the learnt probability that a given
point belongs to each of the two class. This usually manifests as a smooth gradient between
the area of full occlusion and the area of full luminosity. We argue that this could be related
to the gradient of luminosity due to the penumbra phenomenon (Fig. 8). By computing the
integral of this probability distribution profile over the surface of the triangle, one can obtain
an accurate estimation of the view ratio fully taking the penumbra phenomenon into account.

https://scikit-learn.org/stable/
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Figure 5. Some examples of random shadows simulated to average perfor-
mances.

Figure 6. Comparison of the average classification accuracy (quality of ap-
proximation of the boundary) of the three classifiers over Ns = 100 random
shadow profiles for different number of rays used to make the training set. De-
fault parameters are used for the classifiers, and the Decision Tree has parameter
"max_depth" set to 10.

3. Concluding remarks

In this report, we tested classical non-linear machine learning classifiers in order to learn a
separation between occluded and visible parts of triangular mesh elements from satellites. We
proposed two strategies to compute the view factors with the potential to circumvent the use
of a costly recursive splitting scheme:

• Notably, by probing the potential occlusion of a few rays (few in comparison to the
number of rays needed in the solution implemented currently) on the receiving triangle,
a simple machine learning classifier like kernel SVM or Decision Tree can be trained and
then used to infer a binary profile of the shadow boundary. Our experiments suggest
that training a Decision Tree classifier is usually much faster than training a kernel or
linear SVM, and that it is potentially three orders of magnitude faster to infer with.
It is also possible to get a continuous profile of the luminosity gradient adapted to
model the penumbra region (at the cost of a slightly increased inference cost). Because
inference is usually much faster than training for these classifiers, we propose to train
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(a) Training time as a function of number of rays in the training set.

(b) Inference time as a function of number of rays in the inference set.

Figure 7. Comparison of the average computation time (training and infer-
ence) of the three classifiers over Ns = 100 random shadow profiles for different
number of rays used to make the training/inference set. Default parameters are
used for the classifiers, and the Decision Tree has parameter "max_depth" set
to 10.

Figure 8. Visualization of the probability of belonging to each class, obtained
with kernel SVM. Close to the boundary, i.e in the penumbra region, the prob-
ability describes a smooth gradient.
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on the results a few probing rays and to infer the profile of the boundary on a much
finer grid.

• Another strategy is using the fact that the learnt decision boundaries of Decision Trees
are naturally polygonal. This fact allows the direct computation of the View Factor
using Schröder’s formula, provided that one can extract the vertices of the boundary
polygon from the set of splitting constraints learnt by the Decision Tree. If such a
solution is found, the training speed and low memory footprint of Decision Tree classi-
fier make it a perfect candidate solution to be benchmarked in a real case application
(both with real meshes/shadows, and in a C++ implementation).

Due to a lack of additional available time, we did not provide a proper benchmark on the
full C++ code. However, we provided Python scripts demonstrating the classification of ar-
bitrary shadows generated randomly, which gave promising results and should serve as proofs
of concept.

One of the key finding in this work is that sending a relatively small number of probing
rays (for the training of the classifiers), namely a few hundreds, should be sufficient to reach
a high approximation precision.
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Appendix A. Cross-validation for classifiers

Cross-validation is a classical method used to optimize one or several parameters of a
machine-learning algorithm when a training dataset is available. The process involves di-
viding the training dataset into k folds, training the model on k − 1 folds, and validating
it on the remaining fold in an iterative fashion. To optimize a specific parameter, a grid of
possible values is defined. The model is trained and validated for each value in the grid, and
the performance is evaluated across all folds. The optimal parameter value is selected based
on the best average performance. Finally, the model is trained on the entire dataset using the
chosen parameter and assessed on a separate test set to ensure generalization. The approach
is illustrated on Fig. 9. This systematic approach helps in preventing bias in the way the
performance of the optimal parameter is evaluated.

Figure 9. Schematics of the cross validation scheme. The training data is split
multiple times so that it can be used for the unbiased optimal estimation of a
parameter of the classifier.

Appendix B. Intuition of the role of the main parameters of the classifiers

Figure 10. Qualitative comparison of the classification results obtained with
linear SVM when varying the regularization parameter C. The training set is
the same as in Fig. 4.
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Figure 11. Qualitative comparison of the classification results obtained with
kernel SVM (RBF kernel) when varying the regularization parameter C and the
scale parameter γ (γ is inversely related to σ, the typical length scale). The
training set is the same as in Fig. 4.

Figure 12. Qualitative comparison of the classification results obtained with
the Decision Tree classifier when varying the maximum depth of the tree and
the minimum number of samples in a leaf. The training set is the same as in
Fig. 4.
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