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ABSTRACT: Because they are rare, extreme weather events have critical impacts on societies

and ecosystems and attract public and scientific attention. The most unusual events are regularly

documented as part of routine climate monitoring by meteorological services. A growing number

of attribution studies also aim at quantifying how their probability has evolved under human

induced climate change. However, it is often recognized that (i) the selection of studied events

is geographically uneven, and (ii) the definition of a given event, in particular its spatio-temporal

scale, is subjective, which may impact attribution statements. Here we present an original method

that objectively selects, defines, and compares extreme events that have occurred worldwide in the

recent years. Building on previous work, the event definition consists of automatically selecting

the spatio-temporal scale that maximizes the event rarity, accounting for the non-stationary context

of climate change. We then explore all years, seasons, and regions and search for the most extreme

events. We demonstrate how our searching procedure can be both useful for climate monitoring

over a given territory, and resolve the geographical selection bias of attribution studies. Ultimately,

we provide a selection of the most exceptional hot and cold events in the recent past, among which

are iconic heatwaves such as those seen in 2021 in Canada or 2003 in Europe.
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SIGNIFICANCE STATEMENT: The purpose of the article is to objectively select and rank the22

most exceptional heatwaves and cold spells that have occurred worldwide in the recent years. As23

these events often have the greatest socio-economic impacts, better knowledge and characterization24

of historical events in a changing climate can inform adaptation strategies. We exhaustively scan25

temperature data over all years and regions to identify extreme events using the event probability26

as a universal metric. Applied over a specific location, such as on a national level, our method27

provides useful information for the climate monitoring of weather events. Applied globally, it can28

help attribution studies to pick events without the selection bias related to authors origin or media29

coverage.30

CAPSULE: Themost extreme historical heatwaves and cold spells across the globe are objectively31

selected from their ocurrence probability by an exhaustive scan of temperature events.32

1. Introduction33

Extreme weather events are rare, and so they inevitably attract attention and cause socio-34

environmental impacts when they occur. Explaining events that have occurred and putting them in35

a climate perspective constitutes a key challenge for both national weather services and the "event36

attribution" community.37

The former have the responsibility to document historical weather events and maintain long-38

term statistics over their territory. This includes describing events from a synoptic perspective,39

quantifying their rarity (e.g. return period), and comparing with inventories of past events of the40

same type. The selection of documented events is generally made on the basis of fixed thresholds,41

so that events can be characterized by a level and duration of exceedance. As the climate warms,42

the thresholds for defining heatwaves (cold spells) are exceeded more (less) easily: for instance, 3743

(16) of the 46 heatwaves (46 cold spells) officially reported in France by Météo-France over 1947–44

2022 have occurred after 1985, in the second half of the record period1. This raises new questions45

for climate monitoring. Are recent episodes of threshold exceedance really extreme events in46

today’s climate? How rare were past events relative to their respective climate? Besides, due to47

possible adaptation, the impacts associated with a given temperature event are not necessarily the48

1ClimatHD by Météo-France [http://www.meteofrance.fr/climat-passe-et-futur/climathd], online, accessed 2023-10-15.
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same today as in the past. Taking non-stationarity into account in regular climate monitoring has49

therefore become a necessity for weather services.50

Placing extreme weather events in the perspective of climate change is precisely the aim of "event51

attribution" studies. This field seeks to assess how climate change has altered event probability or52

intensity, through quantities such as the probability ratio or the fraction of attributable risk. It has53

emerged since the pioneering analysis of the European heatwave of summer 2003 by Stott et al.54

(2004). It has become a regular activity as illustrated by the series of supplements to the annual State55

of the Climate report since Peterson et al. (2012)2 or the creation of the World Weather Attribution56

(WWA) group3, and there is a growing interest from weather services in making it operational.57

Many events have been scrutinized over the past two decades, but it is often expressed that studies58

suffer from a "selection bias", as in the IPCC AR6 Chapter 11: "studies in the developing world59

are [...] lacking (Otto et al. 2020)" and "events that have been studied are not representative of60

all extreme events that occurred [...]" (Seneviratne et al. 2021). There are a variety of reasons for61

this bias (origin of the authors, quality of the data, media coverage, etc.), but so far little has been62

proposed to limit it and objectify event selection.63

A common issue to climate monitoring and event attribution analyses is that their statements are64

dependent on the event definition, in particular the spatio-temporal extent considered. Weather65

services need to identify the duration and extent where the event was extreme to analyze it66

appropriately and provide relevant information to local decision-makers. In attribution studies,67

using large scales generally yields a higher detection of the signal (climate change) due to the68

smoothing out of the noise (internal variability), and therefore larger probability ratios (Angélil69

et al. 2014, 2018; Cattiaux and Ribes 2018; Kirchmeier-Young et al. 2019). Event definition is often70

subjective in the literature, which is referred to as another type of "selection bias" (Seneviratne et al.71

2021). In a previous paper (Cattiaux and Ribes 2018, hereafter CR18), we proposed an objective72

definition procedure consisting in automatically selecting the spatio-temporal scale that maximizes73

the event rarity. This was motivated by the fact that the meteorological extremeness of an event is74

generally what makes it of interest and generates the greatest socio-economic impacts. Importantly,75

we showed that our procedure does not artificially bias attribution statements: maximizing the rarity76

does not systematically maximize (or minimize) the attributable signal.77

2BAMS explaining extreme events from a climate perspective [https://www.ametsoc.org/ams/index.cfm/publications/bulletin-of-the-american-
meteorological-society-bams/explaining-extreme-events-from-a-climate-perspective], online, accessed 2023-10-15.

3WWA webpage [https://www.worldweatherattribution.org], online, accessed 2023-10-15.
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Here we show that this method can also be used to compare the rarity of different events,78

for example, two heatwaves of different spatio-temporal scales occurring in different years and79

at different locations. It can therefore serve both meteorological services to create inventories80

of historical events, and the event attribution community to address the issue of selection bias.81

Ultimately, we provide objective selections of historical heatwaves and cold waves at a national82

level (France) and at the global level, which constitute new information on observed extremes and83

can serve as databases for the validation of climate models or statistical methods.84

2. The event probability as the ranking metric85

Our study complements products of national weather services and rankings of extreme temper-86

ature events that have already been recently proposed in the literature. Russo et al. (2015) have87

proposed a ranking of European heatwaves on the basis of an index combining the fraction of88

area over which daily temperatures exceed reference (fixed) thresholds and the magnitude of the89

exceedances. Röthlisberger et al. (2021) and Boettcher et al. (2023) have developed a methodology90

to identify extreme seasonal temperatures at the grid point scale, also from fixed thresholds, and91

then form spatially coherent objects. Thompson et al. (2022) have compared the spectacular Pacific92

Northwest heatwave of June 2021 to the most extreme 1-day hot events ever recorded globally,93

defined at each region of the world as the largest daily temperature anomaly normalized with re-94

spect to local mean and variance. In a follow-up paper, Thompson et al. (2023) have also provided95

estimates of the return period of current records of daily maximum temperatures worldwide.96

Here, as in CR18, we wish to introduce flexibility in the definition of the spatio-temporal scale97

of the events. We thus need a metric enabling the comparison of the temperature events not only98

over all dates and locations, but also over several temporal durations and spatial domain sizes.99

The probability of occurrence of the event in its factual climate — which will be denoted as100

?1 throughout this paper — perfectly meets this requirement. Mathematically, it writes as the101

probability that an equally or more intense event occurs at the same place and time:102

?1 = Pr
{
- (C1) ≥ GC1

}
, (1)

where - (C1) is the random variable describing all possible realizations of the climate at time C1,103

and GC1 is the value effectively observed at that time. As discussed in CR18, ?1 has the intrinsic104
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property of being uniformly distributed within the interval [0,1]: by definition, a randomly selected105

(weather) event can indeed be anywhere in the (climate) distribution of all possible events. Provided106

that ?1 is well estimated, this property thus enables to confront all dates, locations and scales on107

the basis of a fair and universal metric.108

We perform an exhaustive "scan" of all possible warm and cold events and identify the highest109

rarity (or lowest ?1) events. As ?1 is the probability of the event occurring the year it actually110

did, our procedure provides a non-stationary view of the monitoring of extremes — in a warming111

climate, a heatwave of a given intensity will become increasingly likely (less extreme) —, which112

can meet the needs of weather services. In attribution studies, ?1 is a key quantity, denoted113

"factual probability", which reinforces its relevance for our purpose. It is often compared to a114

"counterfactual probability" ?0 measuring the rarity of the event GC1 in a different climate - , e.g.115

without human influence or at a other (distant) time C0:116

?0 = Pr
{
- (C0) ≥ GC1

}
. (2)

3. Scanning a given region: France117

We first illustrate our scanning procedure at a fixed location: metropolitan France. We use the118

national daily thermal index provided by Météo-France over the 1947–2022 period (Ribes et al.119

2022). We search for the most extreme warm and cold events in this time series (i.e. the lowest120

?1), exploring all years, all days of a year, and several temporal durations of = days. To keep the121

computation time reasonable, we restrict = to 1–8, 10, 12, 15, 20, 25, 30, 40, 50, 60, 75, 90, 120,122

180, 270, and 365 days (23 values). The methodology for estimating ?1 and ?0 is depicted in123

Figure 1 using the example of the 5-day heatwave of June 15–19, 2022. This episode is one of the124

three heatwaves reported by Météo-France in 2022 and the earliest one in records4 based on the125

reference threshold5 of 23.4 °C (Figure 1a).126

As in CR18, the event rarity is assessed through an empirical estimation method consisting of136

(i) detrending the sample of observations GC to make all values representative of the climate at137

C1 = 2022 (factual) or C0 = 1950 (counterfactual) and (ii) fitting stationary parametric distributions138

4Weather extremes of summer 2022 by Météo-France [https://meteofrance.com/actualites-et-dossiers/actualites/changement-climatique-lete-
2022-et-ses-extremes-meteorologiques], online, accessed 2023-10-15.

5Definition of heatwaves by Météo-France [https://meteofrance.com/actualites-et-dossiers/comprendre-la-meteo/temperature/comment-les-
climatologues-evaluent-vagues-chaleur-canicules], online, accessed 2023-10-15.
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Fig. 1. (a) Daily-mean temperatures of 2022 (black). 2022 normals (solid violet), associated ±1 and ±2

s.d. (gray shading), and 1950 normals (dashed violet). Heatwaves reported by Météo-France (i.e. with 3

days above 23.4 °C) in red, with June 15–19 hightlighted. (b) Computing calendar ?1: raw (thin gray) and

detrended (wrt. 2022, thick black) time series of June 15–19 temperatures. Long-term trend (dashed colored)

and its levels in 2022 (horizontal colored, factual climate) and 1950 (horizontal gray, counterfactual climate).

Barcode: detrended (factual) sample, with the fitted normal distribution (violet). Counterfactual distribution

in gray. (c) Computing annual-maxima ?1: same as (b) except that the time series is Tx5day and the fits are

GEV distributions. (d) Calendar and (e) annual-maxima ?1 as function of the time of the year (x-axis) and the

temporal averaging (y-axis), with our selections of events indicated and ranked.
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on the detrended samples to derive ?1 and ?0. Our detrending procedure is described in detail in139

Appendix A; in short, the shape of the trend is estimated from a multi-model ensemble of historical140

simulations and the amplitude from observations alone, with a dependency on the time of year141

and the temporal duration =. Two different options are then taken for the sample GC and the fitted142

distribution to describe the event conditionally to its calendar context or not.143

The first — calendar conditioning — consists of comparing the =-day mean temperature of the144

event with the multi-year sample of temperatures observed on the exact same dates, and using a145

Gaussian distribution fit after detrending (Figure 1b). In this case minimizing ?1 is equivalent146

to searching for the largest normalized anomalies, i.e. departures from the mean in numbers of147

standard deviations (s.d.)6. For the June 2022 event we find a 5-day anomaly of 5.2 K, (2.6 s.d),148

which gives a calendar ?1 of 0.005; the interpretation is that an equally or hotter heatwave had a149

0.5 % chance to occur at these exact dates in 2022.150

However a 5-day average temperature of 25.4 K is not that exceptional in France in the climate151

of 2022: it is actually close to the expectance of the annual maxima of 5-day mean temperatures152

(hereafter Tx5day) for that year (estimate of 25.8 K, Figure 1c). Thus the second option —153

no conditioning — consists of comparing the =-day event with the sample of Tx=day and using a154

GeneralizedExtremeValue (GEV) distribution fit after detrending. In this case 1/?1 is interpretable155

as a formal return period. For the June 2022 event, the annual-maxima ?1 is found to be 0.57,156

which means that a heatwave at least as hot had more than 50 % chance to occur in any dates in157

2022, and translates into an estimated return period of 1/?1 ∼ 1.8 years.158

For both calendar and annual-maxima approaches, ?0 is estimated by detrending the respective159

GC sample relative to C0 = 1950 instead of C1 = 2022 (gray distributions in Figure 1b,c). As climate160

has warmed— estimates of 2.22 °C for June 15–19 and 2.43 °C for Tx5day— ?0 is unsurprisingly161

smaller than ?1. Finally, it must be noted that:162

• the formalism of Equations 1 and 2 and the use of annual "maxima" is well suited for hot163

events; to apply it to cold events one has to consider that - is the temperature multiplied by164

-1 and to consider annual "minima";165

• there is a debate in the community as to whether the value of the event should be included in166

or excluded from the sample when estimating its probability of occurrence (Philip et al. 2020;167

6For - ∼ # (`, f) , ?1 is a monotonic function of (- − `)/f.
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van Oldenborgh et al. 2021b). The question especially arises when the time series is stopped168

because the last event is particularly extreme and we want to study it. Solutions to properly169

formulate stopping rules have been proposed (e.g., Barlow et al. 2020). Here we decide to170

systematically include the value of the event in the sample, because (i) we scan all the events of171

the whole period so we have no particular stopping rule and (ii) GEV distributions for annual172

maxima of temperature are often right-bounded (negative shape parameters) and in case of a173

very rare event, excluding its value for the fit can lead to an estimated upper bound lower than174

the event effectively observed (as in Philip et al. 2022). In such a case, it would be nonsense175

to conclude that the event has ?1 = 0 while we know that it has occurred.176

The scanning procedure then consists of computing calendar and annual-maxima (-minima) ?1177

for all 27740 days of 1947–2022 (February 29s are omitted) and 23 =-day temporal extents, and178

search for the local minima of ?1 — the most extreme events — within these 27740 × 23 matrices.179

To do so, we select the absolute minimum of ?1, then mask all overlapping calendar windows180

(we consider that they correspond to the same event) and iterate while there remains ?1 smaller181

than a given threshold: we choose 0.01 for the calendar method and 0.25 for annual-maxima and182

-minima methods. In addition, we impose a minimal duration of 3 days for the calendar approach183

for readability and a maximal duration of 30 days for annual-maxima (-minima) approaches for the184

quality of GEV fits.185

This procedure is first illustrated on the complete year 2022 (Figure 1d,e). Three hot events are186

selected in the calendar approach; the June event mentioned above ranks 2nd and is found to be187

the most extreme at the 3-day scale. In the annual-maxima approach, a unique 30-day event is188

selected that overlaps the two episodes reported by Météo-France in July and August. Its estimated189

return period is small (1/?1 = 10 years), reflecting the fact that exceeding the reference threshold190

of 23.4 °C has become likely in the climate of 2022 (see also Figure 1a). (The 180-day event from191

May to October has a lower ?1 but the use of annual blocks and GEV is questionable for such long192

durations).193

Now expanding to the entire period, the calendar approach enables quick identification of ab-208

normally hot events throughout the whole year, which is useful for routine climate monitoring209

and can be relevant for impacts studies (Figure 2a). Only the heatwaves occurring near the peak210

of the annual cycle are retained by the annual-maxima approach (Figure 2b). Both approaches211
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Fig. 2. (a–c) Selection of the hottest events with the (a) calendar and (b) annual-maxima approaches, compared

with (c) Météo-France threshold-based selection (3 days above 23.4 °C, source of graphics: Les Décodeurs, Le

Monde). (d–f) Same for cold events, with annual-minima in (e) and exceedances below -2 °C in (f). Rectangles

and pieces of time series indicate the dates (x-axis) and years (y-axis) of the events, with a restricted x-axis

on middle and right columns. Rectangle colors indicate ?1 with the five most extreme events highlighted. A

minimal duration of 3 days and a maximal ?1 of 0.01 are imposed to calendar events. A maximal duration of 30

days and a maximal ?1 of 0.25 are imposed to annual-maxima and -minima events. ?1 values are lower in the

calendar method due to the condition that the event occurs at these exact dates.
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Table 1. The five hottest and coldest events selected by the annual-maxima and -minima approaches in

France, ordered by increasing ?1 (see also Figure 2). Associated ?0 and ?1/?0 are indicated, as well as

average temperature and normalized anomaly. Brackets indicate 90%-level confidence intervals computed by

bootstrapping years in the Tx=day or Tn=day samples; as random resampling removes the value of the year of

interest from the #-year sample with a probability (1− 1
#
)# −−−−→

#�1
4−1 ∼ 0.37, the upper bound of the confidence

interval of 1/?1 can be found to be infinite whereas the event actually occurred.

202

203

204

205

206

207

# Year Dates T (°C) s.d. 1/?1 1/?0 ?1/?0

Heatwaves

1. 2003 Aug 4 - 13 28.6 4.4 410 [93 to Inf] 3200 [250 to Inf] 7.6 [2.6 to Inf]

2. 1947 Jul 27 - 28 27.7 3.3 97 [37 to 3200] 95 [37 to 3000] 0.98 [0.94 to 0.99]

3. 1983 Jul 8 - Aug 1 24.3 3 64 [31 to 350] 62 [30 to 320] 0.96 [0.92 to 0.97]

4. 2019 Jul 25 29.4 3 35 [20 to 130] 1100 [160 to Inf] 32 [7.1 to Inf]

5. 1976 Jun 22 - Jul 16 23.7 3.3 34 [20 to 100] 28 [17 to 77] 0.84 [0.75 to 0.89]

Cold spells

1. 1956 Jan 31 - Mar 1 -3.2 -4.3 170 [56 to 8700] 180 [58 to 9700] 1 [1 to 1.1]

2. 1985 Jan 5 - 16 -6.9 -4.4 110 [44 to 880] 110 [43 to 850] 0.99 [0.97 to 0.99]

3. 1963 Jan 11 - Feb 9 -2.8 -3.7 96 [36 to 4100] 120 [42 to 11000] 1.2 [1.1 to 1.9]

4. 1987 Jan 12 -9 -3.8 50 [25 to 220] 45 [23 to 180] 0.89 [0.8 to 0.92]

5. 2012 Feb 3 - 12 -4.3 -3.7 46 [25 to 150] 18 [12 to 35] 0.38 [0.21 to 0.49]

agree that the greatest hot event for France is the heatwave of early August 2003, considered as212

a 10-day event (August 4–13, consistent with CR18). It corresponds to a normalized anomaly of213

4.4 s.d. and an estimated return period of 410 [95 to Inf] years (Table 1, see caption for details214

on the confidence interval). Other major heatwaves are found in summers 1947, 1976, 1983 and215

2019, with durations of respectively 2, 25, 25 and 1 days. This is overall consistent with the events216

selected by Météo-France on the basis of fixed thresholds (Figure 2c). As for cold spells, the most217

extreme events are found in winters 1956, 1963, 1985, 1987 and 2012 (Figure 2d,e and Table 1),218

which is also consistent with Météo-France reporting (Figure 2f). The events of February 1956219

and January 1985 have normalized anomalies of −4.4 s.d. (Table 1), i.e. are equally unusual as the220

August 2003 heatwave from a calendar perspective; however, their formal return periods estimated221

from the annual-minima approach are shorter (respectively 170 and 110 years).222

The right panels in Figure 2 illustrate the limitations of climate monitoring of extremes using223

fixed threshold approaches. On the one hand, using the same threshold for the whole year makes it224

impossible to describe certain events conditionally to their calendar context, e.g. late cold snaps in225
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early spring, which have an impact on vegetation (Vautard et al. 2022). On the other hand, global226

warming leads to heatwave thresholds being exceeded almost every summer (we can no longer227

speak of "extreme" events), while cold spell thresholds are almost never reached (we can no longer228

speak of events at all). Our method provides complementary and useful information for national229

weather services on both these calendar and non-stationary aspects. Lastly, note that an interactive230

application associated to this paper enables to reproduce the analyses carried out in this section231

and retrace Figure 1 for various choices of years and dates and Figure 2 for different thresholds of232

?1 and duration (details in Appendix C).233

4. Scanning worldwide234

To extend the scanning procedure to the global scale, we use daily-mean 2-meter temperatures235

provided by the ERA5 reanalysis over the 1959–2022 period (Hersbach et al. 2020). The advantage236

of ERA5 is that it is a physically consistent dataset globally (model simulation) with a sufficiently237

fine resolution for our purpose and without missing values, which is particularly convenient for238

the calculation of annual maxima or minima. The main disadvantage is that it is not temporally239

homogenized (assimilated observations evolve in time), which can cause problems for both our240

detrending and ?1 calculations. Nevertheless, we have verified that the main results of this241

section, i.e. the selections of extremes, do not suffer from obvious heterogeneity problems. To our242

knowledge, there exists no observational dataset of global daily temperaturewith time homogeneity,243

long history, and no missing values.244

The exploration of spatial domains is performed with the hierarchical collection of economic and245

political regions defined by Stone (2019) within the "Weather Risk Attribution Forecast" (WRAF)246

framework. This collection provides successive divisions of land areas into regions of 10, 5, 2, and247

0.5 million km2 (hereafter Mkm2), each division being nested in the previous one, with only a few248

gaps in the global coverage (for instance Europe appears only from 5 Mkm2). The set of 0.5 Mkm2
249

regions was also used by Thompson et al. (2022, 2023). The full range of spatial sizes covers250

the vast majority of event definitions in recent attribution studies, with the exception of studies at251

global scale or at the local scale (in this case we could refine within a 0.5 Mkm2 region). Scanning252

the full period at global scale thus involves considering 64 years × 365 days × 347 WRAF regions253

× 23 time durations ∼ 186 million temperature events.254
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Fig. 3. Scanning heatwaves worldwide. (a) For each 2 Mkm2 region, the minimum ?1 of all 2021 events in

the annual-maxima approach is shown. (b) Calendar ?1 of a warm event occurring on June 29 – July 1, 2021,

i.e. coinciding with the absolute minimum of ?1 in (a). (c–d) Same as (a) for (c) 2003–2022 and (d) 1959–2022.
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256

257

Firstly, we scan a single year to identify the most extreme events of that year, as this can be266

useful for annual reports of climate monitoring and event attribution. Figures 3a and 4a provide the267

minima of ?1 at each 2 Mkm2 region for respectively the annual-maxima approach (heatwaves) in268

2021 and the annual-minima approach (cold spells) in 2022. We have chosen these two examples269

because outstandingly, west Canada holds the strongest event in both cases, i.e. the 3-day heatwave270

of June 29 – July 1, 2021 — the famous "heat dome" analyzed in numerous studies (e.g., Bercos-271

Hickey et al. 2022; Philip et al. 2022; Schumacher et al. 2022; Thompson et al. 2022; Terray 2023;272

White et al. 2023) — and the 5-day cold spell of December 19–23, 2022, related to winter storm273

"Elliott". We estimate that these two events have remarkably low values of ?1, corresponding to274

estimated return periods of 810 years for the heatwave and 550 years for the cold spell (Table 2).275

There is certainly no meteorological relationship between these two events, suggesting that this276

region has, by chance, experienced particularly extreme temperatures over the past two years. For277

a closer look, the equivalent of Figure 1 for these two events has been plotted in Figures S1 and278

S2. The top 3 heatwaves in 2021 then include a 7-day July event in Kazakhstan and a 30-day279

event in December 2021 – January 2022 in Argentina, while a 30-day November event in Congo280
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Fig. 4. Scanning cold spells worldwide. (a) For each 2 Mkm2 region, the minimum ?1 of all 2022 events in

the annual-minima approach is shown. (b) Calendar ?1 of a cold event occurring on 2022, December 19–23,

2022, i.e. coinciding with the absolute minimum of ?1 in (a). (c–d) Same as (a) for (c) 2003–2022 and (d)

1959–2022.
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259

260

261

and a 12-day July event in Queensland complete the podium of cold spells 2022. By construction,281

about half of the regions have a minimum ?1 above 0.5 in Figures 3a and 4a; for a given temporal282

duration, the distribution of yearly minimum ?1 across regions is indeed uniform (Appendix B).283

Figures 3b and 4b show the calendar ?1 associated with the 2021 and 2022 west Canadian events.284

We find normalized calendar anomalies of respectively 5.0 and 3.0 s.d. over this region, which285

highlights the extremeness of these two events (this gives a lower ?1 than in the annual-maxima286

approach since here it is conditioned by the time of the year). The global picture of calendar ?1287

can be useful for routine climate monitoring: for example here we see that the 2021 heatwave was288

restricted to west Canada while the 2022 cold spell also spreads over the northwest USA region289

(2.7 s.d.), and to a lesser extent over NWT & Yukon (2.2 s.d.) and midwest USA (1.9 s.d.). This290

is consistent with the characteristic spatial size of atmospheric patterns responsible for summer291

vs. winter extremes in mid-latitudes. Figures 3a also shows that the 2021 Kazakhstan heatwave292

occurred concurrently with the west Canadian one, which could be a coincidence or result from293

an amplified circumglobal wave pattern. Note that for given dates, the distribution of calendar ?1294
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Table 2. The ten hottest and coldest worldwide events selected by the annual-maxima and -minima approaches

for 2 Mkm2 regions, ordered by increasing ?1 (see also Figure 3 and 4). Brackets indicate 90%-level confidence

intervals computed as in Table 1 with the same remark about the possibly infinite upper bound of 1/?1. Region

ID and names from Stone (2019).

262

263

264

265

# Reg ID Region name Year Dates 1/?1 1/?0 ?1/?0

Heatwaves

1. 1.2.1 west Canada 2021 Jun 29 - Jul 1 810 [120 to Inf] 39000 [630 to Inf] 48 [4.4 to 540]

2. 7.1.2 southwest Russia 2010 Jul 21 - Aug 14 780 [110 to Inf] 46000 [520 to Inf] 59 [3.9 to 1700]

3. X.2.2 south EEA 2003 Aug 3 - 14 740 [120 to Inf] Inf [1800 to Inf] Inf [11 to Inf]

4. 11.1.2 southeast Australia 2019 Jan 14 - 17 670 [110 to Inf] Inf [44000 to Inf] Inf [72 to Inf]

5. 6.2.2 south SADC 2016 Jan 1 - 7 630 [100 to Inf] 1700 [160 to Inf] 2.7 [1.5 to 3.9]

6. 8.2.2 south Pacific Russia 2011 Jul 17 - 28 390 [83 to Inf] 99000 [610 to Inf] 250 [6 to Inf]

7. 2.1.3 Midwest USA 2012 Jun 27 - Jul 26 320 [75 to Inf] 7500 [240 to Inf] 24 [2.8 to Inf]

8. 11.1.1 Western Australia 2019 Dec 22 - 29 320 [77 to Inf] 37000 [330 to Inf] 120 [3.4 to Inf]

9. 2.1.1 Alaska (USA) 2019 Jul 6 - 10 310 [71 to Inf] 33000 [360 to Inf] 110 [4.3 to Inf]

10. 11.2.1 Northern Territory (Australia) 2019 Dec 17 - 26 270 [70 to Inf] 560 [110 to Inf] 2.1 [1.5 to 380]

Cold spells

1. 1.2.3 east Canada 2014 Jan 2 - 3 760 [120 to Inf] 12 [8.3 to Inf] 0.016 [0 to 0.085]

2. 11.2.2 Queensland (Australia) 2007 Jun 20 - Jul 19 620 [110 to Inf] 84 [35 to Inf] 0.14 [0 to 0.37]

3. 9.2.2 southeast ECO 2008 Jan 18 - 27 560 [97 to Inf] 100 [38 to Inf] 0.19 [0 to 0.42]

4. 1.2.1 west Canada 2022 Dec 19 - 23 550 [110 to Inf] 6.2 [4.7 to 13] 0.011 [0 to 0.051]

5. 5.2.2 central and south CEMAC 2015 Jan 11 - 12 420 [94 to Inf] 5.1 [4 to 8.1] 0.012 [0 to 0.047]

6. 11.1.1 Western Australia 2006 Jul 12 - 17 400 [87 to Inf] 47 [24 to Inf] 0.12 [0.071 to 0.35]

7. 4.2.1 Libya 2017 Dec 31 - Jan 11 360 [82 to Inf] 20 [12 to Inf] 0.054 [0 to 0.19]

8. 7.2.1 West Siberia (Russia) 2006 Jan 11 340 [75 to Inf] 240 [63 to Inf] 0.7 [0.58 to 0.87]

9. 2.2.1 southwest USA 2013 Dec 25 - Jan 18 340 [74 to Inf] 5.8 [4.2 to 9.7] 0.017 [0 to 0.077]

10. 9.1.2 Iran 2008 Jan 8 - 17 330 [78 to Inf] 44 [21 to 7000] 0.13 [0 to 0.29]

CEMAC = Economic and Monetary Community of Central Africa, ECO = Economic Cooperation Organization, EEA = European Economic Area, SADC = Southern
Africa Development Community, USA = United States of America.

across regions is expected to be uniform in our procedure, so that about half of the regions are295

expected to have ?1 above 0.5 in such maps (Appendix B).296

We now extend the scan to two time periods: the last 20 years (2003–2022, Figures 3c and 4c and297

Table 2) over which event attribution has developed, and the whole period of study (1959–2022,298

Figures 3d and 4d) — the interactive application enables to further visualize the results of any year299

or period (Appendix C). The podium of heatwaves of the last 20 years is occupied by events well300

known in the scientific community (Figure 3c): west Canada 2021, southwest Russia 2010, and301

south Europe 2003 (the same as in France in Figure 2). This first one is consistent with Thompson302
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et al. (2022) while the last two are in Russo et al. (2015). Other major events include heatwaves303

that have been well documented in the scientific literature (e.g. January and December 2019 in304

Australia and associated bushfires, e.g. van Oldenborgh et al. (2021a)), and others for which no305

attribution study exist (e.g. South Africa 2016, south Pacific Russia 2011, see Table 2), illustrating306

the geographic selection bias. Over the whole period, only two events of size 2 Mkm2 (May 1998307

in Chad and January 1993 in west Antarctica, Figure 3d) appear to exceed the 2021 west Canadian308

heatwave, with estimated return periods of 2200 and 1100 years respectively.309

On the cold spell side, a 4-day event in July 1975 in central North Brazil wins the contest in the310

2 Mkm2 category, with January 2014 in east Canada being the most extreme event of the last 20311

years (Figure 4c,d and Table 2). The December 2022 "Elliott" storm in west Canada ranks 4th over312

2003–2022 and 12th over the whole period, which again highlights its extremeness in the climate313

of 2022.314

Lastly, the hierarchical character of the collection ofWRAF regions is used to refine the selection320

of events among spatial scales. Figure 5 shows the minimum ?1 associated with the three major321

heatwaves identified in Figure 3 and Table 2 on the geographical division of the 10, 5, 2 and322

0.5 Mkm2 regions. The 2021 Canadian event is found to be the most extreme for a 0.5 Mkm2
323

region (Alberta), the 2010 Russian event for a 5 Mkm2 region (European Russia), and the 2003324

European event for the 2 Mkm2 region as in Figure 3.325

More generally, when minimizing ?1 both over time and the entire collection of WRAF regions329

for the period 2003–2022, most of the events of Table 2 stand out, sometimes on parent or child330

domains (Table 3). Notably, two Chinese heatwaves slip into the trio of heatwaves described above:331

a 3-day event in 2003 and a 25-day event in 2022, with estimated return periods similar to the332

2021 Canadian heatwave. These two events were reported in the media7 but seem to have received333

less scientific attention. Extending the scan to the entire period 1959–2022 can be done in the334

interactive application (Appendix C): other events join the top 10, but sometimes with obvious335

data problems (Appendix B). The top events remain the heatwave of May 1998 in Chad (at size336

2 Mkm2) and the cold spell of July 1975 in Brazil (at size 0.5 Mkm2, south Para).337

Using the collection of WRAF regions can thus be helpful to both (i) identify the most extreme338

events of a given period worldwide, and (ii) give a rough idea of their spatial size. However extreme339

7eg. https://www.lemonde.fr/en/asia-and-pacific/article/2022/08/24/china-s-record-heatwave-causes-severe-threat-to-crop-
production_5994568_153.html
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Fig. 5. Zooming over a region. (a) For each 10, 5, 2 and 0.5 Mkm2 region (from left to right), the minimum ?1

of all 2021 events in the annual-maxima approach is shown, which coincides with the 2021 Canadian heatwave

listed as 1st in Table 2 and 2nd in Table 3. (b) Same as (a) for the 2010 Russian heatwave (2nd and 4th). (c) Same

as (a) for the 2003 European heatwave (3rd and 5th). For each event, the region with the lowest ?1 is explicitely

named and its panel (i.e. region size) is highlighted in gray.

315

316

317

318

319

events do not stop at administrative borders, and once an event has been selected for a study, its340

precise definition may be decided through a more systematic exploration of various spatial domains341

and sizes (e.g., CR18), and possibly on a more suitable dataset than ERA5 for the area of interest.342

5. Discussion and conclusions343

We have objectively identified and ranked the most extreme temperature events over a large344

spatio-temporal range, using the probability of event occurrence in the factual climate (?1) as345

a universal metric. We produce a list of the greatest hot and cold extremes over the recent346

past, together with their spatio-temporal scale. Applied locally, such as on a national level, this347

17



Table 3. Same as Table 2 but for the entire collection of WRAF regions. The number of characters in the

region ID indicates its size: X for 10 Mkm2, X.X for 5 Mkm2, X.X.X for 2 Mkm2 and X.X.X.X for 0.5 Mkm2.

Region ID and names from Stone (2019).

326

327

328

# Reg ID Region name Year Dates 1/?1 1/?0 ?1/?0

Heatwaves

1. 10.2.2.3 Fujian, Hunan, and Jiangxi (China) 2003 Jul 30 - Aug 1 1100 [130 to Inf] 50000 [410 to Inf] 47 [2.7 to 2200]

2. 1.2.1.3 Alberta (Canada) 2021 Jun 29 - Jul 1 1000 [120 to Inf] 5900 [240 to Inf] 5.7 [1.9 to 12]

3. 10.2.1.3 Chongqing and Sichuan (China) 2022 Aug 3 - 27 1000 [130 to Inf] Inf [2200 to Inf] Inf [11 to Inf]

4. 7.1 European Russia 2010 Jul 23 - Aug 11 790 [120 to Inf] 31000 [450 to Inf] 40 [3.4 to Inf]

5. X.2.2 south EEA 2003 Aug 3 - 14 740 [120 to Inf] Inf [2000 to Inf] Inf [11 to Inf]

6. 3.2.3.2 southern Brazil 2014 Jan 19 - Feb 12 730 [98 to Inf] 110000 [560 to Inf] 150 [5 to Inf]

7. 6.2.2.4 east South Africa 2016 Jan 6 - 7 690 [110 to Inf] 4700 [250 to Inf] 6.8 [2.2 to 140]

8. 11.1.2 southeast Australia 2019 Jan 14 - 17 670 [120 to Inf] Inf [31000 to Inf] Inf [77 to Inf]

9. X.X.1.2 Northeast Greenland National Park 2012 Jul 10 - Aug 8 640 [110 to Inf] Inf [150000 to Inf] Inf [260 to Inf]

10. 2.1.1.2 south Alaska (USA) 2019 Jul 5 - 9 640 [90 to Inf] 34000 [350 to Inf] 53 [3.3 to 2000]

Cold spells

1. 1.2.3.2 south Québec (Canada) 2014 Jan 2 - 3 870 [130 to Inf] 59 [28 to Inf] 0.068 [0 to 0.23]

2. 6.2.2.3 west South Africa 2014 Jul 6 - 10 740 [120 to Inf] 42 [22 to Inf] 0.057 [0.038 to 0.23]

3. 1.2.3.1 Nord-du-Québec (Canada) 2015 Jan 31 - Feb 19 730 [100 to Inf] 14 [9.1 to 70] 0.019 [0 to 0.12]

4. 10.2 south China 2008 Jan 22 - Feb 5 700 [110 to Inf] 43 [21 to Inf] 0.061 [0.039 to 0.23]

5. 4.1.2.2 west Algeria 2005 Jan 28 - Feb 1 690 [110 to Inf] 18 [11 to Inf] 0.026 [0 to 0.12]

6. 11.2.2.2 central Queensland (Australia) 2007 Jun 7 - Jul 1 690 [110 to Inf] 130 [44 to Inf] 0.18 [0.14 to 0.44]

7. 7.2.1.1 Yamalo-Nenets (Russia) 2006 Jan 11 680 [120 to Inf] 37 [20 to Inf] 0.055 [0.037 to 0.2]

8. 8.1.2.2 northeast Sakha (Russia) 2013 Jan 29 - Feb 27 650 [94 to Inf] 17 [10 to 130] 0.027 [0 to 0.12]

9. 11.2.2.3 south Queensland (Australia) 2007 Jul 13 - 20 650 [120 to Inf] 120 [49 to Inf] 0.19 [0.14 to 0.44]

10. 6.1.1.3 west DR Congo 2022 Nov 25 - Dec 24 630 [110 to Inf] 1 [1 to 1] 0.0016 [0 to 0.0094]

DR Congo = Democratic Republic of Congo, EEA = European Economic Area, USA = United States of America.

procedure can provide additional method for the climate monitoring of weather events in a warming348

world. Applied globally, it ensures extreme events are identified objectively, independently of the349

populations concerned or the media coverage. This can help the event attribution community both350

by providing objective lists of events to be studied in dedicated annual reports, without selection351

bias, and by building reference databases of extreme events on which climate models and statistical352

attribution methods can be confronted.353

Our procedure is not without limitations, particularly because applying it in such a generalized354

and exhaustive way requires use of simple and fast methods. A first remark concerns the long-term355

trend, which is crucial when comparing extreme events of various years. As its amplitude is356
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here estimated solely from the observations (Appendix A and Figure S3), it may contain traces357

of decadal internal variability, and this can locally affect ?1 estimates. In regions where internal358

variability causes recent years to be persistently warmer than the forced response — as suspected359

e.g. in France (Ribes et al. 2022)—, our procedure could overestimate the trend and underestimate360

the rarity of recent hot events. Using a long-term trend estimated from a combination of observed361

and modeled data would be more reliable but for future work. Importantly, the histogram of years362

of selected events or the time series of yearly minimum ?1 do not suggest any collective bias related363

to trend estimates (Appendix B and Figure S4.).364

A second remark concerns the estimation procedure for ?1, more precisely the fit of parametric365

laws onto observed samples. To compare various temporal durations and spatial domains, it is366

assumed here that the same, simple, distributions apply to all seasons, regions, and a wide range367

of time and space scales (with different parameters). For the calendar approach, we use the normal368

distribution, which is classical for temperature, but does not account for potential asymmetric369

behaviors (e.g., McKinnon and Simpson 2022). For the annual-maxima or -minima approaches,370

we use GEV distributions to fit Tx=day or Tn=day samples, which is well suitable for small = (here371

we have limited to = = 30) but less for large = (typically n=365, ie. full year). In both cases, we372

find pretty uniform histograms of the ?1 of all events in all regions, suggesting that the estimation373

procedure is "collectively" correct (Appendix B and Figure S3.). Ideally, one would need a family374

of distributions that allows a slow transition from skewed or GEV distributions for small scales to375

normal distributions when the law of large numbers starts to apply. This would affect the values376

of ?1, but without changing the philosophy of our work (the idea of focusing on ?1) nor even the377

ranking of events in a dramatic way.378

Lastly, exploring extreme events in a generalized way over so many years and regions requires379

a high quality data set of temperature observations with temporal homogenization. Here we use380

ERA5which performs well over many regions where the data assimilation and the numerical model381

are efficient. For France we have verified that ERA5 and the Météo-France thermal index are very382

close. However there are some regions where one may question the data quality (Appendix B and383

Figure S4) as previously noted by Thompson et al. (2022) in their ranking of heatwaves. Repeating384

the scanning exercise with other datasets could allow to quantify how observational uncertainties385

reverberate in our results.386
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Overall, we show that ?1 is an appropriate metric to identify the most extreme weather events387

in recent history. We have opted for a non-stationary view of climate monitoring — ?1 is the388

probability of occurrence in the factual, evolving, climate — but minimizing ?0 instead of ?1 can389

provide a stationary view. The method can be extended to other meteorological variables, such as390

precipitation or surface winds; yet the estimation of ?1 over various space and time scales is more391

delicate than for temperature. Following van der Wiel et al. (2020), it can also be adapted to select392

extreme events in terms of impacts, not weather, by replacing the meteorological variable (e.g.393

temperature) with an impact-oriented variable (e.g heat stress). Writing ?1 as a joint probability394

would also allow to consider compound events. Ultimately, the range of applications for such an395

exhaustive spatio-temporal scan goes beyond the area of extreme events: for example, replacing p1396

with an appropriate evaluation metric could enable the identification of regions and periods where397

discrepancies between observations and climate models are the strongest, which could make this398

approach useful for a much wider community.399
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APPENDIX A416

Details on the detrending procedure417

The statistical procedure used to estimate ?1 involves (i) detrending the time series (making418

it stationary) and (ii) using standard statistical methods for stationary data. It is equivalent to419

empirical methods using non-stationary fits on observations (Philip et al. 2020) but we prefer to420

do a two-step process to ensure consistency of trends between consecutive calendar dates or =-day421

durations. Here we detail how we correct a (non-stationary) yearly temperature time series with422

respect to a reference year to make all values representative of the (stationary) climate of that year.423

We do that by fitting observations onto a multi-model estimate of climate change (forced response424

�); this is illustrated with the example of France in Figure S3.425

First, following Ribes et al. (2020), we estimate the pattern of long-term warming at the location426

of interest by isolating natural and anthropogenic forced responses in a multi-model average of427

annual mean temperatures. We use an ensemble of 227 historical + SSP5-8.5 members from 46428
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models8 of the Phase 6 of the Coupled Model Intercomparison Project and write the multi-model429

multi-member mean of yearly temperatures `(H) as:430

`(H) = `=0C (H) + `0=C (H)︸               ︷︷               ︸
� (H)

+Y(H) , (A1)

where `=0C the natural forced response, `0=C the anthropogenic forced response, � = `=0C + `0=C431

the total forced response and Y the residual internal variability. This separation is done through a432

Generalized Additive Model fit, considering that `=0C is proportional to the response of an Energy433

Budget Model to natural forcings (Geoffroy et al. 2013) and `0=C is a smooth spline with 10 degrees434

of freedom (Ribes et al. 2020; Robin and Ribes 2020).435

Second, we subtract from the sample of observations its linear fit onto � (H). For the calendar436

approach, the detrending is done on a daily basis, prior to the computation of =-day averages,437

to account for potential changes in the annual cycle (e.g. a greater warming in summer than in438

winter). Following Rigal et al. (2019), we decompose the daily temperature T of day 3 and year H:439

T(3, H) = T2H2 (3) + VT(3) ×� (H) +T′(3, H) , (A2)

with T2H2 the average annual cycle (equals to 1
=H

∑
HT(3, H)), VT the scaling factor of each calendar440

day onto the forced response � (centered so that
∑
H � (H) = 0) and T′ the residual or daily anomaly441

(verifies ΣHT′(3, H) = 0). Note that T2H2 and VT are smoothed using periodic splines of respectively442

12 and 6 degrees of freedom, and that T2H2 + VT×� provides an estimate of the daily non-stationary443

normals (i.e. the average annual cycle plus a deformation associated with the long-term trend).444

Then the detrending of T(3, H) with respect to the year H1 writes:445

T(H1) (3, H) = T(3, H) − VT(3) × (� (H) −� (H1)) . (A3)

8ACCESS-CM2 (3 members), ACCESS-ESM1-5 (10), AWI-CM-1-1-MR (1), BCC-CSM2-MR (1), CAMS-CSM1-0 (2), CanESM5-CanOE
(3), CanESM5 (50), CAS-ESM2-0 (2), CESM2 (3), CESM2-WACCM (3), CIESM (1), CMCC-CM2-SR5 (1), CMCC-ESM2 (1), CNRM-CM6-
1-HR (1), CNRM-CM6-1 (6), CNRM-ESM2-1 (5), E3SM-1-1 (1), EC-Earth3-CC (1), EC-Earth3 (3), EC-Earth3-Veg-LR (3), EC-Earth3-Veg
(4), FGOALS-f3-L (1), FGOALS-g3 (4), FIO-ESM-2-0 (3), GFDL-CM4 (1), GFDL-ESM4 (1), GISS-E2-1-G (7), HadGEM3-GC31-LL (4),
HadGEM3-GC31-MM (4), IITM-ESM (1), INM-CM4-8 (1), INM-CM5-0 (1), IPSL-CM6A-LR (7), KACE-1-0-G (3), KIOST-ESM (1), MCM-
UA-1-0 (1), MIROC6 (49), MIROC-ES2L (9), MPI-ESM1-2-HR (2), MPI-ESM1-2-LR (10), MRI-ESM2-0 (2), NESM3 (2), NorESM2-LM (1),
NorESM2-MM (1), TaiESM1 (1), UKESM1-0-LL (5).
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For the annual-maxima and -minima approaches, the detrending is done on a yearly basis, but446

separately for all =-day averages, to account for different warming rates in =-day temperature447

extremes (e.g. a greater warming in Tx1day than in Tx90day):448

Tx=day(H1) (H) = Tx=day(H) − VTx=× (� (H) −� (H1))

Tn=day(H1) (H) = Tn=day(H) − VTn=× (� (H) −� (H1))
(A4)

with VTx= and VTn= scaling factors of Tx=day and Tn=day onto the forced response.449

Two important remarks on this simple detrending procedure must be made. First, it only corrects450

for potential changes in the mean, not in the variance or higher moments; this is not a major problem451

for temperature because changes in the mean dominate the total signal, but a more sophisticated452

correction could be used, especially to extend the method to other variables. Second, as we453

allow the scaling factors V) to be different from 1, we correct for possible mismatches between454

observations and models on the magnitude of long-term trends; in other words, our correction455

VT×� has the shape of the multi-model mean forced response but the amplitude of the observed456

trend.457

APPENDIX B458

Validation of the ?1 estimation procedure459

Here we provide further elements of validation of the ?1 estimation procedure. First, we verify460

that the selected events are evenly distributed throughout the scanning period, and that no clear461

long-term trend is visible in the yearly minimum ?1 (Figure S4). This suggests that the long-term462

trend is reasonably accounted for in all regions. Note that El Nino (La Nina) years coincide with463

peaks in the number of regions having a record heat-wave (cold spell), as expected since a large464

number of regions are dominated by this mode of variability.465

Second, we verify that the distributions of our ?1 estimates are close to uniform. Figure S5466

shows the histograms of ?1 estimates for all events of all 2 Mkm2 regions, for various temporal467

durations and the three (calendar, annual-maxima, annual-minima) methods. In all cases ?1 is468

rather uniformly distributed, suggesting that fitting normal distributions to calendar temperatures469

and GEV to annual-maxima and -minima is reasonable. In the calendar approach, slight departures470

from the uniform arise at the edges of the [0,1] interval, which could result for asymetric behaviors.471
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Finally, we show examples of problems encountered in a few cases when scanning the full period472

and all the regions. Importantly, there is no obvious evidence that the events listed in the main text473

or tables are concerned by such issues.474

Figure S6a shows a time series of Tx20day in the 5 Mkm2 region of east and south Brazil. The475

first 5 years of the series (1959–1963) appear well above the rest of the detrended series, which476

clearly points to a homogeneity problem. This event of October 1963 is selected by our procedure477

in this region and several child regions with pretty high rankings, but it is at least partly for wrong478

reasons.479

Figure S6b illustrates another type of problem: the time series is Tn3day in Pacific Russia, for480

which the GEV fit gives a very negative shape parameter (b = −0.7). This very sharp "upper" tail481

— right side of the distribution since the GEV is reversed for annual minima — results in a very482

low ?1 associated with this January 1960 event, although its value does not look that extreme. This483

is partly because several years have "not so low" values, and encourages to increase block size (i.e.484

more than one year) to help estimating b and ensure a better GEV fit.485

APPENDIX C486

An interactive webpage to further explore the results487

We have deployed a R shiny application to reproduce the Figures and Tables of the pa-488

per for all methods, years, and other variables (daily-maximum and -minimum temperatures):489

https://jlncttx.shinyapps.io/CRT23-app/.490

The "Local scan" tab enables the user to explore the France data and redo Figures 1, 2 and Table 1491

for any selection of variable, method and year.492

The "Global scan" tab enables the user to explore results of the ERA5 scan and redo Figures 3493

and 4 and Tables 2 for any selection of variable, method, year(s) and size of WRAF regions.494
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