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Atomic simulations of materials require significant resources to generate, store and analyze. Here,
descriptor functions are proposed as a general, metric latent space for atomic structures, ideal
for use in large-scale simulations. Descriptors can regress a broad range of properties, including
character-dependent dislocation densities, stress states or radial distribution functions. A vector
autoregressive model can generate trajectories over yield points, resample from new initial conditions
and forecast trajectory futures. A forecast confidence, essential for practical application, is derived
by propagating forecasts through the Mahalanobis outlier distance, providing a powerful tool to
assess coarse-grained models. Application to nanoparticles and yielding of nanoscale dislocation
networks confirms low uncertainty forecasts are accurate and resampling allows for the propagation
of smooth property distributions. Yielding is associated with a collapse in the intrinsic dimension
of the descriptor manifold, which is discussed in relation to the yield surface.

Materials evolve via complex, non-intuitive atomic
mechanisms spanning a wide range of time and length
scales[1, 2]. Atomic simulations (MD) with empirical
force fields offer exceptional insight, but although spa-
tial decomposition schemes give excellent (weak) par-
allel scaling with system size[3], serial time integra-
tion limits trajectory duration, irrespective of avail-
able processors[4]. The ubiquity yet high cost of MD
means development of predictive techniques to coarse-
grain (CG) in space or time is an active research area
[2, 5–9]. Resolving material defects requires large sys-
tem sizes, necessitating efficient and scalable CG tech-
niques. Whilst many structural analysis tools exist[10–
15], none provide generic compression of atomic data
with a clear metric for similarity or diversity, nor is it
clear a priori how to select CG properties, leading to
massive storage requirements at scale[16, 17]. A further
challenge is that simulations of materials are typically
non-equilibrium and exhibit, in part due to timescale
limitations, partially disordered structures with a dense
kinetic spectrum and an unknown steady state, often
with external driving[18–20]. To harness modern paral-
lel computers there is thus a recognized need to resample
sparse simulation data and to forecast simulation futures,
both for physical insight and to maximize the informa-
tion yield of additional computational effort[4, 21–25].
However, the complexities of material deformation
limit the applicability of current CG and acceleration
schemes, which require identification of a clear timescale
separation[26] to allow parallel time accumulation[2, 4, 9,
21, 26–29] or the design of low rank (typically 1-4) collec-
tive variables (CV) which can be used to bias dynamics
[5, 8, 30–34]. Despite many recent advances[8, 35, 36]
general CVs for extended defects remain elusive[34, 36],
instead requiring specialized simulation setups with only
a few active mechanisms such as nucleation[8] or the
migration of isolated defects[34, 35]. Exploring unseen
regions of configuration space is known to be uncon-
trolled as low rank CVs may not remain descriptive[37].

These issues extend to the powerful post-mortem analysis
tools[6, 38–42], which learn collective variables that obey
a discrete state Markov model in order to identify kinet-
ically important configurations with implied transition
timescales. Whilst all-atom[43–46] or coarse-beaded[47]
generative models may provide a route for accelerated
time-stepping, they are currently only competitive to di-
rect time integration for fairly small equilibrium systems
with a static or slowly varying bonding topology and
so cannot be applied to large-scale simulations of mate-
rial deformation where a highly transient, heterogeneous
atomic connectivity is fundamental.
In this letter, atomic descriptor functions [48–52] are
proposed as an efficient, general and uncertainty-aware
coarse-graining approach, mapping atomic positions X ∈
RN×3 to a global vector D̄ ∈ R∼100, Eq. 1. The main re-
sults are that 1) Descriptors can classify and regress a re-
markable range of structural properties (see figures) and
permit a data-driven model extrapolation measure[53],
transferring advances in active learning [54–56] to atomic
CG. This generality means CG targets need not be spec-
ified a priori, giving huge compression in storage and
efficiencies in analysis at scale. 2) Descriptor trajectories
can be efficiently resampled and forecasted via a vector
autoregressive (VAR) model [57], with, crucially, a ro-
bust forecast uncertainty derived from the descriptor out-
lier measure (5). This allows rapid assessment of when
forecasts can be trusted or when additional training is
needed, essential for practical usage but typically missing
in existing schemes. The approach is applied to analyze
and forecast systems essentially untreatable with existing
methods, the annealing of large nanoparticles and yield-
ing of nanoscale dislocation networks under cyclic shear
and uniaxial tension[17]. The intrinsic dimension[58] of
the descriptor manifold is shown to collapse on yielding,
which is discussed in relation to the yield surface.

Descriptor coarse-graining Descriptors[56, 60–62] map
atomic coordinates X ∈ RN×3 to D(X) ∈ RN×D, where
each element [D(X)]ij takes the local atomic environ-
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FIG. 1. Coarse graining of dislocation networks in Al under
cyclic shear, detailed in the SM[59]. Left: Global descriptor
vectors D̄ (1) are stored every 1-10ps and positions X every

100-500ps. {X, D̄} data is used to train estimators Ô(D̄) of

observables O(X) and a VAR forecaster (3). a)-f) : O vs Ô
from over 20 targets, including d) dislocation junctions and
total length of e) screw or f) ⟨112⟩/6 dislocations. Non-scalar
a) σxy, estimated with D̄⊕ V̄[59]. See also g(r) in Fig. 2.

ment of an atom i as input and returns a permutation-
invariant scalar, vector or tensor depending on the re-
gression target (e.g. energies, forces)[63, 64]). Descrip-
tors which approximate a many-body atomic basis[48–52]
have found use in linear estimators Ô ≃ ΘO · D + Θ0

O
of some target observable O(X), where ΘO ∈ RD

and Θ0
O ∈ R are parameters. For O = E, the

atomic potential energy, these can reach state of the
art accuracy[61, 64, 65], often with lower computational
cost and simpler fitting[48–52]. The first main result of
this letter is that linear estimators can capture essen-
tially any structural property which could be of relevance
to a coarse grained model. The widely used[3] bSO(4)
descriptors[3, 48, 50, 65] are used, detailed in the supple-
mentary material (SM)[59], summing over all atoms to
give the global descriptors

D̄ =
∑
i

Di ∈ RD, V̄ =
∑
i

Xi ⊗∇XDi ∈ RD×3×3, (1)

where ⊗ is the outer (dyadic) product[66]. Figure (1)
shows linear estimators

Ô(D̄) = ΘO · D̄+Θ0
O, (2)

applied to dislocation networks in aluminum[59], accu-
rately capturing a broad range of properties including
dislocation junction densities, character-dependent line
densities and crystal structure content. Similar results
were found for the nanoparticle ensemble and a range
of dislocated solids in fcc and bcc materials. Disloca-
tion properties were extracted with OVITO-DXA[15] which
has some intrinsic noise due to the discretization pa-
rameters. It is also possible to capture the radial dis-
tribution function (RDF) g(r) by estimating coefficients
âl(D) of a basis expansion g(r) ≡

∑
l alul(r), as shown

in Fig. 2. As found in previous work targeting vibra-
tional entropies[67, 68], all predictions were stable under

widely varying test/train ratios and truncation of train-
ing data range. Matrix-valued observables such as the
stress O(X) = σ ∈ R3×3 can be estimated by building
equivariant estimators with V̄; the simplest (l = 0[64])
example is simply Ô(D̄) = ΘO ·V̄ ∈ R3×3. Examples for
the non-scalar shear stress σxy are shown in figure (1) and
the SM[59]. However, in the following only D̄ is used for
forecasting, targeting the scalar pressure Tr(σ), as model
parameters are scalars and D̄ has a metric distance[48].
Whilst (2) is trained on the global descriptor signal

(1), spatial dependence will be required as the simu-
lation volume increases, achieved by averaging over
atoms in some voxel discretization. Future work will
investigate this voxelised signal and the constraints
required to preserve dislocation topology in forecasts.
The accuracy and scope of (2) has particular relevance
for massively parallel workflows, as only D̄, V̄ need to
be stored to later extract almost any global observable
of interest a posteriori after training on a small database
of stored positions, offering massive data compression.

Unimodality and generation of descriptor data As
the descriptors have a metric distance, similar atomic
structures will be close in descriptor space. In addition,
their distribution in sufficiently high dimension can be
expected to be unimodal, routinely invoked in active
learning schemes [54, 55] and more recently in the anal-
ysis of defect structures[56]. Evidence for nanoparticle
and dislocation ensembles is provided in the SM[59]. It
is then simple to generate plausible descriptor vectors by
fitting and sampling a multivariate normal distribution
N (µ,Σ) to the descriptor dataset. An example of this
is shown below in figure 3, where the observed descrip-
tor initial conditions are densely interpolated, allowing
the evolution of observable distributions to be monitored.

Resampling and forecasting of descriptor trajectories
At regular intervals tn = nδτ , δτ ≃ 10ps, a ‘snapshot’
is taken by time averaging X̄n = τ−1

D

∫ τ̄

0
X(tn + t)dt

over a period τ̄ ≃ 20 − 50fs to reduce noise from ther-
mal fluctuations[69], then calculating descriptor vectors
D̄n = D̄(X̄n). A small database of positions X̄n is built
by recording 1−5% of snapshots, though positions could
be selected adaptively to maximise training diversity. An
ensemble of M simulations thus produces M discrete
time trajectories {D̄n}, which are used to train a P -state
vector autoregressive VAR(P) model[57, 70]

D̄n+1 =

p=P−1∑
p=0

TpD̄n−p+c+wn, ⟨w⊤
nwm⟩ = Sδnm. (3)

For P > 1 a Wold transformation[71] Zn = 1 ⊕
D̄n · · · ⊕ D̄n−p ∈ R1+PD̃ casts (3) as a Markovian
Ornstien-Uhlenbeck equation[72] Zn+1 = TZn + Wn.
The maximum likelihood estimator of T is simply the
least squares solution, with S determined from the
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residual covariance[70]. To minimize generalization er-
ror a bagging[73–75] approach was developed, applying
Bayesian ridge regression[76] to random overlapping sub-
sets. Results were stable under 10-40 subsets each with
10-40% coverage, giving epistemic uncertainties δT, δS
from the covariance across subsets. Training is robust
and requires only a few CPU minutes, a key advan-
tage over (RNN/LSTM) neural networks[77, 78] or neu-
ral differential equations[79] which require significant re-
sources, regularisation/correction schemes[47], and lim-
ited in practice to data dimension D̃ < 10[79, 80]. A
Chapman-Komologorov test[6] for the transfer matrix T
is provided in the SM[59], but in practice the light compu-
tational demand also permits a convergence test of model
architecture by increasing P [59].
Deriving a forecast uncertainty Practical application of
(3) requires a robust measure of forecast uncertainty[4,
21–25], which should be larger for configurations fur-
ther from the training data independent of epistemic er-
rors. This is particularly relevant to the non-stationary
dynamics of material deformation. As uncertainty to
previously unseen macroscopic changes is clearly not
quantifiable[21],the following bound is conditional on the
simulation ensemble remaining unimodal and not under-
going macroscopic changes. Many extrapolation grade
estimators have been developed for active learning of en-
ergy models[54, 56, 58, 65, 81]; here, the Mahalanobis
outlier distance[53] is used for the unimodal descriptor
distribution[56, 59]. With training data mean µtr and
covariance Σtr estimated via a shinkage estimator[82],
the squared Mahalanobis distance reads

M(D̄) =
[
D̄− µtr

]
Σ−1

tr [D− µtr] /D̃. (4)

Importantly, (4) is independent of the VAR(P) forecast
model (3); points drawn from a low density region of
ρtr will have a large Mahalanobis distance, even if epis-
temic uncertainties δT are small. At long forecasting
times, (3) will reach its high dimensional steady state[59],
with ⟨M⟩ constant. However, model parameters can-
not be assumed static, with a time dependence bounded
from below by 1/τM = 1/(Mτtr)[83], where M is the
ensemble size and τtr training duration. This drift can
be estimated by propagating epistemic uncertainty in
the steady state to an uncertainty σ2

M in M(D̄), which
should be accumulated[59], leading to an additional lin-
ear growth in (4) of

M(tn) = ⟨M(D̄n)⟩+Mσ(tn), Mσ(tn) ≥ M0(tn).
(5)

where Mσ(t) = σ2
Mt/δτ and M0(t) = t/τM . Equa-

tion (5) is the main theoretical result of this letter, an
uncertainty metric for forecasting via (3). An approxi-
mate parallel efficiency is implied by η = τpred/(Mτtr),
where M(τpred) ≡ M0(Mτtr) = 2, giving η = 1 when
M(tn) = M0(t). Annealing of Pt Nanoparticles Metal-
lic nanoparticles are important functional materials for

FIG. 2. Annealing of Pt nanoparticles. a) Representative
structure at 0ns and 11ns. b) The average RDF g(r) and the
corresponding descriptor estimation[59]g(r; D̄). c)-h) Ensem-
ble data with M = 60, τtr = 0.5, 1.0, 1.5ns, training starting
at t =1ns (left-right, red shade). Mean is solid line, with
standard deviation as bands. Black: MD data. Orange: VAR
forecasts from 1ns. Blue: VAR forecast with epistemic errors.
c)-e) Potential energy change from 1ns mean. f)-h) Maha-
lanobis distances, MD: M(Dt), eq. (4), forecasts: M(t), eq.
(5). The theoretical lower bounds M0 (red dash) and Mσ

(purple dash) are also shown.

catalysis; 50-150 atom clusters have been extensively
studied in simulations[1, 39, 40, 84], but for large sizes
and high temperatures the landscape of energy minimia is
vast and insufficiently metastable for current acceleration
methods[40]. The current application to M =60 4000-
atom EAM-Pt[85] nanoparticles at 900K is thus out-of-
scope for existing methods.
The initial structure was formed by quenching from the
liquid state and annealing for 100ps to give a highly dis-
ordered but predominantly fcc structure (cFCC ≃ 0.5).
Descriptor trajectories were extracted every 1.5 ps, with
a full structural analysis undertaken every 100ps, though
the dataset was sparsified by taking δτ = 15ps and re-
moving intermediate snapshots. Autoregressive models
(3) were constructed with P = 1 − 3 and τtr=0.5, 1.0
or 1.5ns, with P = 1 shown. Generated trajectories had
initial conditions from the start of the training data, to
both resample then forecast observed trajectories. Fig-
ure 2 displays the ensemble simulation data, model pre-
dictions and epistemic errors for the formation energy,
the RDF g(r) and the Mahalanobis uncertainty (5). The
RDF reflects the significant growth in FCC crystal struc-
ture, as can also be directly extracted through estimation
of cFCC. MD data used M(D), eq. (4), which closely
follows the theoretical lower bound Mσ(t). Whilst fore-
casts improve with training data, crucially, the magni-
tude of M(D̄, t) can independently confirm their relia-
bility.



4

FIG. 3. Yielding of Al under uniaxial tension. Colors follow
figure 2. Forecasts are from 0.2ns, with τtr = 1.2ns and P = 5.
a) Pressure, b) ⟨112⟩/6 dislocation density and c) amorphous
content. d) Mahalanobis distance. e)-h) Trajectory resam-
pling from 0.3ns (pre-yield), with 100× larger ensemble. i)
PCA analysis of the ensemble mean ⟨D̄⟩, clearly showing a
localization on yield. Individual trajectories shown as his-
togram in grayscale. j) ID of the descriptor manifold, esti-
mated via TwoNN[86] and DANCo[87]. Both show a collapse
on yielding, but remain above the Von Mises lower bound.

Yielding of Al under uniaxial tension Dislocations
carry plastic deformation, forming dense networks under
irradiation[20] or extended loading[88]; understanding
network evolution remains a grand challenge of physics
and engineering[17, 89, 90]. Atomic simulations continue
to discover mechanisms even in model systems[90], in
part due to the difficulty in analysing atomic data[36].
An ensemble of M = 60 dense dislocation networks
were formed in an EAM model of Al[91] by creating
simulation boxes of around 1.5 × 105 atoms, orientated
to [101̄], [111], [12̄1], with populations of interstitial
loops with density ρdis ∈ [1011, 1013]cm−2. Uniaxial
tension was applied at a rate ϵ̇xx = 1 × 108s−1 along
[101̄], allowing other supercell dimensions to relax[17].
The SM[59] shows application to cyclic shear loading.
Whilst typical in MD[17, 90], the small system sizes and
large strain rates suppress correlations from long-range
elastic interactions and the role of e.g. thermally acti-
vated mechanisms which will clearly influence network
evolution and thus yield behavior. Future work will use
spatially dependent descriptor signals from voxelization
(discussed above) to find trends in how dislocation
network evolution depends on system size, dislocation
density and loading conditions, required to connect such
atomic simulations the deformation of real microstruc-
tures. The results are summarized in figure 3a)-d),
using the linear estimators (2). Increasing τtr decreased
error and uncertainty, with optimal results found using
P = 5[59]. Training only on pre-yield structures led

to unstable forecasts as yield is characterized by a
qualitative change in the descriptor manifold as detailed
below. M(D̄, t) also diverged at the yield point, clearly
indicating that more training data is required. This
again demonstrates the utility and critical importance of
a forecast uncertainty to assess data-driven predictions.
However, accurate forecasting of structural transitions
only from pre-transition data remains an important topic
for future research. Resampling allows for ensembles
to be increased by orders of magnitude for negligible
CPU effort, giving the smooth distributions shown in
figure 3e)-h). Initial descriptor states were generated
as described above from ρtr ≃ N (µ0,Σ0), fit from the
descriptor ensemble at times 0.3-0.31ns. The forecasted
ensemble captures multiple important structural evolu-
tions that, whilst known for this well-studied system[17],
confirm the accuracy of the VAR approach. Forecasts
correctly predict the growth of amorphous atomic
environments due to defect production under continued
loading[92], the expected sharp peak in HCP content at
yield, accompanied by a growth, peak then steady state
in the number of dislocation junctions (see SM[59]).
Distributions can tighten or widen, here indicating the
evolution in dislocation character- initial populations
of ⟨100⟩/3 Hirth dislocation loops decay to a tight
distribution close to zero upon loading, accompanied by
an emergence of a broad, stable distribution of ⟨112⟩/6
dislocation lines that carry the plastic flow[17]. The
joint stability of junctions, dislocation density and stress
is consistent with a Kocks-Mecking steady state[93].

The global descriptor signal ¯̄D can classify yielding with
minimal training data, see [59]; figure 3i) shows how the

ensemble average ⟨ ¯̄D⟩ clearly localizes post yield.
Models for yielding invoke the concept of a yield surface
in 6D stress space[94], which for metallic systems is
typically the Von Mises yield surface, isosurfaces of
the J2 invariant with intrinsic dimension (ID)[58, 87]
of 2. Yielding is thus expected to be accompanied by
a drop in the ID of the stress trajectory; furthermore,
as descriptors can perfectly predict stress their ID
is an upper bound to the stress ID. Two empirical
estimators[86, 87, 95], which typically underestimate[87],
were applied to the full D̄ ⊕ V̄ dataset. Figure 3j)
shows both ID estimates collapse from 5-7 to 2-3 on
yield, consistent with the Von Mises lower bound of 2.
Whilst larger-scale studies are essential, this suggests
the existence of a generalized yield manifold, which
could allow for data-driven construction of much richer
structure-property relationships.

Conclusions This letter has promoted descriptors as
a general, uncertainty aware coarse-grained represen-
tation of atomic structures ideal for analysis, resam-
pling and forecasting. The descriptor manifold holds
promise for future research on structural transitions such
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as yielding, alongside the use of forecasting in resource
allocation[4, 21–25] and extension to a spatially depen-
dent, fully equivarant descriptor signal to capture long-
range correlations.
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