
HAL Id: hal-04332046
https://hal.science/hal-04332046

Submitted on 8 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

VeriFog: A Generic Model-based Approach for Verifying
Fog Systems at Design Time

Hiba Awad, Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux, Etienne
Leclerq, Jonathan Rivalan

To cite this version:
Hiba Awad, Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux, Etienne Leclerq, et al.. VeriFog: A
Generic Model-based Approach for Verifying Fog Systems at Design Time. The 39th ACM/SIGAPP
Symposium on Applied Computing (SAC ’24), Apr 2024, Avila, Spain. �10.1145/3605098.3635973�.
�hal-04332046�

https://hal.science/hal-04332046
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

VeriFog: A Generic Model-based Approach for Verifying Fog
Systems at Design Time

Hiba Awad
IMT Atlantique, LS2N (UMR CNRS

6004), Inria Rennes, Smile
Asnières-sur-Seine and Nantes

France
hiba.awad@smile.fr

Abdelghani Alidra
IMT Atlantique, LS2N (UMR CNRS

6004), Inria Rennes
Nantes, France

abdelghani.alidra@imt-atlantique.fr

Hugo Bruneliere
IMT Atlantique, LS2N (UMR CNRS

6004)
Nantes, France

hugo.bruneliere@imt-atlantique.fr

Thomas Ledoux
IMT Atlantique, LS2N (UMR CNRS

6004), Inria Rennes
Nantes, France

thomas.ledoux@imt-atlantique.fr

Etienne Leclerq
Smile

Asnières-sur-Seine, France
etienne.leclerq@smile.fr

Jonathan Rivalan
Smile

Asnières-sur-Seine, France
jonathan.rivalan@smile.fr

ABSTRACT
Fog Computing is a paradigm aiming to decentralize the Cloud by
geographically distributing away computation, storage, network
resources and related services. It provides several benefits such as
reducing the number of bottlenecks, limiting unwanted data move-
ments, etc. However, managing the size, complexity and hetero-
geneity of Fog systems to be designed, developed, tested, deployed,
and maintained, is challenging and can quickly become costly. Ac-
cording to best practices in software engineering, verification tasks
could be performed on system design prior to its actual implemen-
tation and deployment. Thus, we propose a generic model-based
approach for verifying Fog systems at design time. Named VeriFog,
this approach is notably based on a customizable Fog Modeling Lan-
guage (FML). We experimented with our approach in practice by
modeling three use cases, from three different application domains,
and by considering three main types of non-functional properties to
be verified. In direct collaboration with our industrial partner Smile,
the approach and underlying language presented in this paper are
necessary steps towards a more global model-based support for the
complete life cycle of Fog systems.

CCS CONCEPTS
• Software and its engineering → Model-driven software en-
gineering; Software verification and validation; • Computer
systems organization→ Cloud computing.

KEYWORDS
Model-based Engineering, Modeling Language, Fog Computing,
Verification, Non-functional Properties, Design Time.

SAC ’24, April 8–12, 2024, Avila, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in The 39th
ACM/SIGAPP Symposium on Applied Computing (SAC ’24), April 8–12, 2024, Avila, Spain,
https://doi.org/10.1145/3605098.3635973.

ACM Reference Format:
Hiba Awad, Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux, Etienne
Leclerq, and Jonathan Rivalan. 2024. VeriFog: A Generic Model-based Ap-
proach for Verifying Fog Systems at Design Time. In The 39th ACM/SIGAPP
Symposium on Applied Computing (SAC ’24), April 8–12, 2024, Avila, Spain.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3605098.3635973

1 INTRODUCTION
Fog Computing [23, 30] is a recent paradigm aiming to decentralize
the Cloud by geographically distributing away computation, storage
and network resources as well as related services. Instead of a
centralized Cloud system, data centers of various sizes in the core
network, and smaller data-centers or devices at the edge of the
network, can be used collaboratively to form a single large-scale
geo-distributed system. Thus, Fog Computing is at the crossroads of
complementary areas of distributed systems: Cloud Computing [5]
of course, but also Edge Computing [25] and IoT [18].

Over the last years, Fog systems have been quite intensively stud-
ied in the research community, though their actual dissemination
in industry remains relatively limited [13]. As discussed with our
industrial partner Smile, several reasons can be given to explain
this situation. A first one is the size, complexity and heterogeneity
of the systems to be designed, developed, tested, deployed and then
maintained in such a Fog Computing context. Indeed, a Fog sys-
tem can combine large-scale Cloud resources with a possibly huge
number of IoT devices at the Edge of the network. All these varied
Fog resources have to be organized into several, sometimes many,
inter-connected areas. As a result, such a Fog system can quickly
become very challenging and costly to manage efficiently [3]. An
important goal is notably to ensure an appropriate Quality of Ser-
vice (QoS) [27]. This may concern security [21], energy [20], or
resource usages [1] aspects (among others).

Best practices in software engineering already showed that a
common way to limit development and management costs is to
verify the system design prior to its actual implementation and
deployment. However, up to our current knowledge, the verifica-
tion approaches that have been applied so far in the context of
Fog systems mostly concern already implemented and/or deployed
systems [16]. Moreover, by looking at a detailed study of the state

https://orcid.org/0009-0005-3271-298X
https://orcid.org/0000-0003-4921-1522
https://orcid.org/0000-0002-5987-2175
https://orcid.org/0000-0002-6136-6757
https://orcid.org/0000-0003-3488-8258
https://orcid.org/0000-0002-3779-556X
https://doi.org/10.1145/3605098.3635973
https://doi.org/10.1145/3605098.3635973

SAC ’24, April 8–12, 2024, Avila, Spain Hiba Awad, Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux, Etienne Leclerq, and Jonathan Rivalan

of the art [4], we observed that system modeling is currently rather
limited in Fog Computing and mostly concerns the simulation of
only parts of the Fog systems. Thus, to go a step further, we intro-
duce the VeriFog model-based approach for the verification of Fog
systems at design time. To this end, we notably propose a generic
and customizable Fog Modeling Language (FML) to specify Fog sys-
tem models that can then be navigated and queried accordingly. To
experiment with our approach and language in practice, we tested
them for three main types of important non-functional properties
(security, energy and performance) that we verified in the context
of three different Fog systems we modeled. These Fog systems
come from three different use cases illustrating various application
domains of Fog Computing. The objective is to demonstrate the
practical relevance of VeriFog for verifying several non-functional
properties of Fog systems during their design phase. We also want
to show the actual usability of FML for modeling different kinds of
Fog systems. On the longer term, both VeriFog and FML belong to
a wider research initiative intending to capitalize on Fog system
models in order to better support the Fog system’s overall life cycle.

This paper is organized as follows. Section 2 presents the general
background and motivation for our work, resulting in the three re-
search questions we intend to address in this paper. Then, Section 3
introduces the overall VeriFog approach and its targeted verification
support. Section 4 describes the FML language as a core component
of VeriFog. Then, Section 5 illustrates the practical experiments
with our approach and language in the context of three different
use cases. Section 6 summarizes the current Eclipse/EMF-based
implementation of VeriFog, FML, and the studied use cases. Section
7 discusses the current status, limitation, and lessons learned from
the work. Finally, Section 8 explains the related work while Section
9 concludes the paper by opening on future research perspectives.

2 BACKGROUND AND MOTIVATION
As introduced earlier, managing the size, complexity and hetero-
geneity of Fog systems can rapidly become both challenging and ex-
pensive. Providing an answer towards the resolution of this kind of
problem is a main objective of the ongoing SeMaFoR project [3], for
example. In the context of this collaborative research effort involv-
ing both research and industrial partners, we aim at proposing an ap-
proach for supporting the self-management of Fog resources. More
particularly, we are currently designing and developing a generic,
end-to-end, decentralized and collaborative self-management so-
lution to be able to operate different kinds of Fog systems. To this
end, we are notably tackling both Fog modeling concerns and their
potential impact on various aspects of the Fog system’s life cycle.
The work presented in this paper is positioned at the intersection
of these two dimensions.

On the one hand, Fog Computing remains a relatively recent
paradigm. Thus, many aspects related to Fog systems and the gen-
eral support for their engineering and management are open chal-
lenges [13]. In the scientific literature, these aspects have been quite
studied from a theoretical and/or research perspective over the past
years. Still, for various reasons, it appears that they have yet to
be experimented in practice within the industrial context. Among
the different phases of the Fog system’s life cycle which are worth
exploring, the design phase is particularly important. Notably, any

verification to be made onto a given system before its implementa-
tion and deployment can be highly beneficial in the long run (e.g.,
to improve the overall QoS of the system [27]). However, existing
verification approaches have been mostly applied on Fog systems
already implemented and/or deployed [16].

On the other hand, the approach resulting from a project such as
SeMaFoR is meant to rely on a language allowing to model different
Fog systems, coming from different application domains and for
possibly covering different purposes. A deep study of the state of
the art in terms of existing modeling languages and related capabil-
ities in a Fog Computing context is already available [4]. From this
extensive study, we indicated that the already existing modeling
support dedicated to Fog systems, their building and their man-
agement, is rather limited at this stage. As a consequence, more
efforts are needed in order to complement the available (mostly
simulation-based) solutions with more elaborated model-based so-
lutions targeting Fog systems in particular.

Based on this analysis, we considered the following three Re-
search Questions (RQs) in the remainder of the paper:

RQ1. Can we build a (model-based) approach for verifying
Fog systems before their implementation or deployment?
RQ2. In such an approach, which language do we need to
support the modeling of Fog systems?
RQ3. Can such an approach and language be used for verify-
ing different non-functional properties on different types of
Fog systems within different application domains?

3 AN APPROACH FOR DESIGN-TIME
VERIFICATION OF FOG SYSTEMS (RQ1)

Figure 1 presents an overview of the VeriFog iterative approach.
1 The Fog System Architect (FSA) is the main actor. Ideally,

she/he is an engineer having the required knowledge and expe-
rience in terms of both Fog infrastructures and the targeted ap-
plication domain(s) (e.g., smart cities, industrial IoT, autonomous
vehicles). In practice, it can rather be a collaboration between sev-
eral Fog system’s engineers (e.g., experts on distributed systems)
and domain experts (e.g., persons in charge of the Fog system).

2 Using an appropriate Fog Modeling Language, the FSA starts
by modeling the topology of the Fog system(s) she/he wants to
design via one or several models/files. This way, she/he identifies
and represents the various types of Fog resources that will compose
the target Fog system, as well as the various types of possible
interconnections between these types of resources. In some cases,
the FSA proposes one single topology that can then be instantiated
in different configurations of the target Fog system. In other cases,
she/he may also propose several topologies to first study the pros
and cons of each one of them (before moving to the next step).

3 Based on the previously defined topology, or the selected one
if several have been defined in the previous step, the FSA can specify
different Fog system’s configurations via several models/files. This
way, she/he can represent different possible states of the target
Fog systems at various given points in time. These configurations
directly refer to the corresponding topology: they contain concrete
instantiations of the various types of Fog resources described in
the topology, as well as their actual interconnections.

VeriFog: A Generic Model-based Approach for Verifying Fog Systems at Design Time SAC ’24, April 8–12, 2024, Avila, Spain

Reports

Fog System
Architect

Legend:

RefersTo

ConformsTo

Metamodel

Topology
Model t

Configuration
Model c1

Query 1 Security,
Energy,
Performance,
Etc.

Configuration
Model c2

Fog Modeling Language

Verification Support

Query 2

…

Specifies

1
2

3

4

6

5

Produce

Ve
rif

y

C
he

ck

7

Figure 1: Overview of the VeriFog iterative approach (the circled numbers correspond to numbered paragraphs in the text).

4 Once the required topology and configuration models are
properly specified, that all conform to the metamodel of the used
Fog Modeling Language, the FSA can identify and express the
non-functional properties she/he wants to verify on the target Fog
system. As later displayed in Table 1, each property to be verified
can be associated to different queries in order to be able to provide
a global assessment over the target Fog system. In practice, these
queries have to be expressed using a (model) query language (in
our current experiments, we used OCL1) that is compatible with
the Fog Modeling Language we propose (cf. Section 6).

5 Once the required queries are properly specified, they can be
actually verified onto the set of Fog system’s models. Depending on
the kind of verification to be made on the Fog system, a given query
can be executed over a topology model, a configuration model,
or eventually a combination of them. Depending on the type of a
given query, the result returned by the execution of this query can
take different types: a numerical value, a boolean value or a string
textually describing the result. Various examples of non-functional
properties and associated queries are presented in Section 5.

6 Once all the required queries are executed over the corre-
sponding Fog system’s models, a report can be produced to ag-
gregate the individual query execution results. Such a report can
take different forms: a simple list of query execution results (as in
our current implementation of the approach, cf. Section 6), a more
structured and elaborated document automatically generated from
the Fog system’s models and the results, a tool displaying in a more
dynamic way the content of both these models and results, etc.

7 Finally, the FSA can consult and check this report. She/he
can use it as a valuable input for taking decisions on whether to 1)
proceed with the current Fog system’s design and eventually start
to work on its implementation, or 2) perform another iteration of
the VeriFog approach to improve the system’s design. In the latter
case, the FSA may decide to rework the initial topology model by
completing the various types of possible Fog resources. She/he may
1https://projects.eclipse.org/projects/modeling.mdt.ocl

also decide to first experiment with other configurations before
actually modifying the topology, etc.

4 A GENERIC LANGUAGE FOR MODELING
FOG SYSTEMS (RQ2)

In the context of the SeMaFoR project [3], we extensively studied
the current state of the art in terms of existing languages and re-
lated support for modeling Fog systems [4]. However, none of the
available solutions appears to come with a generic reusable lan-
guage that would allow engineers to easily specify, share, maintain
and evolve Fog system’s models for different kinds of Fog archi-
tectures. As a result, and also capitalizing on other existing work
on Cloud modeling [2, 10], we designed and developed a generic
and customizable Fog Modeling Language (FML). In what follows,
we present both its abstract syntax (i.e., its core metamodel) and
current concrete syntax (i.e., a textual notation). Its semantics is
associated to the language usage (cf. Section 5).

4.1 Abstract Syntax - Metamodel
The main objective of the FML is to allow specifying the various
resources composing the Fog system as well as the relationships be-
tween them. To this end, the proposed language is able to represent
both the different possible topologies of Fog systems (i.e., the types
of Fog resources) and the corresponding configurations based on
these topologies (i.e., the instances of these types). Figure 2 shows
a partial version of the metamodel of the language.

The main elements of a Fog system are considered as FogRe-
sources. As the language is meant to be generic and extensible, any
FogResource can be customized by adding specific metadata via both
Tag elements (i.e., key/value pairs) and custom Attribute elements.
Each Attribute is characterized by a AttributeType targeting a partic-
ular type of Fog resource and having a corresponding UnitOfMea-
surement. The root of the model is the FogSystem containing various
FogAreas (i.e., Fog sub-systems), themselves containing the other

https://projects.eclipse.org/projects/modeling.mdt.ocl

SAC ’24, April 8–12, 2024, Avila, Spain Hiba Awad, Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux, Etienne Leclerq, and Jonathan Rivalan

Figure 2: Partial metamodel (i.e., abstract syntax) of the proposed Fog Modeling Language.

kinds of elements. This way, as introduced earlier, both topologies
and corresponding configurations can be jointly modeled.

On the topology side, at the FogSystem-level, different NodeTypes
can be specified. These are either PhysicalNodeSpecifications (i.e.,
for hardware devices) or VirtualNodeSpecifications (i.e., for software
components). Naturally, a givenNodeType can host otherNodeTypes.
For example, a virtual node can be hosted on a physical node or
eventually on another virtual node. The different NodeTypes can
be interconnected via various NetworkLinkTypes that materialize
either download or upload links depending on the case. In addition,
each NetworkLinkType is related to a given NetworkType that can
have different characteristics associated to it (e.g., these character-
istics can be expressed via particular Tags or custom Attributes).

On the configuration side, at the FogArea-level, the overall struc-
ture is similar. However, several Nodes can be interconnected via
variousNetworkLinks (download or upload) directly related to corre-
sponding Networks. Each Node is representing a particular instance
of a previously specified NodeType. In addition, such a Node carries
different general runtime properties concerning its operating sys-
tem, CPU, memory, disk space, health status, etc. Similarly, each
NetworkLink and Network are particular instances of a previously
specified NetworkLinkType and NetworkType (respectively).

Finally, it is important to notice that some aspects of the lan-
guage are not described in the paper for the sake of readability
and understandability. Indeed, some simple multiplicities (e.g., 0..1
/ 1..1) and associated labels are hidden in Figure 2. For the same
reason, the provided support for different kinds of constraints over
NodeType and NetworkType elements is not detailed neither in the

paper. Note that this part of the language is directly adapted from
the constraint support proposed in previous work on Cloud mod-
eling [2, 10]. More importantly, the language also supports the
modeling of both the services and related applications that can be
hosted in the Fog system nodes. These are also important elements
in the context of highly distributed Fog systems. However, such
elements are not described here as not used in the current work
where we mostly focus on modeling Fog infrastructures.

4.2 Concrete Syntax - YAML Textual Notation
The technical background of the typical FSA usually makes her
quite familiar with solutions for distributed system’s infrastruc-
tures. In such solutions, textual notations like YAML2 are frequently
encountered. As a consequence, we have opted for a YAML textual
syntax to accompany the current version of the proposed Fog Mod-
eling Language. Figure 3 shows an excerpt of this textual notation
in the context of one of the practical use cases from Section 5.

The different FogResources composing the FogSystem can be mod-
eled thanks to separate YAML files (.yml). These files can be or-
ganized, stored and shared as needed by the concerned Fog engi-
neers. For example, the left file in Figure 3 shows a VirtualNode-
Specification named "Fognode2", as part of a given topology. Three
Tags are associated with this particular NodeType to add specific
performance-related metadata in this particular case. Then, a "spec"
section allows to specify the general value of the different proper-
ties (both the base and custom ones). This section also allows to

2https://yaml.org/

https://yaml.org/

VeriFog: A Generic Model-based Approach for Verifying Fog Systems at Design Time SAC ’24, April 8–12, 2024, Avila, Spain

Figure 3: Excerpt of the YAML-like textual notation (i.e., con-
crete syntax) of the proposed Fog Modeling Language.

declare the correspondingNetworkLinkTypes (download and upload
ones) and related metadata, etc. Based on this topology specifica-
tion, the right file in Figure 3 shows a given configuration providing
an instantiation of the previously defined "Fognode2" NodeType, as
a Node named "fn2". In a configuration definition, the "spec" section
(from the topology specification) is replaced by a "status" section
that allows to indicate the runtime value of the different properties,
to declare the corresponding NetworkLinks, etc.

Note that, to simplify the learning and usage of the proposed
notation, we voluntarily decided to have a similar syntax for de-
scribing both topology and configuration elements. Only some
dedicated sections of the files are different at the two levels, e.g.,
"spec" vs. "status" as mentioned earlier on the provided example.

5 PRACTICAL APPLICATIONS ON DIFFERENT
USE CASES (RQ3)

To evaluate the genericity, and more generally the usability, of
our VeriFog approach and underlying Fog Modeling Language,
we considered various concrete Fog system’s examples coming
from different application domains. From the literature, we selected
three distinct use cases we found relevant and representative of the
heterogeneity of Fog systems. They are summarized in Table 1.

In what follows, for the two first use cases, we provide 1) a
textual description of the overall context and concrete application,
2) a model of the corresponding Fog system in our Fog Modeling
Language, and 3) examples of queries used to verify non-functional
properties which are particularly relevant in highly-distributed
Fog systems and that can be verified at design-time. Due to space
limitation, we do no detail the third use case. For all use cases,
the complete implementation resources can be accessed via the
provided open source repository (cf. Section 6).

Note that, in the following sections, the presented models are
voluntarily partial. Indeed, for the sake of readability, only the
NodeType (in red) and Node (in blue) elements are displayed. Thus,
the root elements (FogSystem, FogArea) and the network elements
(NetworkType, NetworkLinkType, Network, NetworkLink) are not
shown. Moreover, to keep the diagrams light, the latter are simply
materialized by generic dependency relationships. Finally, the cus-
tom Attributes are displayed the same way than regular attributes
within the corresponding elements.

5.1 Smart Campus: Energy Property
Scenario: The first use case is taken from a published work present-
ing a recent survey on existing Fog Modeling Languages [4]. In an
university campus context, the survey proposes a motivating exam-
ple of a Fog system that consists in two distributed applications for
smart surveillance and smart bell notification, respectively. They
are made available as a set of loosely coupled micro-services that
can be mutually shared in order to provide the expected capabilities.

Model: The Fog system of the monitored university campus
is composed of several FogAreas corresponding to the different
sections of the campus. We show in Figure 4 the content of two
main FogAreas for the two sections of our example campus: the
Main Department and the Dormitory.

The central elements are "center1" and "center2" data center Vir-
tualNodes. They can be connected to other FogAreas of the system
indirectly via the "gate" gateway VirtualNode, itself connected to
the "publicCloudProvider" cloud VirtualNode. The different nodes
composing the system are also connected to these two central data
center nodes. In the dormitory, this is the case for the "watch" and
"comp" PhysicalNodes (of type smart watch and computer, respec-
tively). In the main department, this is the case for the "alarm",
"mobile" and "cam" PhysicalNodes (of type alarm device, mobile
phone and wifi camera, respectively). In this main department, the
"cluster" Rapsberry Pi cluster PhysicalNode is indirectly connected
via the "gate" gateway VirtualNode.

At the topology level, we added a "SourceEnergy" custom At-
tribute to model the energy source type associated to each NodeType
instantiated in the system. Depending on the origin of the energy,
it can be renewable (i.e., green), or fossile (as in, oil or petroleum).
We also added another "greenEnergy" custom Attribute to be able
to represent the green energy level associated to each NodeType. In
case of multiple energy sources, this corresponds to the percentage
of green energy over the total energy. For example, the level is
considered high if this percentage is higher than 50. At the config-
uration level, we added a "energy_consumption" custom Attribute
to be able to describe the amount of the total energy already con-
sumed by each node at a given point in time. We also added another
"green_consumption" custom Attribute to be able to specify the
percentage of the total green energy already consumed by each
node at a given point in time.

Queries: In the university campus, energy consumption is an
important issue for both ecological and financial reasons. Thus, we
need to assess the energy origin and consumption for the different
kinds of Fog resources composing the system, as well as for the
system as a whole. In what follows, we consider a college campus
consisting of a main department and a dormitory.

Query "IsGreen" - To start with, we defined a global query at
the topology level in order to assess the "greenness" of the Fog
system based on the different types of instantiated nodes. Listing 5
shows the OCL code of this query that returns a boolean value.
To summarize, we get the green energy level for each node in the
system and we check whether the majority of the nodes have a
high green energy level or not.

Query "Remaining Energy" - Then, we defined a query at the
configuration level to compute the remaining available energy to
be consumed (i.e., a double value) associated to each node type in the

SAC ’24, April 8–12, 2024, Avila, Spain Hiba Awad, Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux, Etienne Leclerq, and Jonathan Rivalan

Table 1: Several applications of the VeriFog approach.

Use Case Name Verified Property Query Level Return Type Objective

Smart Campus Energy
IsGreen Topology Boolean Check if the system is green or not, i.e., if the

majority of the nodes of this system have a re-
newable energy resource or not.

Remaining Energy Configuration Double Study the system energy status by calculating
the difference between a consumption threshold
and the energy consumption at time T.

Green Energy Consumption Configuration Double Calculate the percentage of green energy con-
sumption by knowing the green level and con-
sumed energy of each node.

Smart Parking Performance
Efficiency Topology Double Check if the system is efficient by calculating

the parking lot ratio, i.e., the balance between
the number of cameras and the covered slots.

Latency Configuration Float Calculate the system latency, i.e., the delay of
analyzing each area of the parking lot and the
delay of noise filtering in defected images.

IsReliable Configuration Boolean Study the system reliability by calculating the
number of instances of each camera type with
a given detection quality level.

Smart Hospital Security
IsSecured Topology Boolean Check if the system is "Secured" or not so we

can know if most of the nodes in our system are
located in a secure environment.

RiskScore Topology Integer Study the vulnerability of each node, based on
the node location and the importance of its pro-
tected/stored data.

Authorized Token Level Configuration Sequence Group the nodes by their authorization level.

Dormitory Main departement

Figure 4: Partial model of the Fog system in the Smart Campus use case.

VeriFog: A Generic Model-based Approach for Verifying Fog Systems at Design Time SAC ’24, April 8–12, 2024, Avila, Spain

if NodeType.allInstances()->select(f | f.tags->exists(t | t.key =
'greenEnergy' and (t.value = 'low' or t.value = 'null' or
t.value='moderate')))->size() > NodeType.allInstances()->size()/2
then

↩→
↩→
↩→

'The system is not green'
else

'The system is Green'
endif

Figure 5: OCL code of the IsGreen query in the Smart Campus
use case (boolean return value printed in plain readable text).

system. The objective is to calculate the amount of available energy
with respect to the threshold imposed by the campus administrators.
The calculation is based on 1) the total energy consumption of each
node and 2) the threshold of 2000 J. The total energy consumption
is the sum of the "energy_consumption" of each node in the system.
For example, if this sum is 3000 J, a specific message indicate an
over-consumption of 1000 J.

Query "Green Energy Consumption" - Finally, we defined another
query at the configuration level to compute the amount of con-
sumed green energy compared to the total consumed energy. The
objective is to obtain the percentage of green energy consumed by
the system. The calculation is based on 1) the "green_consumption"
and 2) the "energy_consumption" of each node.

5.2 Smart Parking: Performance Property
Scenario: The second use case is taken from a published work
presenting a solution for drivers to bemore efficient when searching
for a slot for their cars in a parking lot [6]. Thus, in a parking lot
context, the solution describes an example of a Fog system that
detect the parked cars in each zone, and indicates available spaces
to the drivers via a smart led screen at the entrance.

Model: The Fog system of themonitored parking lot is composed
of several FogAreas, corresponding to its different sections, that deal
with various kinds of nodes (e.g., cameras, micro-controllers). We
show in Figure 6 the content of two FogAreas but the parking system
can be composed of much more FogAreas.

The central elements of the shownmodel are "fogn1" and "fogn2"
Fog VirtualNodes. These central nodes can be possibly connected to
other FogAreas of the system, via the "proxyserver" proxy VirtualN-
ode and the external "cloudserver" cloud VirtualNode. The different
devices composing the system (i.e., different types of cameras) are
also indireclty connected to these central Fog nodes via "micro1"
and "micro2" micro-controller VirtualNodes.

At the topology level, we added a "detection_quality" custom
Attribute to model the detection quality level associated to each
camera NodeType instantiated in the system. This corresponds to
the capability of each camera to always detect any vehicle in the
covered zone. For example, if the camera can identify only cars and
cannot systematically detect motorcycles, the detection quality will
be low. At the configuration level, we added a "coveredPlaces" cus-
tom Attribute to describe the number of slots covered by each Fog
Node in the system. This corresponds to the number of slots where
cameras can possibly detect the cars. We also added another "im-
age_quality" custom Attribute to specify the percentage of clarity
for the images detected by a given camera.

Queries: In a city’s parking lot context, the overall performance
of the system is an important issue in order to be able to provide an
efficient service to the drivers. Thus, we need the data to be treated
by each camera and Fog node to have a sufficiently high level of
quality. For the following queries, we considered a smart parking
of a reasonable size with 16 cameras nodes and 2 Fog nodes.

Query "Is Efficient" - To start with, we defined a global query at
the topology level to assess the overall efficiency of the parking lot.
To this end, we computed the ratio between the number of covered
slots and the total number of available cameras. If the ratio is closer
to 1, there are possibly too many cameras. If the ratio is closer to 0,
there are probably not enough cameras to cover all the slots.

Query "Latency" - Then, we defined a query at the configuration
level to compute the time needed for the system to display the
available slots on the smart led screen at the entrance of the parking
lot. The objective is to evaluate the latency of the overall system.
Listing 7 shows the OCL code implementation of this query which
returns a real value. To summarize, the calculation is based on 1) the
time consumed by the Fog nodes to analyze the images collected
from the corresponding 16 cameras (cf. the value from Table 3 in
the source paper [6], then encoded in the query) and 2) the time of
image enhancement. The time of image enhancement is computed
from the "image_quality" of each camera node. If the clarity of the
image took by a given camera node is low, an image enhancement
is required prior to its analysis.

Query "Reliability" - Finally, we defined another query at the
configuration level to assess the reliability of the Fog system based
on the different types of instantiated nodes. To summarize, we
analyze the image quality of each camera in the system by ensuring
that the majority of them have an image quality higher than 50%.

6 IMPLEMENTATION
Based on our own experience and technical expertise, we decided
to implement in the Eclipse ecosystem an initial version of the
tooling support associated with the proposed Fog Modeling Lan-
guage, Verification Support, and current use cases. However, both
the VeriFog conceptual approach and the FML language specifi-
cation are technology-independent. As a consequence, they may
be redeveloped in other technical environments if required in the
future (e.g., by our partner company Smile for industrial purposes).

FML has been implemented by using the EclipseModeling Frame-
work (EMF)3 and related tools. For the abstract syntax, we specified
a dedicated metamodel in Ecore. For the concrete syntax, we devel-
oped a grammar in Xtext4 that we connected to this metamodel.
This allowed us to produce a corresponding textual editor with
basic features (syntax highlighting, code completion, syntax checks,
etc.). Thus, we provide an editing environment for Fog System Ar-
chitects to write their Fog system models using several YAML files.
As in the VeriFog approach, they can also get their models as full
EMF-compatible models, and eventually serialize them as XMI files
for further sharing or usage with other tools.

For the Verification Support, we implemented all the presented
queries in two different languages: 1) Java to show the possible
use of FML in combination with a general-purpose programming

3https://www.eclipse.org/modeling/emf/
4https://www.eclipse.org/Xtext/

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/Xtext/

SAC ’24, April 8–12, 2024, Avila, Spain Hiba Awad, Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux, Etienne Leclerq, and Jonathan Rivalan

Figure 6: Partial model of the Fog system in the Smart Parking use case.

let totalEnhancement: Real =
NodeType.allInstances()

->select(f | f.tags->exists(t | t.key = 'detection_quality' and

(t.value = 'low' or t.value = 'verylow')))↩→
->collect(f | if f.tags->exists(t | t.key = 'detection_quality' and

t.value = 'low') or f.tags->exists(t | t.key = 'detection_quality'
and t.value = 'verylow') then 0.702 else 0 endif)

↩→
↩→
->sum() + 0.00787

in
'the latency of the system is ' + totalEnhancement.toString() + 's'

Figure 7: OCL code of the Latency query in the Smart Parking
use case (real return value printed in plain readable text).

language, and 2) the Object Constraint Language (OCL)5 to show
the compatibility of our language with a standard navigation model
and query language. The final reporting on the query execution
results is currently implemented as strings to be displayed onto the
Eclipse workbench’s console, or to be printed into textual files to
be then shared with the Fog System Architects.

All the resources described in the paper, including the complete
source code of the proposed Fog Modeling Language, the models
of the different use cases and the implementation of the related
queries, are available in an open repository6.

7 DISCUSSION
7.1 Current scope and limitation
The presented work capitalize on existing work in the context of
Cloud systems. However, as seen in the literature, there are signifi-
cant differences between Cloud and Fog systems. In fact, the Edge
and IoT layers of Fog systems have particular types of elements
and properties which are not present in traditional Cloud systems
5https://projects.eclipse.org/projects/modeling.mdt.ocl
6https://zenodo.org/record/8104709

(e.g., IoT devices or material at the edge with their hardware and
software properties, heterogeneous communication means). No-
tably, the concept of Fog Area is key to model several subsystems
supporting the decentralized characteristic of Fog systems. More-
over, characterizing network types and links is fundamental in
Fog systems to accurately model the communications between the
different Fog areas and their elements. Finally, the modeling of
applications and offered services is also important in the context
of highly distributed Fog systems. Up to our current knowledge,
existing approaches and languages do not allow to properly model
the large variety of Fog systems, specify their characteristics, and
express related non-functional properties to be verified. Our generic
and customizable approach is a direct answer to this challenge.

VeriFog and FML are generic because we can model different,
and potentially any, kinds of heterogeneous Fog systems within
different applications domains while considering different types
of non-functional properties to be verified. This notably includes
properties that are more critical in Fog systems than in Cloud sys-
tems (e.g., security or performance/latency issues). It is important
to note that our intent is not to support by default in our approach
all the possible Fog-specific issues. For example, the resilience to
faults is deliberately not a ’first-class’ concept in FML. This is why
we designed our approach as customizable so that 1) FML can be
refined to add the needed attributes/metadata thus enriching the
Fog system models as required and 2) additional queries can be
defined accordingly to verify any issues (e.g., fault tolerance) thanks
to these complementary attributes/metadata. Finally, even though
the usage of our approach in this paper focuses on the design time
verification of non-functional properties over Fog systems, we also
plan to work on its usage in other steps of the Fog system’s life cycle
(cf. Section 9). This way, we will further explore the support for

https://projects.eclipse.org/projects/modeling.mdt.ocl
https://zenodo.org/record/8104709

VeriFog: A Generic Model-based Approach for Verifying Fog Systems at Design Time SAC ’24, April 8–12, 2024, Avila, Spain

other different Fog-specific issues that cannot be easily addressed
at design time (e.g., more runtime related issues such as reliability).

7.2 Lessons learned
We had very frequent interactions with our partner company Smile
regarding the industrial applicability of our work.

From the positive side, we demonstrated in practice to them that
we can model different kinds of Fog systems in different applica-
tion domains while considering different types of non-functional
properties to be verified (e.g., security). This was perceived as very
promising by Smile, especially since it opens the door for more in-
teresting usages of our approach and corresponding FML models in
the context of the other steps of the Fog system’s life cycle (cf. Sec-
tion 9). Indeed, Smile is interested in providing in the future more
complete DevOps pipelines supporting the design, development,
and execution of such large-scale distributed systems. The present
work is a relevant starting point for such future experiments and
related evaluation at a larger scale (e.g., with more engineers).

From the less positive side, it is currently quite challenging in
industry to find such a FSA having both a solid system architec-
tural/modeling expertise (design part) and sufficient technical/pro-
gramming skills (verification part) for Fog systems. Notably, Smile
stated that the typical DevOps engineer is usually not very familiar
with modeling languages in general. To reduce this gap, we proto-
typed FML with a YAML concrete syntax that is quite close to the
kind of configuration files the DevOps engineer usually handles.
Nevertheless, a dedicated modeling training would still be required,
and the learning curve should not be underestimated. To possibly
overcome this, additional means of (re)using FML models could be
envisioned. This could be realized via dedicated graphical interfaces,
possibly integrated into existing DevOps solutions, for example to
replace OCL (as mostly known in the MDE community) and Java
(sometimes too general-purpose and verbose) in VeriFog.

Ultimately, Smile believe that the FSA profile will emerge when
Fog Computing technologies will become mainstream and widely
used in different application domains. In the meantime, in practice,
the role of the FSA can also be realized by a team of engineers: a
design specialist can take care of modeling the system while a secu-
rity expert (for instance) can deal with corresponding verification
aspects. In this case, both will have to frequently interact together
and FML could be a good facilitator when used as a commonly
shared language for modeling Fog systems.

8 RELATEDWORK
8.1 Simulation and emulation
Designing, deploying, and evaluating Fog-based applications is a
complex and costly endeavor. To this end, several works proposed to
rely on simulation and emulation tools associated to dedicated lan-
guages. For example, Fogify [26] provides a modeling language for
defining Fog topologies (encapsulating QoS constraints) which ex-
tends the Docker-compose specification. However, contrary to our
approach, it does not directly cover the modeling of configurations
and mostly focuses on Docker-based infrastructures. iFogSim [15],
based on CloudSim [11], provides a modeling language for IoT de-
vices and associated Fog resources, in order to enable the simulation
of scheduling policies based on multiple QoS criteria. In this case,

contrary to us, they have very specific runtime objectives. Another
example is EmuFog [22] that enables the from-scratch specification
of Fog Computing infrastructures and the emulation of real appli-
cations and workloads. Once again, they are mostly operating at
runtime and with a specific target in mind (i.e., workload manage-
ment). Even if all these work intend to somehow verify Fog systems
before their deployments, they are closely related to particular in-
dustrial tools (e.g., Docker) or simulators (e.g., CloudSim). Moreover,
they are not promoting a more generic modeling language to be
exploited at each phase of the system’s life cycle (cf. Section 9).

8.2 Quality of Service (QoS)
There are also a few model-based solutions targeting the QoS of
Fog systems. For example, FogTorch [8] proposes a semi-formal
language that considers various relevant Fog aspects in order to
determine QoS-aware deployments of IoT application. Its successor
FogTorchΠ [9] exploits Monte Carlo simulation models to take
into account possible variations of the QoS and eligible deploy-
ments of Fog applications. SMADA-Fog [24] provides a semantic
model-driven approach to support the deployment and adapta-
tion of container-based applications in Fog Computing. The used
language relies on two metamodels implemented within the Node-
RED7 deployment tool. However, in all cases, these solutions are
strongly deployment phase-oriented, and do not target an end-to-
end holistic approach as we do (cf. Section 9).

8.3 Life cycle management and orchestration
As introduced before, the design and implementation of a complex
Fog system can quickly become really challenging. Some works par-
tially address the life cycle of Fog systems in order to overcome this
complexity [14, 29]. However, they mainly deal with the execution
phase and are not necessarily meant to be generalized to the sup-
port for the whole life cycle, notably since they do not come with
reusable modeling languages. Indeed, a recent survey [12] found
out that orchestration is an over-used word that sometimes refers to
life cycle management. This semantic shortcut unfortunately leads
the community to a too strong focus on runtime concerns. In fact,
this survey shows that Fog orchestrated entities, when properly
modeled as services, tasks, pipe-lines, workflows, etc. could be used
more intensively in the context of Fog life cycle management.

From an industrial perspective, there are also relatively recent
initiatives. For example, Fogernetes [28], based on Kubernetes8,
compares and maps the requirements of application components to
available Fog nodes in order to ensure an optimal deployment ac-
cording to some non-functional properties. However, this solution
specifically relies on the Kubernetes, and focuses on non-functional
properties while we could also possibly support functional proper-
ties as well (even if this is not the focus of the work presented in
this paper). Going further, GitOps [7] is one of the main trends in
the DevOps [17] ecosystem for Continuous Deployment that pro-
motes infrastructure automation in highly distributed applications.
A recent work [19] describes an initial implementation of GitOps
at the Edge/IoT-level based on KubeEdge9. Such an approach could

7https://nodered.org/
8https://kubernetes.io
9https://kubeedge.io

https://nodered.org/
https://kubernetes.io
https://kubeedge.io

SAC ’24, April 8–12, 2024, Avila, Spain Hiba Awad, Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux, Etienne Leclerq, and Jonathan Rivalan

be interesting to generalize in the context of other similar technical
frameworks, by relying on FML as a basis for instance.

9 CONCLUSION AND FUTUREWORK
The work described in this paper belongs to a more global research
effort intending to support the complete life cycle of Fog systems.
In fact, the presented design-time modeling support for the verifica-
tion of Fog systems is only a first step towards a wider usage of the
proposed FML. The longer term objective is to generalize the (re)use
of FML models in order to improve the support for other major
activities within the system’s life cycle. For example, at develop-
ment time, we would like to consider the FML models as inputs for
semi-automatically generating different wrappers or configuration
files for various technical platforms (e.g., frameworks, schedulers)
and kinds of Fog resources (e.g., Cloud servers, IoT devices). At
deployment time, we also plan to rely on FML models in order to
partially automate the allocation and/or provisioning of different
Fog resources, the chaining of hosted services, the loading/unload-
ing of related tasks, etc. At execution time, we already envision the
use of FML models as a way to allow the self-adaptation, in some
relevant cases, of the modeled systems (or at least parts of them).
For example, one important goal is to make the systems more re-
silient to various types of faults or errors, or more respectful of
high level properties defined in the models.

Another important objective, in direct collaboration with our
industrial partner Smile, is to work on the integration of the pro-
posed VeriFog approach, Fog Modeling Language, and other related
contributions into real DevOps CI/CD pipelines. Such pipelines can
be used in practice to support the production, maintenance and
evolution of real Fog systems in industrial contexts, in a managed,
offline, way. From an industrial perspective, VeriFog, FML and the
corresponding global research effort appear to be a promising way
to improve the overall QoS of the target Fog systems while possibly
reducing the associated development and management costs.

ACKNOWLEDGMENT
Thework presented in this paper was partially funded by the French
Agence Nationale de la Recherche (ANR) under grant ANR-20-CE25-
0017 (i.e., the SeMaFoR project).

REFERENCES
[1] MohammadAazam,Marc St-Hilaire, Chung-Horng Lung, and Ioannis Lambadaris.

2016. MeFoRE: QoE based resource estimation at Fog to enhance QoS in IoT. In
ICT 2016. IEEE, New York, U.S.A., 1–5.

[2] Zakarea Al-Shara, Frederico Alvares, Hugo Bruneliere, Jonathan Lejeune, Charles
Prud’Homme, and Thomas Ledoux. 2018. CoMe4ACloud: An end-to-end frame-
work for autonomic Cloud systems. Future Generation Computer Systems 86
(2018), 339–354.

[3] Abdelghani Alidra, Hugo Bruneliere, Hélène Coullon, Thomas Ledoux, Charles
Prud’Homme, Jonathan Lejeune, Pierre Sens, Julien Sopena, and Jonathan Ri-
valan. 2023. SeMaFoR - Self-Management of Fog Resources with Collaborative
Decentralized Controllers. In SEAMS 2023. IEEE, Melbourne, Australia, 7 pages.

[4] Abdelghani Alidra, Hugo Bruneliere, and Thomas Ledoux. 2023. A Feature-based
Survey of Fog Modeling Languages. Future Generation Computer Systems 138
(2023), 104–119.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al.
2010. A View of Cloud Computing. Communications of the ACM 53, 4 (2010),
50–58.

[6] Kamran Sattar Awaisi, Assad Abbas, Mahdi Zareei, Hasan Ali Khattak, Muham-
mad Usman Shahid Khan, Mazhar Ali, Ikram Ud Din, and Sajid Shah. 2019.

Towards a fog enabled efficient car parking architecture. IEEE Access 7 (2019),
159100–159111.

[7] Florian Beetz and Simon Harrer. 2021. GitOps: The Evolution of DevOps? IEEE
Software 39, 4 (2021), 70–75.

[8] Antonio Brogi and Stefano Forti. 2017. QoS-aware deployment of IoT applications
through the fog. IEEE internet of Things Journal 4, 5 (2017), 1185–1192.

[9] Antonio Brogi, Stefano Forti, and Ahmad Ibrahim. 2017. How to Best Deploy
Your Fog Applications, Probably. In ICFEC 2017. IEEE, New York, U.S.A., 105–114.

[10] Hugo Bruneliere, Zakarea Al-Shara, Frederico Alvares, Jonathan Lejeune, and
Thomas Ledoux. 2018. A Model-based Architecture for Autonomic and Hetero-
geneous Cloud Systems. In CLOSER 2018. SciTePress, Setubal, Portugal, 201–212.

[11] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and
Rajkumar Buyya. 2011. CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software: Practice and Experience 41, 1 (2011), 23–50.

[12] Breno Costa, Joao Bachiega, Leonardo Rebouças de Carvalho, and Aleteia P. F.
Araujo. 2022. Orchestration in Fog Computing: A Comprehensive Survey. ACM
Comput. Surv. 55, 2, Article 29 (jan 2022), 34 pages.

[13] Resul Das andMuhammadMuhammad Inuwa. 2023. A Review on Fog Computing:
Issues, Characteristics, Challenges, and Potential Applications. Telematics and
Informatics Reports 10 (2023), 100049.

[14] Francesc Guim, Thijs Metsch, Hassnaa Moustafa, Timothy Verrall, David Carrera,
Nicola Cadenelli, Jiang Chen, David Doria, Chadie Ghadie, and Raül González
Prats. 2022. Autonomous Lifecycle Management for Resource-Efficient Work-
load Orchestration for Green Edge Computing. IEEE Transactions on Green
Communications and Networking 6, 1 (2022), 571–582.

[15] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya.
2017. iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments.
Software: Practice and Experience 47, 9 (2017), 1275–1296.

[16] Mostafa Haghi Kashani, Amir Masoud Rahmani, and Nima Jafari Navimipour.
2020. Quality of service-aware approaches in fog computing. International
Journal of Communication Systems 33, 8 (2020), e4340.

[17] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles.
2019. A survey of DevOps concepts and challenges. ACM Computing Surveys
(CSUR) 52, 6 (2019), 1–35.

[18] Shancang Li, Li Da Xu, and Shanshan Zhao. 2015. The Internet of Things: a
Survey. Information systems frontiers 17 (2015), 243–259.

[19] Ramón López-Viana, Jessica Díaz, and Jorge E Pérez. 2022. Continuous Deploy-
ment in IoT Edge Computing: A GitOps implementation. In CISTI 2022. IEEE,
New York, U.S.A., 1–6.

[20] Mukhtar ME Mahmoud, Joel JPC Rodrigues, Kashif Saleem, Jalal Al-Muhtadi,
Neeraj Kumar, and Valery Korotaev. 2018. Towards energy-aware fog-enabled
cloud of things for healthcare. Computers & Electrical Engineering 67 (2018),
58–69.

[21] Keith Massey, Nadia Moazen, and Talal Halabi. 2021. Optimizing the allocation
of secure fog resources based on qos requirements. In CSCloud 2021 / EdgeCom
2021. IEEE, New York, U.S.A., 143–148.

[22] Ruben Mayer, Leon Graser, Harshit Gupta, Enrique Saurez, and Umakishore
Ramachandran. 2017. EmuFog: Extensible and scalable emulation of large-scale
fog computing infrastructures. In FWC 2017. IEEE, New York, U.S.A., 1–6.

[23] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A.
Polakos. 2018. A Comprehensive Survey on Fog Computing: State-of-the-Art
and Research Challenges. IEEE Communications Surveys & Tutorials 20, 1 (2018),
416–464.

[24] Nenad Petrovic and Milorad Tosic. 2020. SMADA-Fog: Semantic model driven
approach to deployment and adaptivity in fog computing. Simulation Modelling
Practice and Theory 101 (2020), 102033.

[25] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
Computing: Vision and challenges. IEEE internet of things journal 3, 5 (2016),
637–646.

[26] Moysis Symeonides, Zacharias Georgiou, Demetris Trihinas, George Pallis, and
Marios D Dikaiakos. 2020. Fogify: A fog computing emulation framework. In
SEC 2020. IEEE, New York, U.S.A., 42–54.

[27] William Tichaona Vambe, Chii Chang, and Khulumani Sibanda. 2020. A review
of quality of service in fog computing for the internet of things. International
Journal of Fog Computing (IJFC) 3, 1 (2020), 22–40.

[28] Cecil Wöbker, Andreas Seitz, Harald Mueller, and Bernd Bruegge. 2018. Foger-
netes: Deployment and management of fog computing applications. In NOMS
2018. IEEE, New York, U.S.A., 1–7.

[29] Renchao Xie, Qinqin Tang, Shi Qiao, Han Zhu, F. Richard Yu, and Tao Huang. 2021.
When Serverless Computing Meets Edge Computing: Architecture, Challenges,
and Open Issues. IEEE Wireless Communications 28, 5 (2021), 126–133.

[30] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali,
Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. 2019. All one needs to know
about fog computing and related edge computing paradigms: A complete survey.
Journal of Systems Architecture 98 (2019), 289 – 330.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 An approach for Design-time Verification of Fog Systems (RQ1)
	4 A Generic Language for Modeling Fog Systems (RQ2)
	4.1 Abstract Syntax - Metamodel
	4.2 Concrete Syntax - YAML Textual Notation

	5 Practical Applications on Different Use Cases (RQ3)
	5.1 Smart Campus: Energy Property
	5.2 Smart Parking: Performance Property

	6 Implementation
	7 Discussion
	7.1 Current scope and limitation
	7.2 Lessons learned

	8 Related Work
	8.1 Simulation and emulation
	8.2 Quality of Service (QoS)
	8.3 Life cycle management and orchestration

	9 Conclusion and Future Work
	References

