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Abstract

The Surrogate Modeling Toolbox (SMT) is an open-source Python package
that offers a collection of surrogate modeling methods, sampling techniques,
and a set of sample problems. This paper presents SMT 2.0, a major new
release of SMT that introduces significant upgrades and new features to the
toolbox. This release adds the capability to handle mixed-variable surrogate
models and hierarchical variables. These types of variables are becoming
increasingly important in several surrogate modeling applications. SMT 2.0

also improves SMT by extending sampling methods, adding new surrogate
models, and computing variance and kernel derivatives for Kriging. This
release also includes new functions to handle noisy and use multi-fidelity
data. To the best of our knowledge, SMT 2.0 is the first open-source surrogate
library to propose surrogate models for hierarchical and mixed inputs. This
open-source software is distributed under the New BSD license 1.
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1. Motivation and significance

With the increasing complexity and accuracy of numerical models, it
has become more challenging to run complex simulations and computer
codes [56, 47]. As a consequence, surrogate models have been recognized
as a key tool for engineering tasks such as design space exploration, uncer-
tainty quantification, and optimization [38]. In practice, surrogate models
are used to reduce the computational effort of these tasks by replacing ex-
pensive numerical simulations with closed-form approximations [57, Ch. 10].
To build such a model, we start by evaluating the original expensive simu-
lation at a set of points through a Design of Experiments (DoE). Then, the
corresponding evaluations are used to build the surrogate model according to
the chosen approximation, such as Kriging, quadratic interpolation, or least
squares regression.

The Surrogate Modeling Toolbox (SMT) is an open-source framework
that provides functions to efficiently build surrogate models [9]. Kriging
models (also known as Gaussian processes) that take advantage of deriva-
tive information are one of SMT’s key features [6]. Numerical experiments
have shown that SMT achieved lower prediction error and computational cost
than Scikit-learn [62] and UQLab [52] for a fixed number of points [27]. SMT
has been applied to rocket engine coaxial-injector optimization [48], aircraft
engine consumption modeling [60], numerical integration [26], multi-fidelity
sensitivity analysis [25], high-order robust finite elements methods [45, 49],
planning for photovoltaic solar energy [18], wind turbines design optimiza-
tion [39], porous material optimization for a high pressure turbine vane [79],
chemical process design [75] and many other applications.

In systems engineering, architecture-level choices significantly influence
the final system performance, and therefore, it is desirable to consider such
choices in the early design phases [14]. Architectural choices are parameter-
ized with discrete design variables; examples include the selection of tech-
nologies, materials, component connections, and number of instantiated ele-
ments. When design problems include both discrete variables and continuous
variables, they are said to have mixed variables.

When architectural choices lead to different sets of design variables, we
have hierarchical variables [37, 11]. For example, consider different aircraft
propulsion architectures [28]. A conventional gas turbine would not require
a variable to represent a choice in the electrical power source, while hybrid
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or pure electric propulsion would require such a variable. The relationship
between the choices and the sets of variables can be represented by a hierar-
chy.

Handling hierarchical and mixed variables requires specialized surrogate
modeling techniques [12]. To address these needs, SMT 2.0 is offering re-
searchers and practitioners a collection of cutting-edge tools to build surro-
gate models with continuous, mixed and hierarchical variables. The main
objective of this paper is to detail the new enhancements that have been
added in this release compared to the original SMT 0.2 release [9].

There are two new major capabilities in SMT 2.0: the ability to build
surrogate models involving mixed variables and the support for hierarchi-
cal variables within Kriging models. To handle mixed variables in Kriging
models, existing libraries such as BoTorch [3], Dakota [1], DiceKriging [70],
LVGP [84], Parmoo [15], and Spearmint [30] implement simple mixed models
by using either continuous relaxation (CR), also known as one-hot encod-
ing [30], or a Gower distance (GD) based correlation kernel [33]. KerGP [71]
(developed in R) implements more general kernels but there is no Python
open-source toolbox that implements more general kernels to deal with mixed
variables, such as the homoscedastic hypersphere (HH) [85] and exponential
homoscedastic hypersphere (EHH) [77] kernels. Such kernels require the tun-
ing of a large number of hyperparameters but lead to more accurate Kriging
surrogates than simpler mixed kernels [63, 77]. SMT 2.0 implements all these
kernels (CR, GD, HH, and EHH) through a unified framework and implemen-
tation. To handle hierarchical variables, no library in the literature can build
peculiar surrogate models except SMT 2.0, which implements two Kriging
methods for these variables. Notwithstanding, most softwares are compati-
ble with a näıve strategy called the imputation method [12] but this method
lacks depth and depends on arbitrary choices. This is why Hutter and Os-
borne [37] proposed a first kernel, called Arc-Kernel which in turn was gen-
eralized by Horn et al. [35] with a new kernel called the Wedge-Kernel [36].
None of these kernels are available in any open-source modeling software.
Furthermore, thanks to the framework introduced in Audet et al. [2], our
proposed kernels are sufficiently general so that all existing hierarchical ker-
nels are included within it. Section 4 describes the two kernels implemented
in SMT 2.0 that are referred as SMT Arc-Kernel and SMT Alg-Kernel. In
particular, Alg-Kernel is a novel hierarchical kernel introduced in this paper.
Table 1 outlines the main features of the state-of-the-art modeling software
that can handle hierarchical and mixed variables.
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Table 1: Comparison of software packages for hierarchical and mixed Kriging models. ✓=
implemented. * = user-defined.

Package BOTorch Dakota DiceKriging KerGP LVGP Parmoo Spearmint SMT 2.0

Reference [3] [1] [70] [71] [84] [15] [30] This paper
License MIT EPL GPL GPL GPL BSD GNU BSD
Language Python C R R R Python Python Python
Mixed var. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GD kernel ✓ ✓ ✓ * ✓
CR kernel ✓ ✓ ✓ ✓
HH kernel ✓ ✓
EHH kernel * ✓
Hierarchical var. ✓

SMT 2.0 introduces other enhancements, such as additional sampling pro-
cedures, new surrogate models, new Kriging kernels (and their derivatives),
Kriging variance derivatives, and an adaptive criterion for high-dimensional
problems. SMT 2.0 adds applications of Bayesian optimization (BO) with hi-
erarchical and mixed variables or noisy co-Kriging that have been successfully
applied to aircraft design [76], data fusion [21], and structural design [74].
The SMT 2.0 interface is more user-friendly and offers an improved and more
detailed documentation for users and developers 2. SMT 2.0 is hosted pub-
licly 3 and can be directly imported within Python scripts. It is released
under the New BSD License and runs on Linux, MacOS, and Windows op-
erating systems. Regression tests are run automatically for each operating
system whenever a change is committed to the repository. In short, SMT
2.0 builds on the strengths of the original SMT package while adding new
features. On one hand, the emphasis on derivatives (including prediction,
training and output derivatives) is maintained and improved in SMT 2.0.
On the other hand, this new release includes support for hierarchical and
mixed variables Kriging based models. For the sake of reproducibility, an
open-source notebook is available that gathers all the methods and results
presented on this paper 4.

The remainder of the paper is organized as follows. First, we introduce the
organization and the main implemented features of the release in Section 2.
Then, we describe the mixed-variable Kriging model with an example in
Section 3. Similarly, we describe and provide an example for a hierarchical-
variable Kriging model in Section 4. The Bayesian optimization models and
applications are described in Section 5. Finally, we describe the other relevant

2http://smt.readthedocs.io/en/latest
3https://github.com/SMTorg/smt
4https://github.com/SMTorg/smt/tree/master/tutorial/

NotebookRunTestCases_Paper_SMT_v2.ipynb
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contributions in Section 6 and conclude in Section 7.

2. SMT 2.0: an improved surrogate modeling toolbox

From a software point of view, SMT 2.0 maintains and improves the mod-
ularity and generality of the original SMT version [9]. In this section, we
describe the software as follows. Section 2.1 describes the legacy of SMT

0.2. Then, Section 2.2 describes the organization of the repository. Finally,
Section 2.3 shows the new capabilities implemented in the SMT 2.0 update.

2.1. Background on SMT former version: SMT 0.2

SMT [9] is an open-source collaborative work originally developed by
ONERA, NASA Glenn, ISAE-SUPAERO/ICA and the University of Michi-
gan. Now, both Polytechnique Montréal and the University of California San
Diego are also contributors. SMT 2.0 updates and extends the original SMT
repository capabilities among which the original publication [9] focuses on
different types of derivatives for surrogate models detailed hereafter.

A Python surrogate modeling framework with derivatives. One of the origi-
nal main motivations for SMT was derivative support. In fact, none of the
existing packages for surrogate modeling such as Scikit-learn in Python [62],
SUMO in Matlab [32] or GPML in Matlab and Octave [81] focuses on deriva-
tives. Three types of derivatives are distinguished: prediction derivatives,
training derivatives, and output derivatives. SMT also includes new mod-
els with derivatives such as Kriging with Partial Least Squares (KPLS) [8]
and Regularized Minimal-energy Tensor-product Spline (RMTS) [38]. These
developed derivatives were even used in a novel algorithm called Gradient-
Enhanced Kriging with Partial Least Squares (GEKPLS) [6] to use with
adjoint methods, for example [10].

Software architecture, documentation, and automatic testing. SMT is orga-
nized along three main sub-modules that implement a set of sampling tech-
niques (sampling methods), benchmarking functions (problems), and sur-
rogate modeling techniques (surrogate models). The toolbox documenta-
tion 5 is created using reStructuredText and Sphinx, a documentation gen-
eration package for Python, with custom extensions. Code snippets in the
documentation pages are taken directly from actual tests in the source code
and are automatically updated. The output from these code snippets and
tables of options are generated dynamically by custom Sphinx extensions.

5https://smt.readthedocs.org
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This leads to high-quality documentation with minimal effort. Along with
user documentation, developer documentation is also provided to explain
how to contribute to SMT. This includes a list of API methods for the Sur-
rogateModel, SamplingMethod, and Problem classes, that must be im-
plemented to create a new surrogate modeling method, sampling technique,
or benchmarking problem. When a developer submits a pull request, it is
merged only after passing the automated tests and receiving approval from
at least one reviewer. The repository on GitHub 6 is linked to continuous
integration tests (GitHub Actions) for Windows, Linux and MacOS, to a cov-
erage test on coveralls.io and to a dependency version check for Python with
DependaBot. Various parts of the source code have been accelerated using
Numba [50], an LLVM-based just-in-time (JIT) compiler for numpy-heavy
Python code. Numba is applied to conventional Python code using function
decorators, thereby minimizing its impact on the development process and
not requiring an additional build step. For a mixed Kriging surrogate with
150 training points, a speedup of up to 80% is observed, see Table 2. The
JIT compilation step only needs to be done once when installing or upgrad-
ing SMT and adds an overhead of approximately 24 seconds on a typical
workstation. In this paper, all results are obtained using an Intel® Xeon®
CPU E5-2650 v4 @ 2.20 GHz core and 128 GB of memory with a Broadwell-
generation processor front-end and a compute node of a peak power of 844
GFlops.

Table 2: Impact of using Numba on training time of the hierarchical Goldstein problem.
Speedup is calculated excluding the JIT compilation table, as this step is only needed once
after SMT installation.

Training set Without Numba Numba Speedup JIT overhead
15 points 1.3 s 1.1 s 15% 24 s
150 points 38 s 7.4 s 80% 23 s

2.2. Organization of SMT 2.0

The main features of the open-source repository SMT 2.0 are described
in Figure 1. More precisely, Sampling Methods, Problems and Surrogate

models are kept from SMT 0.2 and two new sections Models applications

and Interactive notebooks have been added to the architecture of the
code. These sections are highlighted in blue and detailed on Figure 1.

6https://github.com/SMTorg/smt
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The new major features implemented in SMT 2.0 are highlighted in laven-
der whereas the legacy features that were already in present in the original
publication for SMT 0.2 [9] are in black.

SMT 2.0

Sampling methods

Random
Full Factorial
Latin Hypercube Sampling (Nested LHS and Extended LHS)

Problems
Aircraft wing weight
Robot arm position
Water flow through a borehole
Low frequency torsion vibration
Welded beam shear stress
Mixed integer cantilever beam
Hierarchical neural network

Surrogate modeling methods

RBF: Radial Basis Functions
IDW: Inverse-Distance Weighting
RMTS: Regularized Minimal-energy Tensor-product Splines
LS: Least-Squares approximation
QP: Quadratic Polynomial approximation

Kriging based models

Continuous kernels
Hierarchical kernels
Categorical kernels

GENN: Gradient-Enhanced Neural Network
MGP: Marginal Gaussian Process

Applications

Mixture of experts (MOE)
Variable-fidelity modeling (VFM)
Multi-fidelity Kriging (MFK)
Multi-fidelity KPLS (MFKPLS)
Multi-fidelity KPLSK (MFKPLSK)
Efficient Global Optimization (EGO)
Mixed-Integer and hierarchical usage surrogates

Interactive notebooks
SMT tutorial for surrogate modeling
Noisy Gaussian process (Kriging)
Multi-fidelity Gaussian process (with or without noise)
Gaussian process trajectory Sampling
Bayesian optimization to solve unconstrained problems
Mixed & hierarchical Kriging and optimization
SMT 2.0 Advancements and hierarchical variables

Figure 1: Functionalities of SMT 2.0. The new major features implemented in SMT 2.0

compared to SMT 0.2 are highlighted with the lavender color.
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2.3. New features within SMT 2.0

The main objective of this new release is to enable Kriging surrogate
models for use with both hierarchical and mixed variables. Moreover, for
each of these five sub-modules described in Section 2.2, several improvements
have been made between the original version and the SMT 2.0 release.

Hierarchical and mixed design space. A new design space definition class
DesignSpace has been added that implements hierarchical and mixed func-
tionalities. Design variables can either be continuous (FloatVariable), or-
dered (OrdinalVariable) or categorical (CategoricalVariable). The integer
type (IntegerVariable) represents a special case of the ordered variable, speci-
fied by bounds (inclusive) rather than a list of possible values. The hierarchi-
cal structure of the design space can be defined using declare decreed var: this
function declares that a variable is a decreed variable that is activated when
the associated meta variable takes one of a set of specified values, see Sec-
tion 4 for background. The DesignSpace class also implements mechanisms
for sampling valid design vectors (i.e. design vectors that adhere to the hier-
archical structure of the design space) using any of the below-mentioned sam-
plers, for correcting and imputing design vectors, and for requesting which
design variables are acting in a given design vector. Correction ensures that
variables have valid values (e.g. integers for discrete variables) [12], and
imputation replaces non-acting variables by some default value (0 for dis-
crete variables, mid-way between the bounds for continuous variables in SMT

2.0) [83].

Sampling. SMT implements three methods for sampling. The first one is a
näıve approach, called Random that draws uniformly points along every di-
mension. The second sampling method is called Full Factorial and draws
a point for every cross combination of variables, to have an “exhaustive”
design of experiments. The last one is the Latin Hypercube Sampling

(LHS) [41] that draws a point in every Latin square parameterized by a
certain criterion. For LHS, a new criterion to manage the randomness has
been implemented and the sampling method was adapted for multi-fidelity
and mixed or hierarchical variables. More details about the new sampling
techniques are given in Section 6.1.

Problems. SMT implements two new engineering problems: a mixed variant
of a cantilever beam described in Section 3 and a hierarchical neural network
described in Section 4.
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Surrogate models. In order to keep up with state-of-art, several releases done
from the original version developed new options for the already existing sur-
rogates. In particular, compared to the original publication [9], SMT 2.0 adds
gradient-enhanced neural networks [10] and marginal Gaussian process [29]
models to the list of available surrogates. More details about the new models
are given in Section 6.2.

Applications. Several applications have been added to the toolbox to demon-
strate the surrogate models capabilities. The most relevant application is effi-
cient global optimization (EGO), a Bayesian optimization algorithm [42, 51].
EGO optimizes expensive-to-evaluate black-box problems with a chosen sur-
rogate model and a chosen optimization criterion [43]. The usage of EGO
with hierarchical and mixed variables is described in Section 5.

Interactive notebooks. These tutorials introduce and explain how to use the
toolbox for different surrogate models and applications 7. Every tutorial is
available both as a .ipynb file and directly on Google colab 8. In particular, a
hierarchical and mixed variables dedicated notebook is available to reproduce
the results presented on this paper 9.

In the following, Section 3 details the Kriging based surrogate models
for mixed variables, and Section 4 presents our new Kriging surrogate for
hierarchical variables. Section 5 details the EGO application and the other
new relevant features aforementioned are described succinctly in Section 6.

3. Surrogate models with mixed variables in SMT 2.0

As mentioned in Section 1, design variables can be either of continuous
or discrete type, and a problem with both types is a mixed-variable problem.
Discrete variables can be ordinal or categorical. A discrete variable is ordinal
if there is an order relation within the set of possible values. An example of
an ordinal design variable is the number of engines in an aircraft. A possible
set of values in this case could be 2, 4, 8. A discrete variable is categorical if
no order relation is known between the possible choices the variable can take.
One example of a categorical variable is the color of a surface. A possible
example of a set of choices could be blue, red, green. The possible choices are
called the levels of the variable.

7https://github.com/SMTorg/smt/tree/master/tutorial
8https://colab.research.google.com/github/SMTorg/smt/
9https://github.com/SMTorg/smt/tree/master/tutorial/

NotebookRunTestCases_Paper_SMT_v2.ipynb

9

 https://github.com/SMTorg/smt/tree/master/tutorial
https://colab.research.google.com/github/SMTorg/smt/ 
https://github.com/SMTorg/smt/tree/master/tutorial/NotebookRunTestCases_Paper_SMT_v2.ipynb
https://github.com/SMTorg/smt/tree/master/tutorial/NotebookRunTestCases_Paper_SMT_v2.ipynb


Several methods have been proposed to address the recent increase inter-
est in mixed Kriging based models [63, 85, 24, 71, 30, 33, 23, 76]. The
main difference from a continuous Kriging model is in the estimation of
the categorical correlation matrix, which is critical to determine the mean
and variance predictions. As mentioned in Section 1, approaches such as
CR [30, 76], continuous latent variables [23], and GD [33] use a kernel-based
method to estimate the correlation matrix. Other methods estimate the
correlation matrix by modeling the correlation entries directly [63, 24, 71],
such as HH [85] and EHH [77]. The HH correlation kernel is of particular
interest because it generalizes simpler kernels such as CR and GD [77]. In
SMT 2.0, the correlation kernel is an option that can be set to either CR
(CONT RELAX KERNEL), GD ( GOWER KERNEL), HH (HOMO HSPHERE KERNEL) or
EHH (EXP HOMO HSPHERE KERNEL).

3.1. Mixed Gaussian processes

The continuous and ordinal variables are both treated similarly in SMT

2.0 with a continuous kernel, where the ordinal values are converted to con-
tinuous through relaxation. For categorical variables, four models (GD, CR,
EHH and HH) can be used in SMT 2.0 if specified by the API. This is why
we developed a unified mathematical formulation that allows a unique im-
plementation for any model.

Denote l the number of categorical variables. For a given i ∈ {1, . . . , l},
the ith categorical variable is denoted ci and its number of levels is denoted
Li. The hyperparameter matrix peculiar to this variable ci is

Θi =


[Θi]1,1 9 Sym.9
[Θi]1,2 [Θi]2,2 9

...
. . . . . . 9

[Θi]1,Li
. . . [Θi]Li−1,Li

[Θi]Li,Li

 ,
and the categorical parameters are defined as θcat = {Θ1, . . . ,Θl}. For two
given inputs in the DoE, for example, the rth and sth points, let cri and c

s
i be

the associated categorical variables taking respectively the ℓir and the ℓis level
on the categorical variable ci. The categorical correlation kernel is defined
by

kcat(cr, cs, θcat) =
l∏

i=1

κ([Φ(Θi)]ℓri ,ℓsi ) κ([Φ(Θi)]ℓsi ,ℓri ) κ([Φ(Θi)]ℓri ,ℓri ) κ([Φ(Θi)]ℓsi ,ℓsi )

(1)

where κ is either a positive definite kernel or identity and Φ(.) is a symmetric
positive definite (SPD) function such that the matrix Φ(Θi) is SPD if Θi is
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SPD. For an exponential kernel, Table 3 gives the parameterizations of Φ
and κ that correspond to GD, CR, HH, and EHH kernels. The complexity
of these different kernels depends on the number of hyperparameters that
characterizes them. As defined by Saves et al. [77], for every categorical
variable i ∈ {1, . . . , l}, the matrix C(Θi) ∈ RLi×Li is lower triangular and
built using a hypersphere decomposition [69, 68] from the symmetric matrix
Θi ∈ RLi×Li of hyperparameters. The variable ϵ is a small positive constant
and the variable θi denotes the only positive hyperparameter that is used for
the Gower distance kernel.

Table 3: Categorical kernels implemented in SMT 2.0.

Name κ(ϕ) Φ(Θi) # of hyperparam.

SMT GD exp(−ϕ) [Φ(Θi)]j,j :=
1

2
θi ; [Φ(Θi)]j ̸=j′ := 0 1

SMT CR exp(−ϕ) [Φ(Θi)]j,j := [Θi]j,j ; [Φ(Θi)]j ̸=j′ := 0 Li

SMT EHH exp(−ϕ) [Φ(Θi)]j,j := 0 ; [Φ(Θi)]j ̸=j′ :=
log ϵ

2
([C(Θi)C(Θi)

⊤]j,j′ − 1) 1
2
(Li)(Li − 1)

SMT HH ϕ [Φ(Θi)]j,j := 1 ; [Φ(Θi)]j ̸=j′ := [C(Θi)C(Θi)
⊤]j,j′

1
2
(Li)(Li − 1)

Another Kriging based model that can use mixed variables is Kriging
with partial least squares (KPLS) [7]. KPLS adapts Kriging to high dimen-
sional problems by using a reduced number of hyperparameters thanks to a
projection into a smaller space. Also, for a general surrogate, not necessar-
ily Kriging, SMT 2.0 uses continuous relaxation to allow whatever model to
handle mixed variables. For example, we can use mixed variables with least
squares (LS) or quadratic polynomial (QP) models. We now illustrate the
abilities of the toolbox in terms of mixed modeling over an engineering test
case.

3.2. An engineering design test-case

A classic engineering problem commonly used for model validation is the
beam bending problem [71, 19]. This problem is illustrated on Figure 2a and
consists of a cantilever beam in its linear range loaded at its free end with
a force F . As in Cheng et al. [19], the Young modulus is E = 200GPa and
the chosen load is F = 50kN. Also, as in Roustant et al. [71], 12 possible
cross-sections can be used. These 12 sections consist of 4 possible shapes
that can be either hollow, thick or full as illustrated in Figure 2b.

To compare the mixed Kriging models of SMT 2.0, we draw a 98 point
LHS as training set and the validation set is a grid of 12× 30× 30 = 10800
points. For the four implemented methods, displacement error (computed
with a root-mean-square error criterion), likelihood, number of hyperparam-
eters and computational time for every model are shown in Table 4. For the

11



F = 50kN

δ

L

(a) Bending problem. (b) Possible cross-section shapes.

Figure 2: Cantilever beam problem [77, Figure 6].

continuous variables, we use the square exponential kernel. More details are
found in [77]. As expected, the complex EHH and HH models lead to a lower
displacement error and a higher likelihood value, but use more hyperparam-
eters and increase the computational cost compared to GD and CR. On this
test case, the kernel EHH is easier to optimize than HH but in general, they
are similar in terms of performance. Also, by default SMT 2.0 uses CR as it
is known to be a good trade-off between complexity and performance [46].

Table 4: Results of the cantilever beam models [77, Table 4].

Categorical kernel Displacement error (cm) Likelihood # of hyperparam.
SMT GD 1.3861 111.13 3
SMT CR 1.1671 155.32 14
SMT EHH 0.1613 236.25 68
SMT HH 0.2033 235.66 68

4. Surrogate models with hierarchical variables in SMT 2.0

To introduce the newly developed Kriging model for hierarchical variables
implemented in SMT 2.0, we present the general mathematical framework for
hierarchical and mixed variables established by Audet et al. [2]. In SMT 2.0,
two variants of our new method are implemented, namely SMT Alg-Kernel

and SMT Arc-Kernel. In particular, the SMT Alg-Kernel is a novel correla-
tion kernel introduced in this paper.

4.1. The hierarchical variables framework

A problem structure is classified as hierarchical when the sets of active
variables depend on architectural choices. This occurs frequently in indus-
trial design problems. In hierarchical problems, we can classify variables as
neutral, meta (also known as dimensional) or decreed (also known as con-
ditionally active) as detailed in Audet et al. [2]. Neutral variables are the
variables that are not affected by the hierarchy whereas the value assigned to
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Figure 3: Variables classification as used in SMT 2.0.

meta variables determines which decreed variables are activated. For exam-
ple, a meta variable could be the number of engines. If the number of engines
changes, the number of decreed bypass ratios that every engine should specify
also changes. However, the wing aspect ratio being neutral, it is not affected
by this hierarchy.

Problems involving hierarchical variables are generally dependant on dis-
crete architectures and as such involve mixed variables. Hence, in addition
to their role (neutral, meta or decreed), each variable also has a variable
type amongst categorical, ordinal or continuous. For the sake of simplicity
and because both continuous and ordinal variables are treated similarly [77],
we chose to regroup them as quantitative variables. For instance, the neu-
tral variables xneu may be partitioned into different variable types, such that
xneu = (xcatneu, x

qnt
neu) where xcatneu represents the categorical variables and xqntneu

are the quantitative ones. The variable classification scheme in SMT 2.0 is
detailed in Figure 3.

To explain the framework and the new Kriging model, we illustrate the
inputs variables of the model using a classical machine learning problem
related to the hyperparameters optimization of a fully-connected Multi-Layer
Perceptron (MLP) [2] on Figure 4. In Table 5, we detail the input variables
of the model related to the MLP problem (i.e., the hyperparameters of the
neural network, together with their types and roles). To keep things clear
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and concise, the chosen problem is a simplification of the original problem
developed by Audet et al. [2]. Regarding the MLP problem of Figure 4 and
following the classification scheme of Figure 3, we start by separating the
input variables according to their role. In fact,

1. changing the number of hidden layers modifies the number of inputs
variables. Therefore, “# of hidden layers” is a meta variable.

2. The number of neurons in the hidden layer number k is either included
or excluded. For example, the “# of neurons in the 3rd layer” would
be excluded for an input that only has 2 hidden layers. Therefore, “#
of neurons hidden layer k” are decreed variables.

3. The “Learning rate”, “Momentum”, “Activation function” and “Batch
size” are not affected by the hierarchy choice. Therefore, they are
neutral variables.

According to their types, the MLP input variables can be classified as follows:

4. The meta variable “# of hidden layers” is an integer and, as such, is
represented by the component xqntmet.

5. The decreed variables “# of neurons hidden layer k” are integers and,
as such, are represented by the component xqntdec.

6. The “Learning rate”, “Momentum”, “Activation function” and “Batch
size” are, respectively, continuous, for the first two (every value between
two bounds), categorical (qualitative between three choices) and integer
(quantitative between 6 choices). Therefore, the “Activation function”
and the “Momentum” are represented by the component xcatneu. The
“Learning rate” and the “Batch size” are represented by the component
xqntneu.

Table 5: A detailed description of the variables in the MLP problem.

MLP Hyperparameters Variable Domain Type Role

Learning rate r [10−5, 10−2] FLOAT NEUTRAL
Momentum α [0, 1] FLOAT NEUTRAL
Activation function a {ReLU, Sigmoid, Tanh} ENUM NEUTRAL
Batch size b {8, 16, . . . , 128, 256} ORD NEUTRAL
# of hidden layers l {1, 2, 3} ORD META
# of neurons hidden layer k nk {50, 51, . . . , 55} ORD DECREED
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Figure 4: The Multi-Layer Perceptron (MLP) problem (figure adapted from [2, Figure 1]).

To model hierarchical variables, as proposed in [2], we separate the input

space X as (Xneu,Xmet,Xdec) where Xdec =
⋃

xmet∈Xmet

Xinc(xmet). Hence, for a

given point x ∈ X , one has x = (xneu, xmet, xinc(xmet)), where xneu ∈ Xneu,
xmet ∈ Xmet and xinc(umet) ∈ Xinc(umet) are defined as follows:

• The components xneu ∈ Xneu gather all neutral variables that are
not impacted by the meta variables but needed. For example, in
the MLP problem, Xneu gathers the possible learning rates, momen-
tum, activation functions and batch sizes. Namely, from Table 5,
Xneu = [10−5, 10−2]× [0, 1]× {ReLu, Sigmoid,Tanh}×{8, 16, . . . , 256}.

• The components xmet gather the meta (also known as dimensional) vari-
ables that determine the inclusion or exclusion of other variables. For
example, in the MLP problem, Xmet represents the possible numbers of
layers in the MLP. Namely, from Table 5, Xmet = {1, 2, 3}.

• The components xinc(xmet), contain the decreed variables whose inclu-
sion (decreed-included) or exclusion (decreed-excluded) is determined
by the values of the meta components xmet. For example, in the MLP
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problem, Xdec represents the number of neurons in the decreed layers.
Namely, from Table 5, Xinc(xmet = 3) = [50, 55]3, Xinc(xmet = 2) =
[50, 55]2 and Xinc(xmet = 1) = [50, 55].

4.2. A Kriging model for hierarchical variables

In this section, a new method to build a Kriging model with hierarchi-
cal variables is introduced based on the framework aforementioned. The
proposed methods are included in SMT 2.0.

4.2.1. Motivation and state-of-the-art

Assuming that the decreed variables are quantitative, Hutter and Os-
borne [37] proposed several kernels for the hierarchical context. A classic
approach, called the imputation method (Imp-Kernel) leads to an efficient
paradigm in practice that can be easily integrated into a more general frame-
work as proposed by Bussemaker et al. [12]. However, this kernel lacks depth
and depends on arbitrary choices. Therefore, Hutter and Osborne [37] also
proposed a more general kernel, called Arc-Kernel and Horn et al. [35] gen-
eralized this kernel even more and proposed a new formulation called the
Wedge-Kernel [36]. The drawbacks of these two methods are that they
add some extra hyperparameters for every decreed dimension (respectively
one extra hyperparameter for the Arc-Kernel and two hyperparameters for
the Wedge-Kernel) and that they need a normalization according to the
bounds. More recently, Pelamatti et al. [64] developed a hierarchical kernel
for Bayesian optimization. However, our work is also more general thanks to
the framework introduced earlier [2] that considers variable-wise formulation
and is more flexible as we are allowing sub-problems to be intersecting.

In the following, we describe our new method to build a correlation kernel
for hierarchical variables. In particular, we introduce a new algebraic kernel
called Alg-Kernel that behaves like the Arc-Kernel whilst correcting most
of its drawbacks. In particular, our kernel does not add any hyperparameters,
and the normalization is handled in a natural way.

4.2.2. A new hierarchical correlation kernel

For modeling purposes, we assume that the decreed space is quanti-
tative, i.e., Xdec = X qnt

dec . Let u ∈ X be an input point partitioned as
u = (uneu, umet, uinc(umet)) and, similarly, v ∈ X is another input such that
v = (vneu, vmet, vinc(vmet)). The new kernel k that we propose for hierarchical
variables is given by

k(u, v) = kneu(uneu, vneu)× kmet(umet, vmet)

× kmet,dec([umet, uinc(umet)], [vmet, vinc(vmet)]), (2)
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where kneu, kmet and kmet,dec are as follows:

• kneu represents the neutral kernel that encompasses both categorical
and quantitative neutral variables, i.e., kneu can be decomposed into
two parts kneu(uneu, vneu) = kcat(ucatneu, v

cat
neu)k

qnt(uqntneu, v
qnt
neu). The categor-

ical kernel, denoted kcat, could be any Symmetric Positive Definite
(SPD) [77] mixed kernel (see Section 3). For the quantitative (integer
or continuous) variables, a distance-based kernel is used. The cho-
sen quantitative kernel (Exponential, Matérn,...), always depends on a
given distance d. For example, the n-dimensional exponential kernel
gives

kqnt(uqnt, vqnt) =
n∏

i=1

exp(−d(uqnti , vqnti )). (3)

• kmet is the meta variables related kernel. It is also separated into two
parts: kmet(umet, vmet) = kcat(ucatmet, v

cat
met)k

qnt(uqntmet, v
qnt
met) where the quan-

titative kernel is ordered and not continuous because meta variables
take value in a finite set.

• kmet,dec is an SPD kernel that models the correlations between the meta
levels (all the possible subspaces) and the decreed variables. In what
comes next, we detailed this kernel.

4.2.3. Towards an algebraic meta-decreed kernel

Meta-decreed kernels like the imputation kernel or the Arc-Kernel were
first proposed in [83, 37] and the distance-based kernels such as Arc-Kernel
or Wedge-Kernel [36] were proven to be SPD. Nevertheless, to guarantee this
SPD property, the same hyperparameters are used to model the correlations
between the meta levels and between the decreed variables [83]. For this rea-
son, the Arc-Kernel includes additional continuous hyperparameters which
makes the training of the GP models more expensive and introduces more
numerical stability issues. In this context, we are proposing a new algebraic
meta-decreed kernel (denoted as Alg-Kernel) that enjoys similar properties
as Arc-Kernel but without using additional continuous hyperparameters nor
rescaling. In the SMT 2.0 release, we included Alg-Kernel and a simpler ver-
sion of Arc-Kernel that do not relies on additional hyperparameters.

Our proposed Alg-Kernel kernel is given by

kalgmet,dec([umet, uinc(umet)], [vmet, vinc(vmet)])

= kalgmet(umet, vmet)× kalgdec(uinc(umet), vinc(vmet)).
(4)
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Mathematically, we could consider that there is only one meta variable whose
levels correspond to every possible included subspace. Let Isub denotes the
components indices of possible subspaces, the subspaces parameterized by
the meta component umet are defined as Xinc(umet = l), l ∈ Isub. It fol-
lows that the fully extended continuous decreed space writes as Xdec =⋃

l∈Isub Xinc(umet = l) and Idec is the set of the associated indices. Let I interu,v

denotes the set of components related to the space Xinc(umet, vmet) containing
the variables decreed-included in both Xinc(umet) and Xinc(vmet).

Since the decreed variables are quantitative, one has

kalgdec(uinc(umet), vinc(vmet)) = kqnt(uinc(umet), vinc(vmet))

=
∏

i∈Iinter
u,v

kqnt([(uinc(umet)]i, [vinc(vmet)]i) (5)

The construction of the quantitative kernel kqnt depends on a given distance
denoted dalg. The kernel kalgmet is an induced meta kernel that depends on
the same distance dalg to preserve the SPD property of kalgmet,dec. For every

i ∈ Idec, if i ∈ I interu,v , the new algebraic distance is given by

dalg([uinc(umet)]i, [vinc(vmet)]i) =

 2|[uinc(umet)]i − [vinc(vmet)]i|√
[uinc(umet)]i

2 + 1
√

[vinc(vmet)]i
2 + 1

 θi,

(6)
where θi ∈ R+ is a continuous hyperparameter. Otherwise, if i ∈ Idec but i /∈
I interu,v , there should be a non-zero residual distance between the two different
subspaces Xinc(umet) and Xinc(vmet) to ensure the kernel SPD property. To
have a residual not depending on the decreed values, our model considers
that there is a unit distance

dalg([uinc(umet)]i, [vinc(vmet)]i) = 1.0 θi, ∀i ∈ Idec \ I interu,v .

The induced meta kernel kalgmet(umet, vmet) to preserve the SPD property of
kalg is defined as:

kalgmet(umet, vmet) =
∏

i∈Imet

kqnt(1.0 θi). (7)

Not only our kernel of Eq. (2) uses less hyperparameters than the Arc-Kernel
(as we cut off its extra parameters) but it is also a more flexible kernel as
it allows different kernels for meta and decreed variables. Moreover, another
advantage of our kernel is that it is numerically more stable thanks to the
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new non-stationary [34] algebraic distance defined in Eq. (7) [80]. Our pro-
posed distance also does not need any rescaling by the bounds to have values
between 0 and 1.

In what comes next, we will refer to the implementation of the kernels
Arc-Kernel and Alg-Kernel by SMT Arc-Kernel and SMT Alg-Kernel. We
note also that the implementation of SMT Arc-Kernel differs slightly from
the original Arc-Kernel as we fixed some hyperparameters to 1 in order to
avoid adding extra hyperparameters and use the formulation of Eq. (2) and
rescaling of the data.

4.2.4. Illustration on the MLP problem

In this section, we illustrate the hierarchical Arc-Kernel on the MLP ex-
ample. For that sake, we consider two design variables u and v such that u =
(2.10−4, 0.9,ReLU, 16, 2, 55, 51) and v = (5.10−3, 0.8, Sigmoid, 64, 3, 50, 54, 53).
Since the value of umet (i.e., the number of hidden layers) differs from one
point to another (namely, 2 for u and 3 for v), the associated variables
uinc(umet) have either 2 or 3 variables for the number of neurons in each
layer (namely 55 and 51 for u, and 50, 54 and 53 for the point v). In our
case, 8 hyperparameters ([R1]1,2, θ1, . . . , θ7) will have to be optimized where
k is given by Eq. (2). These 7 hyperparameters can be described using our
proposed framework as follows:

• For the neutral components, we have uneu = (2.10−4, 0.9,ReLU, 16) and
vneu = (5.10−3, 0.8, Sigmoid, 64). Therefore, for a categorical matrix
kernel R1 and a square exponential quantitative kernel,

kneu(uneu, vneu) = kcat(ucatneu, v
cat
neu)k

qnt(uqntneu, v
qnt
neu)

= [R1]1,2 exp [−θ1(2.10−4 − 5.10−3)2]

exp [−θ2(0.9− 0.8)2] exp [−θ3(16− 64)2].

The values [R1]1,2, θ1, θ2 and θ3 need to be optimized. Here, [R1]1,2 is
the correlation between “ReLU” and “Sigmoid”.

• For the meta components, we have umet = 2 and vmet = 3. Therefore,
for a square exponential quantitative kernel,

kmet(umet, vmet) = kcat(ucatmet, v
cat
met)k

qnt(uqntmet, v
qnt
met)

= exp [−θ4(3− 2)2].

The value θ4 needs to be optimized.
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• For the meta-decreed kernel, we have [umet, uinc(umet)] = [2, (55, 51)]
and [vmet, vinc(vmet)] = [3, (50, 54, 53)] which gives

kalgmet,dec([umet, uinc(umet)], [vmet, vinc(vmet)])

= kalgmet(2, 3) k
alg
dec((55, 51), (50, 54, 53)).

The distance dalg(51, 54) =
(

2×|51−54|√
512+1

√
542+1

)
θ6 = 2.178.10−3 θ6. In gen-

eral, for surrogate models, and in particular in SMT 2.0, the input data
are normalized. With a unit normalization from [50, 55] to [0, 1], we

would have dalg(0.2, 0.8) =
(

2×0.6√
0.22+1

√
0.62+1

)
θ6 = 0.919 θ6. Similarly,

we have, between 55 and 50, dalg(0, 1) = 1.414 θ5. Hence, for a square
exponential quantitative kernel, one gets

kalgmet,dec([umet, uinc(umet)], [vmet, vinc(vmet)])

= exp [−θ7]× exp [−1.414 θ5]× exp [−0.919 θ6],

where the meta induced component is kalgmet(umet, vmet) = exp [−θ7] be-
cause the decreed value 53 in v has nothing to be compared with in
u as in Eq. (7). The values θ5, θ6 and θ7 need to be optimized which
complete the description of the hyperparameters.

We note that for the MLP problem, Alg-Kernel models use 10 hyper-
parameters whereas the Arc-Kernel would require 12 hyperparameters
without the meta kernel (θ4) but with 3 extra decreed hyperparame-
ters and the Wedge-Kernel would require 15 hyperparameters. For
deep learning applications, a more complex perceptron with up to 10
hidden layers would require 17 hyperparameters with SMT 2.0 models
against 26 for Arc-Kernel and 36 for Wedge-Kernel. The next section
illustrates the interest of our method to build a surrogate model for
this neural network engineering problem.

4.3. A neural network test-case using SMT 2.0

In this section, we apply our models to the hyperparameters optimization
of a MLP problem aforementioned of Figure 4. Within SMT 2.0 an example
illustrates this MLP problem. For the sake of showing the Kriging surrogate
abilities, we implemented a dummy function with no significance to replace
the real black-box that would require training a whole Neural Network (NN)
with big data. This function requires a number of variables that depends on
the value of the meta variable, i.e the number of hidden layers. To simplify,
we have chosen only 1, 2 or 3 hidden layers and therefore, we have 3 decreed
variables but deep neural networks could also be investigated as our model
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can tackle a few dozen variables. A test case (test hierarchical variables NN )
shows that our model SMT Alg-Kernel interpolates the data properly, checks
that the data dimension is correct and also asserts that the inactive decreed
variables have no influence over the prediction. In Figure 5 we illustrate the
usage of Kriging surrogates with hierarchical and mixed variables based on
the implementation of SMT 2.0 for test hierarchical variables NN.

To compare the hierarchical models of SMT 2.0 (SMT Alg-Kernel and
SMT Arc-Kernel) with the state-of-the-art imputation method previously
used on industrial application (Imp-Kernel) [12], we draw a 99 point LHS
(33 points by meta level) as a training set and the validation set is a LHS of
3×1000 = 3000 points. For the Imp-Kernel, the decreed-excluded values are
replaced by 52 because the mean value 52.5 is not an integer (by default, SMT
rounds to the floor value). For the three methods, the precision (computed
with a root-mean-square error RMSE criterion), the likelihood and the com-
putational time are shown in Table 6. For this problem, we can see that SMT
Alg-kernel gives better performance than the imputation method or SMT

Arc-kernel. Also, as all methods use the same number of hyperparameters,
they have similar time performances. A direct application of our model-
ing method is Bayesian optimization to perform quickly the hyperparameter
optimization of a neural network [20].

Table 6: Results on the neural network model.

Hierarchical method Prediction error (RMSE) Likelihood # of hyperparam.

SMT Alg-kernel 3.7610 176.11 10
SMT Arc-kernel 4.9208 162.01 10
Imp-Kernel 4.5455 170.64 10

5. Bayesian optimization within SMT 2.0

Efficient global optimization (EGO) is a sequential Bayesian optimization
algorithm designed to find the optimum of a black-box function that may be
expensive to evaluate [43]. EGO starts by fitting a Kriging model to an ini-
tial DoE, and then uses an acquisition function to select the next point to
evaluate. The most used acquisition function is the expected improvement.
Once a new point has been evaluated, the Kriging model is updated. Succes-
sive updates increase the model accuracy over iterations. This enrichment
process repeats until a stopping criterion is met.

Because SMT 2.0 implements Kriging models that handle mixed and hi-
erarchical variables, we can use EGO to solve problems involving such design
variables. Other Bayesian optimization algorithms often adopt approaches
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from smt.sampling_methods import LHS

from smt.surrogate_models import KRG ,MixIntKernelType ,\

MixHrcKernelType ,DesignSpace ,FloatVariable ,\

IntegerVariable ,OrdinalVariable ,CategoricalVariable

from smt.applications.mixed_integer import \

MixedIntegerSamplingMethod ,MixedIntegerKrigingModel

import f1_NN , f2_NN ,f3_NN #dummy example

def test_hierarchical_variables_NN(self):

def dummy_f(x):

if x[0] == 1:

y=(f1_NN(x[1],x[2],x[3] ,2**x[4],x[5]))

elif x[0] == 2:

y=(f2_NN(x[1],x[2],x[3] ,2**x[4],x[5],x[6]))

elif x[0] == 3:

y=(f3_NN(x[1],x[2],x[3] ,2**x[4],x[5],x[6],x[7]))

return y

# Define the mixed hierarchical design space

ds = DesignSpace ([

IntegerVariable (1, 3), FloatVariable (1e-5, 1e-2),

FloatVariable (0, 1),

CategoricalVariable (["ReLU", "Sigmoid","Tanh"]),

IntegerVariable (3, 8), IntegerVariable (50, 55),

IntegerVariable (50, 55), IntegerVariable (50, 55),

])

# activate x5 when x0 in [2, 3]; x6 when x0 == 3

ds.declare_decreed_var(

decreed_var =6, meta_var=0, meta_value =[2, 3])

ds.declare_decreed_var (7, meta_var=0, meta_value =3)

#Perform the mixed integer sampling

sampling = MixedIntegerSamplingMethod(

LHS , ds , criterion="ese", random_state =42)

Xt = sampling (100)

Yt = dummy_f(Xt)

#Build the surrogate

sm = MixedIntegerKrigingModel(

surrogate=KRG(design_space=ds, corr="abs_exp",

categorical_kernel=MixIntKernelType.HOMO_HSPHERE ,

hierarchical_kernel=MixHrcKernelType.ALG_KERNEL)

sm.set_training_values(Xt , Yt)

sm.train()

# Check prediction accuracy

y_s = sm.predict_values(Xt)

pred_RMSE = np.linalg.norm(y_s - Yt) / len(Yt)

y_sv = sm.predict_variances(Xt)

var_RMSE = np.linalg.norm(y_sv) / len(Yt)

assert pred_RMSE < 1e-7

assert var_RMSE < 1e-7

Figure 5: Example of usage of Hierarchical and Mixed Kriging surrogate.
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based on solving subproblems with continuous or non-hierarchical Kriging.
This subproblem approach is less efficient and scales poorly, but it can only
solve simple problems. Several Bayesian optimization software packages can
handle mixed or hierarchical variables with such a subproblem approach. The
packages include BoTorch [3], SMAC [54], Trieste [65], HEBO [22], Open-
Box [40], and Dragonfly [44].

5.1. A mixed optimization problem

Figure 6 compares the four EGO methods implemented in SMT 2.0:
SMT GD, SMT CR, SMT EHH and SMT HH. The mixed test case that illustrates
Bayesian optimization is a toy test case [86] detailed in Appendix A. This
test case has two variables, one continuous and one categorical with 10 lev-
els. To assess the performance of our algorithm, we performed 20 runs with
different initial DoE sampled by LHS. Every DoE consists of 5 points and
we chose a budget of 55 infill points. Figure 6a plots the convergence curves
for the four methods. In particular, the median is the solid line, and the
first and third quantiles are plotted in dotted lines. To visualize better the
data dispersion, the boxplots of the 20 best solutions after 20 evaluations
are plotted in Figure 6b. As expected, the more a method is complex, the
better the optimization. Both SMT HH and SMT EHH converged in around 18
evaluations whereas SMT CR and SMT GD take around 26 iterations as shown
on Figure 6a. Also, the more complex the model, the closer the optimum is
to the real value as shown on Figure 6b.

(a) Convergence curves: medians of 20 runs. (b) Boxplots after 20 evaluations.

Figure 6: Optimization results for the Toy function [86].

In Figure 7 we illustrate how to use EGO with mixed variables based on
the implementation of SMT 2.0. The illustrated problem is a mixed variant
of the Branin function [73].
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#Import the Mixed Integer API

from smt.surrogate_models import KRG ,MixIntKernelType ,\

DesignSpace ,FloatVariable ,IntegerVariable

from smt.applications.mixed_integer import \

MixedIntegerSamplingMethod as misamp

#Define the function

from smt.problems import Branin

fun = Branin(ndim =2)

#Define the mixed design space

design_space = DesignSpace ([

IntegerVariable (*fun.xlimits [0]),

FloatVariable (*fun.xlimits [1]),

])

#Perform a mixed integer sampling with LHS

from smt.sampling_methods import LHS

smp = misamp(LHS ,design_space ,random_state =42)

xdoe = smp (10)

# Call the Bayesian optimizer

from smt.applications import EGO

criterion = "EI" #’EI’ or ’SBO’ or ’LCB’

ego = EGO(xdoe=xdoe ,

n_iter =20,

criterion="EI",

random_state =42,

surrogate=KRG(design_space=design_space ,

categorical_kernel=MixIntKernelType.GOWER ))

x_opt , y_opt , _, _, _ = ego.optimize(fun=fun)

# Check if the result is correct

self.assertAlmostEqual (0.494 , float(y_opt), delta =1)

Figure 7: Example of usage of mixed surrogates for Bayesian optimization.

Note that a dedicated notebook is available to reproduce the results pre-
sented in this paper and the mixed integer notebook also includes an extra
mechanical application with composite materials [74] 10.

5.2. A hierarchical optimization problem

The hierarchical test case considered in this paper to illustrate Bayesian
optimization is a modified Goldstein function [64] detailed in Appendix B.

10https://colab.research.google.com/github/SMTorg/smt/blob/master/

tutorial/SMT_MixedInteger_application.ipynb
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The resulting optimization problem involves 11 variables: 5 are continuous,
4 are integer (ordinal) and 2 are categorical. These variables consist in 6
neutral variables, 1 dimensional (or meta) variable and 4 decreed variables.
Depending on the meta variable values, 4 different sub-problems can be iden-
tified. The optimization problem is given by:

min f(xcatneu, x
qnt
neu, x

cat
m , xqntdec)

w.r.t. xcatneu = w2 ∈ {0, 1}
xqntneu = (x1, x2, x5, z3, z4) ∈ {0, 100}3 × {0, 1, 2}2

xcatm = w1 ∈ {0, 1, 2, 3}
xqntdec = (x3, x4, z1, z2) ∈ {0, 100}2 × {0, 1, 2}2

(8)

Compared to the model choice of Pelamatti et al. [64], we chose to model x5
and w2 as neutral variables even if f does not depend on x5 when w2 = 0.
Other modeling choices are kept; for example, w2 is a so-called “binary vari-
able” and not a categorical one [61]. Similarly, we also keep the formulation
of w1 as a categorical variable but a better model would be to model it as a
“cyclic variable” [78]. The resulting problem is described in Appendix B. To
assess the performance of our algorithm, we performed 20 runs with different
initial DoE sampled by LHS. Every DoE consists of n + 1 = 12 points and
we chose a budget of 5n = 55 infill points. To compare our method with a
baseline, we also tested the random search method thanks to the expand lhs

new method [21] described in Section 6.1 and we also optimized the Gold-
stein function using EGO with a classic Kriging model based on imputation
method (Imp-Kernel). This method replaces the decreed-excluded variables
by their mean values: 50 or 1 respectively for (x3, x4) and (z1, z2). Figure 8a
plots the convergence curves for the four methods. In particular, the median
is the solid line and the first and third quantiles are plotted in dotted lines.
To visualize better the corresponding data dispersion, the boxplots of the 20
best solutions are plotted in Figure 8b. The results in Figure 8 show that the
hierarchical Kriging models of SMT 2.0 lead to better results than the im-
putation method or the random search both in terms of final objective value
and variance over the 20 runs and in term of convergence rate. More pre-
cisely, SMT Arc-Kernel and SMT Alg-Kernel Kriging model gave the best
EGO results and managed to converge correctly as shown in Figure 8b. More
precisely, the 20 sampled DoEs led to similar performance and from one DoE,
the method SMT Alg-Kernel managed to find the true minimum. However,
this result has not been reproduced in other runs and is therefore not sta-
tistically significant. The variance between the runs is of similar magnitude
regardless of the considered methods.
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(a) Convergence curves: medians of 20 runs. (b) Boxplots after 67 iterations.

Figure 8: Optimization results for the hierarchical Goldstein function.

6. Other relevant contributions in SMT 2.0

The new release SMT 2.0 introduces several improvements besides Kriging
for hierarchical and mixed variables. This section details the most important
new contributions. Recall from Section 2.2 that five sub-modules are present
in the code: Sampling, Problems, Surrogate Models, Applications and
Notebooks.

6.1. Contributions to Sampling

Pseudo-random Sampling. The Latin Hypercube Sampling (LHS) is a stochas-
tic sampling technique to generate quasi-random sampling distributions. It is
among the most popular sampling method in computer experiments thanks to
its simplicity and projection properties with high-dimensional problems. The
LHS method uses the pyDOE package (Design Of Experiments for Python).
Five criteria for the construction of LHS are implemented in SMT. The
first four criteria (center, maximin, centermaximin, correlation) are
the same as in pyDOE 11. The last criterion ese, is implemented by the
authors of SMT [41]. In SMT 2.0 a new LHS method was developed for
the Nested design of experiments (NestedLHS) [58] to use with multi-fidelity
surrogates. A new mathematical method (expand lhs) [21] was developed
in SMT 2.0 to increase the size of a design of experiments while maintain-
ing the ese property. Moreover, we proposed a sampling method for mixed
variables, and the aforementioned LHS method was applied to hierarchical
variables in Figure 8.

11https://pythonhosted.org/pyDOE/index.html
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6.2. Contributions to Surrogate models

New kernels and their derivatives for Kriging. Kriging surrogates are based
on hyperparameters and on a correlation kernel. Four correlation kernels
are now implemented in SMT 2.0 [53]. In SMT, these correlation func-
tions are absolute exponential (abs exp), Gaussian (squar exp), Matern 5/2
(matern52) and Matern 3/2 (matern32). In addition, the implementation of
gradient and Hessian for each kernel makes it possible to calculate both the
first and second derivatives of the GP likelihood with respect to the hyper-
parameters [9].

Variance derivatives for Kriging. To perform uncertainty quantification for
system analysis purposes, it could be interesting to know more about the
variance derivatives of a model [55, 4, 13]. For that purpose and also to
pursue the original publication about derivatives [9], SMT 2.0 extends the
derivative support to Kriging variances and kernels.

Noisy Kriging. In engineering and in big data contexts with real experiments,
surrogate models for noisy data are of significant interest. In particular,
there is a growing need for techniques like noisy Kriging and noisy Multi-
Fidelity Kriging (MFK) for data fusion [66]. For that purpose, SMT 2.0 has
been designed to accommodate Kriging and MFK to noisy data including the
option to incorporate heteroscedastic noise (using the use het noise option)
and to account for different noise levels for each data source [21].

Kriging with partial least squares. Beside MGP, for high-dimensional prob-
lems, the toolbox implements Kriging with partial least squares (KPLS) [7]
and its extension KPLSK [8]. The PLS information is computed by pro-
jecting the data into a smaller space spanned by the principal components.
By integrating this PLS information into the Kriging correlation matrix,
the number of inputs can be scaled down, thereby reducing the number of
hyperparameters required. The resulting number of hyperparameters de is
indeed much smaller than the original problem dimension d. Recently, in SMT

2.0, we extended the KPLS method for multi-fidelity Kriging (MFKPLS and
MFKPLSK) [58, 16, 17]. We also proposed an automatic criterion to choose
automatically the reduced dimension de based on Wold’s R criterion [82].
This criterion has been applied to aircraft optimization with EGO where the
number de (n comp in the code) for the model is automatically selected at
every iteration [76]. Special efforts have been made to accommodate KPLS
for multi-fidelity and mixed integer data [16, 17].
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Marginal Gaussian process. SMT 2.0 implements Marginal Gaussian Process
(MGP) surrogate models for high dimensional problems [67]. MGP are Gaus-
sian processes taking into account hyperparameters uncertainty defined as a
density probability function. Especially we suppose that the function to
model f : Ω 7→ R, where Ω ⊂ Rd and d is the number of design variables,
lies in a linear embedding A such as A = {u = Ax, x ∈ Ω}, A ∈ Rd×de and
f(x) = fA(Ax) with f(x) = fA : A 7→ R and de ≪ d. Then, we must use a
kernel k(x, x′) = kA(Ax,Ax

′) whose each component of the transfer matrix
A is an hyperparameter. Thus we have de×d hyperparameters to find. Note
that de is defined as n comp in the code [29].

Gradient-enhanced neural network. The new release SMT 2.0 implements
Gradient-Enhanced Neural Network (GENN) models [10]. Gradient-Enhanced
Neural Networks (GENN) are fully connected multi-layer perceptrons whose
training process was modified to account for gradient information. Specifi-
cally, the model is trained to minimize not only the prediction error of the
response but also the prediction error of the partial derivatives: the chief ben-
efit of gradient enhancement is better accuracy with fewer training points.
Note that GENN applies to regression (single-output or multi-output), but
not classification since there is no gradient in that case. The implementation
is fully vectorized and uses ADAM optimization, mini-batch, and L2-norm
regularization. For example, GENN can be used to learn airfoil geometries
from a database. This usage is documented in SMT 2.0 12.

6.3. Contributions to Applications

Kriging trajectory and sampling. Sampling a GP with high resolution is usu-
ally expensive due to the large dimension of the associated covariance ma-
trix. Several methods are proposed to draw samples of a GP on a given
set of points. To sample a conditioned GP, the classic method consists in
using a Cholesky decomposition (or eigendecomposition) of the conditioned
covariance matrix of the process but some numerical computational errors
can lead to non SPD matrix. A more recent approach based on Karhunen-
Loève decomposition of the covariance kernel with the Nyström method has
been proposed in [5] where the paths can be sampled by generating inde-
pendent standard Normal distributed samples. The different methods are
documented in the tutorial Gaussian Process Trajectory Sampling [59].

12https://smt.readthedocs.io/en/latest/_src_docs/examples/airfoil_

parameters/learning_airfoil_parameters.html
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Parallel Bayesian optimization. Due to the recent progress made in hardware
configurations, it has been of high interest to perform parallel optimizations.
A parallel criterion called qEI [31] was developed to perform Efficient Global
Optimization (EGO): the goal is to be able to run batch optimization. At
each iteration of the algorithm, multiple new sampling points are extracted
from the known ones. These new sampling points are then evaluated using a
parallel computing environment. Five criteria are implemented in SMT 2.0:
Kriging Believer (KB), Kriging Believer Upper Bound (KBUB), Kriging Believer
Lower Bound (KBLB), Kriging Believer Random Bound (KBRand) and Constant
Liar (CLmin) [72].

7. Conclusion

SMT 2.0 introduces significant upgrades to the Surrogate Modeling Tool-
box. This new release adds support for hierarchical and mixed variables and
improves the surrogate models with a particular focus on Kriging (Gaussian
process) models. SMT 2.0 is distributed through an open-source license and
is freely available online 13. We provide documentation that caters to both
users and potential developers 14. SMT 2.0 enables users and developers col-
laborating on the same project to have a common surrogate modeling tool
that facilitates the exchange of methods and reproducibility of results.

SMT has been widely used in aerospace and mechanical modeling appli-
cations. Moreover, the toolbox is general and can be useful for anyone who
needs to use or develop surrogate modeling techniques, regardless of the tar-
geted applications. SMT is currently the only open-source toolbox that can
build hierarchical and mixed surrogate models.

Data availability

Data will be made available on request. Results can be reproduced freely online at
https://colab.research.google.com/github/SMTorg/smt/blob/master/tutorial/NotebookRunTestCases_

Paper_SMT_v2.ipynb.

Supplementary material

Supplementary material related to this article can be found online at https://doi.org/
10.1016/j.advengsoft.2023.103571.

13https://github.com/SMTorg/SMT
14https://smt.readthedocs.io/en/latest/
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López-Lopera, M. Meliani, M. Menz, N. Moëllo, A. Thouvenot, R. Priem, E. Roux and F.
Vergnes. This work is part of the activities of ONERA - ISAE - ENAC joint research group.
We also acknowledge the partners institutions: ONERA, NASA Glenn, ISAE-SUPAERO,
Institut Clément Ader (ICA), the University of Michigan, Polytechnique Montréal and the
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Appendix A. Toy test function

This Appendix gives the detail of the toy function of Section 5.1 15. First, we recall
the optimization problem:

min f(xcat, xqnt)

w.r.t. xcat = c1 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
xqnt = x1 ∈ [0, 1]

(A.1)

The toy function f is defined as

f(x, c1) =1c1=0 cos(3.6π(x− 2)) + x− 1

+1c1=1 2 cos(1.1π exp(x))− x

2
+ 2

+1c1=2 cos(2πx) +
1

2
x

+1c1=3 x(cos(3.4π(x− 1))− x− 1

2
)

+1c1=4 − x2

2

+1c1=5 2 cos(0.25π exp(−x4))2 − x

2
+ 1

+1c1=6 x cos(3.4πx)− x

2
+ 1

+1c1=7 − x(cos(3.5πx) +
x

2
) + 2

+1c1=8 − x5

2
+ 1

+1c1=9 − cos(2.5πx)2
√
x− 0.5 ln(x+ 0.5)− 1.3

(A.2)

15https://github.com/jbussemaker/SBArchOpt
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Appendix B. Hierarchical Goldstein test function

This Appendix gives the detail of the hierarchical Goldstein problem of Section 5.2 16.
First, we recall the optimization problem:

min f(xcat
neu, x

qnt
neu, x

cat
m , xqnt

dec)

w.r.t. xcat
neu = w2 ∈ {0, 1}

xqnt
neu = (x1, x2, x5, z3, z4) ∈ [0, 100]3 × {0, 1, 2}2

xcat
m = w1 ∈ {0, 1, 2, 3}

xqnt
dec = (x3, x4, z1, z2) ∈ [0, 100]2 × {0, 1, 2}2

(B.1)

The hierarchical and mixed function f is defined as a hierarchical function that depends
on f0, f1, f2 and Goldcont as describes in the following.

f(x1, x2, x3, x4, z1, z2, z3, z4, x5, w1, w2) =

1w1=0f0(x1, x2, z1, z2, z3, z4, x5, w2)

+ 1w1=1f1(x1, x2, x3, z2, z3, z4, x5, w2)

+ 1w1=2f2(x1, x2, x4, z1, z3, z4, x5, w2)

+ 1w1=3Goldcont(x1, x2, x3, x4, z3, z4, x5, w2).

(B.2)

Then, the functions f0, f1 and f2 are defined as mixed variants of Goldcont as such

f0(x1, x2, z1, z2, z3, z4, x5, w2) =

1z2=0

(
1z1=0Goldcont(x1, x2, 20, 20, z3, z4, x5, w2)

+ 1z1=1Goldcont(x1, x2, 50, 20, z3, z4, x5, w2)

+ 1z1=2Goldcont(x1, x2, 80, 20, z3, z4, x5, w2)
)

1z2=1

(
1z1=0Goldcont(x1, x2, 20, 50, z3, z4, x5, w2)

+ 1z1=1Goldcont(x1, x2, 50, 50, z3, z4, x5, w2)

+ 1z1=2Goldcont(x1, x2, 80, 50, z3, z4, x5, w2)
)

1z2=2

(
1z1=0Goldcont(x1, x2, 20, 80, z3, z4, x5, w2)

+ 1z1=1Goldcont(x1, x2, 50, 80, z3, z4, x5, w2)

+ 1z1=2Goldcont(x1, x2, 80, 80, z3, z4, x5, w2)
)

(B.3)

f1(x1, x2, x3, z2, z3, z4, x5, w2) =

1z2=0Goldcont(x1, x2, x3, 20, z3, z4, x5, w2)

+ 1z2=1Goldcont(x1, x2, x3, 50, z3, z4, x5, w2)

+ 1z2=2Goldcont(x1, x2, x3, 80, z3, z4, x5, w2)

f2(x1, x2, x4, z1, z3, z4, x5, w2) =

1z1=0Goldcont(x1, x2, 20, x4, z3, z4, x5, w2)

+ 1z1=1Goldcont(x1, 50, x2, x4, z3, z4, x5, w2)

+ 1z1=2Goldcont(x1, x2, 80, x4, z3, z4, x5, w2)

16https://github.com/jbussemaker/SBArchOpt
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To finish with, the function Goldcont is given by

Goldcont(x1, x2, x3, x4, z3, z4, x5, w2) = 53.3108 + 0.184901x1

− 5.02914x1
3.10−6 + 7.72522x1

z3 .10−8 − 0.0870775x2 − 0.106959x3

+ 7.98772x3
z4 .10−6 + 0.00242482x4 + 1.32851x4

3.10−6 − 0.00146393x1x2

− 0.00301588x1x3 − 0.00272291x1x4 + 0.0017004x2x3 + 0.0038428x2x4

− 0.000198969x3x4 + 1.86025x1x2x3.10
−5 − 1.88719x1x2x4.10

−6

+ 2.50923x1x3x4.10
−5 − 5.62199x2x3x4.10

−5 + w2

(
5 cos

(
2π

100
x5

)
− 2

)
.

(B.4)
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[48] M. Krügener, J. Zapata Usandivaras, , M. Bauerheim, and A. Urbano. Coaxial-
injector surrogate modeling based on reynolds-averaged navier–stokes simulations
using deep learning. Journal of Propulsion and Power, 38:783–798, 2022.

[49] J. Kudela and R. Matousek. Recent advances and applications of surrogate models
for finite element method computations: a review. Soft Computing, 26:13709–13733,
2022.

[50] L. S. Kwan, A. Pitrou, and S. Seibert. Numba: A llvm-based python jit compiler. In
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC,
2015.

35



[51] R. Lafage. egobox, a Rust toolbox for efficient global optimization. Journal of Open
Source Software, 7:4737, 2022.

[52] C. Lataniotis, S. Marelli, and B. Sudret. Uqlab 2.0 and uqcloud: open-source vs.
cloud-based uncertainty quantification. In SIAM Conference on Uncertainty Quan-
tification (SIAM UQ 2022), 2022.

[53] H. Lee. Gaussian Processes, pages 575–577. Springer Berlin Heidelberg, 2011.

[54] M. Lindauer, K. Eggensperger, M. Feurer, A. B., D. Deng, C. Benjamins, T. Ruhkopf,
R. Sass, and F. Hutter. SMAC3: A versatile Bayesian optimization package for
hyperparameter optimization. Journal of Machine Learning Research, 23:1–9, 2022.
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