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Abstract

The ratio of two normal variables and compositional Data (CoDa) are two common types of
process data in industrial and manufacturing applications. Control charts are powerful tools in
statistical process control for monitoring these types of data, as they allow for the detection of
process changes and improvement in process quality. In this chapter, we provide a comprehensive
analysis of the existing literature on control charts for monitoring the ratio of two normal variables
and CoDa and offer a perspective on the strengths and limitations of these methods, as well as
potential areas for future research. Specifically, the review is organized into two main categories:
control charts for monitoring the ratio of two normal variables and control charts for monitoring
CoDa. In this comprehensive analysis, we examine 87 research studies, comprising 68 that focus
on the ratio of two normal variables and 19 that delve into CoDa. This extensive review aims
to furnish crucial insights into the application of control charts for monitoring these distinct data
types. Moreover, it offers practical recommendations for practitioners on choosing suitable methods
and incorporating machine learning techniques to enhance monitoring efficiency. This guidance
is particularly pertinent for monitoring industrial processes within the context of Industry 5.0,
reflecting the evolving needs and complexities of modern manufacturing environments.

Keywords: Control chart, Ratio, Compositional data, EWMA, CUSUM, Shewhart, Measurement
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Acronyms

CoDa Compositional data
FSI fixed sampling interval
FSS Fixed sample size
ML Machine Learning
MCUSUM Multivariate cumulative sum
MEWMA Multivariate exponentially weighted moving average
SPC Statistical process control
SVDD Support vector data description
SVM Support vector machine
UCL Upper control limit
VSI Variable sampling interval
VSS Variable sample size

1 Introduction

In the evolving landscape of manufacturing, marked by the advent of Industry 5.0, the role of con-
trol charts in quality monitoring has become increasingly significant. Industry 5.0, characterized by
a strong focus on personalization, sustainability, and the synergistic collaboration between humans
and technology, demands innovative approaches in quality control to match its complex and dynamic
nature. In this context, control charts, a fundamental tool in statistical process monitoring (SPC),
are adapting to meet the nuanced needs of this new industrial era.

Control charts are efficient tools in providing a graphical representation of process data, essential
for detecting changes in manufacturing processes. Implementing control charts allows manufacturing
companies to monitor the quality of their products, thereby reducing waste, preventing defects, and
improving production process efficiency. In Industry 5.0, where the manufacturing processes are more
intricate and tailored, the need for precise and adaptable quality monitoring tools is paramount. Con-
trol charts for monitoring the ratio of two normal random variables and Compositional Data (CoDa)
have already received attention and continue to be an important point in this advanced manufacturing
paradigm. The ratio of two normal random variables, a common measurement in numerous industrial
applications, plays a critical role in ensuring process consistency and detecting production anomalies.
This is especially relevant in Industry 5.0, where even minor variations in ratios, such as ingredient
proportions in the food industry or dimensional ratios in manufacturing, can significantly impact the
final product’s quality and customization. CoDa, on the other hand, refers to data representing the
proportions of different components that constitute a whole. CoDa is commonly encountered in vari-
ous industrial applications, such as chemical research, econometrics, and food industries. The control
chart for monitoring CoDa is used to monitor the proportions of the different components and detect
any changes in their distribution. In the context of Industry 5.0, the control chart for monitoring CoDa
becomes crucial for maintaining the integrity of products where the balance of components is key to
quality and customer satisfaction. To obtain additional examples of the applications of the ratio of
random variables and CoDa, refer to the works of Celano et al. 1 and Aitchison 2 , respectively. While
the ratio of two normal variables and CoDa represent distinct types of data, they both fundamentally
involve ratios or proportions of different components or variables and share a common aspect of in-
corporating relative information between them. Specifically, when CoDa is limited to two components
and follows a normal distribution within the simplex space, it may exhibit similarities to the ratio
of two normal variables (even though they are still fundamentally different due to the constraints on
CoDa). Given this shared conceptual foundation in the representation of relative information through
ratios or proportions, our review strategically groups control charts designed for monitoring these two
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data types.

Consequently, in this chapter, we will provide a comprehensive overview of control charts for moni-
toring the ratio of two normal random variables and CoDa and provide intuitive outlines for papers
in these fields. To achieve this, a comprehensive overview encompassing 87 studies was conducted
to identify relevant studies for inclusion in this review. A total of 87 studies were selected based
on their relevance, with 68 studies focusing on control charts for monitoring the ratio of two normal
random variables and the remaining 19 studies focusing on control charts for monitoring CoDa. To
facilitate the analysis and presentation of the selected studies, they were categorized based on data
type into two groups: control charts for monitoring the ratio of two normal random variables and
control charts for monitoring CoDa. The remainder of the paper is organized as follows: Sections 2
and 3 provide concerns about the control chart for monitoring the ratio of two normal variables and
CoDa, together with some discussions on the advantages and disadvantages of these control charts.
Section 4 offers some perspective views on the machine learning techniques in the stages of designing,
pattern recognition, and interpreting control charts for monitoring Compositional Data (CoDa) and
the ratio of two normal random variables, enhancing the understanding of these essential tools in the
context of Industry 5.0. Finally, the chapter ends with a summary of the contributions.

2 The Ratio Control Charts

In all production processes, the practitioners must monitor how well their products meet specifica-
tions. In more general terms, product quality has two “enemies”: (1) deviations from target product
specifications and (2) excessive dispersion around the target product specifications. During the early
stages of the development of a production process, the design of experiments is often used to optimize
these two quality characteristics, and control charts are effective tools in Statistical Process Control
(SPC) for monitoring the stability of a process over time. Currently, most competitive manufacturing
companies are implementing SPC in various applications: biology, genetics, medicine, finance, and
other areas (see Montgomery 3). The design and implementation of control charts monitoring the
ratio of two variables are attractive from both theoretical and practical points of view. According to
the data from Web of Science, interest in this type of chart has increased dramatically in recent years.
In fact, Figure 1 shows the revolution of the number of publications and number of citations on the
Ratio control charts. A large part of which is article published in journals (89.71%), see Table 1 and is
in the field of Engineering Industrial (28%) and Operations Research Management Science (26%) (see
Fig. 2). Two selection criteria are used to choose and accept the Ratio control chart research articles:
1) papers are found via a computerized search of the topic areas (Quality control, SPC). The search
is narrowed using the following terms: Ratio control chart, ratio distribution, and monitoring Ratio.
This research considers the published research, including electronic literature sources such as Wiley,
Taylor & Francis, Elsevier, Springer Nature, Scopus, etc. Table 2 lists the number of published papers
among 36 journals. Quality and Reliability Engineering International is ranked first (20 publications
and ∼ 29.41%) in this area.

In this section, a brief review of the sample distribution of the ratio of two normal variables is recalled.
Then, we summarize the differences between the various types of ratio charts and their performances.

2.1 Derivation of properties of the ratio distribution

Suppose that X and Y be the two normal random variables such that W = (X,Y )T ∼ N(µµµW,ΣΣΣW),
i.e. W is a bi-variate normal random vector with mean vector and variance-covariance matrix as
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Figure 1: Revolution of publications and citations on Ratio control charts

Document Types Number Percentage

Article 61 89.71

Proceeding Paper 4 5.88

Early Access 2 2.94

Letter 1 1.47

Table 1: Document types of publications
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Journal name Number %

Quality And Reliability Engineering International 20 29.41%

International Journal Of Production Research 4 5.88%

Journal Of Quality Technology 3 4.41%

Communications In Statistics-Theory And Methods 3 4.41%

Journal Of Statistical Computation And Simulation 3 4.41%

Statistical Papers 2 2.94%

Computational Statistics & Data Analysis 2 2.94%

Technometrics 2 2.94%

Computers & Industrial Engineering 2 2.94%

Asqc 48th Annual Quality Congress Proceedings 1 1.47%

American Heart Journal 1 1.47%

Naval Research Logistics 1 1.47%

Journal Of Manufacturing Processes 1 1.47%

International Journal Of Reliability Quality & Safety Engineering 1 1.47%

Scientia Iranica 1 1.47%

Communications In Statistics-Simulation And Computation 1 1.47%

Journal Of Food Science 1 1.47%

Acta Scientiarum-Technology 1 1.47%

Symmetry-Basel 1 1.47%

European Journal Of Operational Research 1 1.47%

Biopharm International 1 1.47%

Arabian Journal For Science And Engineering 1 1.47%

Journal Of Probability And Statistics 1 1.47%

Structural Health Monitoring 2013, Vols 1 And 2 1 1.47%

IIE Transactions 1 1.47%

Engenharia Agricola 1 1.47%

Journal Of Mathematics 1 1.47%

Scientia Iranica Transaction E-Industrial Engineering 1 1.47%

Journal Of Testing And Evaluation 1 1.47%

Quality Innovation Prosperity-Kvalita Inovacia Prosperita 1 1.47%

British Medical Journal 1 1.47%

Science In China Series A-Mathematics 1 1.47%

Productivity & Quality Management Frontiers Iv, Vols 1 And 2 1 1.47%

Journal Of Industrial And Production Engineering 1 1.47%

Icim2012: Proceedings Of The 11th Inter. Conf. On Industrial Management 1 1.47%

Advances And Applications In Statistics 1 1.47%

Table 2: Number and percentage of papers in each journal

6



Figure 2: Document types of publications

follows:

µµµW =

(
µX

µY

)
and ΣΣΣW =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
(1)

where µX and µY are the means of two variables and ρ is the correlation coefficient between them.
Coefficients of variation (γX , γY ) and standard-deviation ratio (ω) of X and Y are denoted by γX =
σX
µY

, γY =
σY
µY

and ω =
σX
σY

, respectively. Let Z be the ratio of X to Y (Z = X/Y ). Celano and

Castagliola4 derived an adequate approximation for the c.d.f (cumulative distribution function) of Z
as a function of γX , γY , ω, and ρ as:

FZ(z|γX , γY , ω, ρ) ≃ Φ

(
A

B

)
, (2)

where

A =
z

γY
− ω

γX
, and B =

√
ω2 − 2ρωz + z2,

and Φ is the c.d.f of standard normal distribution (Sdn). After some tedious derivations, approximated
p.d.f (probability density function) of the ratio Z is

fZ(z|γX , γY , ω, ρ) ≃
(

1

BγY
− (z − ρω)A

B3

)
× ϕ

(
A

B

)
, (3)

where ϕ(·) is the p.d.f. of Sdn. Solving the equation FZ(z |γX , γY , ω, ρ) = p allows obtaining an
approximate expression for the i.d.f (inverse distribution function) F−1

Z (p|γX , γY , ω, ρ). We have

F−1
Z (p|γX , γY , ω, ρ) ≃


−C2 −

√
C2
2 − 4C1C3

2C1
, if p ∈ (0, 0.5],

−C2 +
√
C2
2 − 4C1C3

2C1
, if p ∈ [0.5, 1),

(4)
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where C1, C2, and C3 are functions of ω, ρ, γX , γY , p and they are:

C1 =
1

γ2Y
−
(
Φ−1(p)

)2
,

C2 = 2ω

(
ρ
(
Φ−1(p)

)2 − 1

γXγY

)
,

C3 = ω2

(
1

γ2X
−
(
Φ−1 (p)

)2)
,

and where Φ−1(·) is the i.d.f. of Sdn.

2.2 Various types of ratio control charts and their descriptions.

In the SPC literature, the research on control charts for monitoring the ratio of two normal random
distributions is mainly focused on some types of charts: the traditional Shewhart charts that we denote
RZ-chart, overcome the problem of the Shewart chart in the case the small shift-size (Synthetic-RZ,
Run-Rule RZ, cumulative sum charts (CUSUM -RZ) and the exponentially weighted moving average
charts (EWMA-RZ). After that, to improve the performance of these charts, the researchers found
some adaptive models. In other studies, they are looking for the effect of measurement errors on
the performance of RZ-charts. In this subsection, we make a summary of these types and give some
comments.

2.2.1 Shewhart-RZ charts

With this traditional type chart, the first author to mention is Spisak 5 . He investigated a quality
control procedure for insurance against unemployment by estimating the bias in a ratio estimator. An
illustrative example in his work is the Department of Labor’s Unemployment Insurance Quality Control
program. Other applications of ratio control charts are also mentioned. Oksoy et al. 6 discussed some
useful guidelines to implement the ratio chart for supervising and controlling the ratio Z = X/Y of
glass oxide. Celano et al. 1 design the Shewhart chart based on individual measurements, (i.e. at fixed
sampling times k, the sample size is n = 1). They are named the Shewhart-RZ control chart. This
chart, monitoring the ratio Zk = Xk/Yk, is designed regarding a couple of probability action limits,
upper control limit (UCL) and lower control limit (LCL) as follows

UCLRZ = F−1
Z

(
1− α

2
|γX0 , γY0 , ω0, ρ

)
LCLRZ = F−1

Z

(α
2
|γX0 , γY0 , ω0, ρ

)
where α is the type I error probability associated with the control chart. The chart issues an out-
of-control when Zi > UCLRZ or Zi < LCLRZ . The authors considered an illustrative example in
food manufacturing; they check the stability of the ratio Z between the weight of almonds and raisins
and the total weight of muesli (a mixture of whole grain, rolled oats, raisins, almonds, and several
kinds of seeds). The result of the Shewhart-RZ chart showed that between samples #12 and #13,
there is an error report (the process is out of control). Extending this work, Celano and Castagliola 4

investigated the RZ chart to the condition assuming that each subgroup consists of n > 1 sample
units. This extension is very important because, in several manufacturing environments, sample units
can be changed due to planning decisions or cannot be ensured with sufficient precision. The statistic
they suggest monitoring is

Ẑi =

∑n
j=1Xi,j∑n
j=1 Yi,j
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Therefore the control limits are now

UCLRZ = F−1

Ẑi

(
1− α

2

∣∣∣n, γX , γY , ω0, ρ0

)
LCLRZ = F−1

Ẑi

(α
2

∣∣∣n, γX , γY , ω0, ρ0

)
where

F−1

Ẑi

(
p|n, γX , γY , ω0, ρ0

)
= F−1

Z

(
p
∣∣∣n, γX√

n
,
γY√
n
,
z0γX
γY

, ρ0

)
The fact that the size of each sample unit is not strictly fixed when considering different subgroups
simplifies the quality control procedure and makes the chart implementation more flexible. Always
the same example in the food industry, the quality practitioner decides to sample n = 5 boxes every
30 minutes, and they computed the ratio of the sample average weights of pumpkin seeds and flax
seeds from the muesli mixture. The RZ-Shewhart chart immediately signals the occurrence of the
out-of-control condition by plotting to point #12 above UCLRZ .

2.2.2 Synthetic RZ-charts

It is well known that Shewhart-type control charts are rather inefficient in some sensitive situations,
for example, detecting small or moderate changes in a process. One of the advanced approaches is the
synthetic control chart. They are a combination of a traditional chart and a conforming run-length
(CRL) chart. These charts have been considered to maintain simplicity, be easy to implement and
interpret by practitioners, and outperform traditional Shewhart charts. Furthermore, it supports the
quality management strategy of many practitioners, who prefer waiting until the occurrence of a sec-
ond point beyond the control limits before looking for an assignable cause. To monitor the ratio of
two normal variables, these charts were denoted by Syn-RZ. Celano and Castagliola 7 designed and
implemented the Zyn-RZ control charts. They also gave an example of the food industry to illustrate
this model. Like the RZ-model, besides the control limits UCLRZ and LCLRZ , we consider the CRL
sub-chart monitors the CRL, which is defined as the number of inspected samples between two consec-
utive nonconforming samples. Therefore, the Syn-RZ control charts signal if and only if the plotting
statistic of the RZ–Shewhart sub-chart plots outside the control limits (Ẑj /∈ [LCLRZ ,UCLRZ ]) and
Ẑk ∈ [LCLRZ ,UCLRZ ] for k ∈ {j + 1, j + 2, · · · , i− 1} the resulting CRL is less than or equal to the
H (CRL = i − j ≤ H with some H ∈ N∗ defined by the practitioners). The statistical design of the
Syn-RZ charts is an optimization problem

(H∗, α∗
RZ) = argmin

(H,αRZ)
ARL

[
(H,αRZ)

∣∣∣n, γX , γY , ρ0, ρ1, τ
]

(5)

subject to

ARL
[
(H,αRZ)

∣∣∣n, γX , γY , ρ0, ρ1, τ
]
= ARL0

Here τ is the shift size. The numeric results allow us to conclude that the optimal value H∗ increases
for moderate to small shift size. The Syn-RZ charts improve its detection performance for the smaller
coefficient of variation (γX , γY ). The authors also gave a table showing that the Syn-RZ charts
significantly outperform the RZ charts in Celano and Castagliola 4 .

2.2.3 Runs Rules RZ charts

The statistical sensitivity of a Shewhart control chart can be improved by implementing supplementary
Run Rules. Tran et al. 8 adopted the run rules for the Shewhart-RZ control charts, denoted as RR-
RZ control charts, to increase its sensitivity to small shifts. A Run Rules charts (denoted by RRr,s)
monitor the statistics X considering that the process is out-of-control, at instant i, if one of the
following rules applies
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Figure 3: Intervals of Ω1,Ω
+
2 ,Ω

−
2 ,Ω

∞
2 and an example of transient states of the Markov chain RR2,3−X

• Xi ∈ Ω∞
2

• Xi ∈ Ω−
2 and #{Xj ∈ Ω−

2 , j = i − s + 1, · · · , i} ≥ r or Xi ∈ Ω+
2 and #{Xj ∈ Ω+

2 , j =
i− s+ 1, · · · , i} ≥ r

where the domain of definition of Ω+
2 ,Ω

−
2 and Ω∞

2 are in Fig 3
In order to compute the statistical properties of the RR-RZ control charts, they defined

• a lower-sided r-out-of-s Run Rules control chart (denoted as RR-RZ−
r,s). An out-of-control signal

is given at time i if Ẑi < LCLRR-RZ (in this case, UCLRR-RZ = +∞).

• an upper-sided r-out-of-s Run Rules control chart (denoted as RR-RZ+
r,s). An out-of-control

signal is given at time i if Ẑi > UCLRR-RZ (in this case, LCLRR-RZ = −∞).

A comparison with the ARL values for the RZ control chart was established. As expected, the RR-RZ
charts are more sensitive than RZ charts to small shifts of the nominal ratio z0. Namely, it shows
that in general, the shift-size τ ∈ [0.95, 1), the better option is RR-RZ−

(r,s) charts; when τ ∈ (1, 1.02],

the better option is RR-RZ+
(r,s) chart and if τ < 0.95 or τ > 1.02, the better option is the RZ control

chart (see Tran et al. 8).

2.2.4 EWMA RZ charts

One of the control chart types that we cannot ignore is the EWMA type. In these types of charts,
instead of averages or individual observations, a smoothed moving average is applied to make any trend
or deviation (in averages away from the center line) more apparent. These charts take full advantage of
the previous sample information, making charts faster at detecting relatively small shifts. For example,
Tran et al. 9 proposed two one-sided EWMA-RZ charts, and it turned out that the EWMA-RZ chart
is statistically more sensitive than the Shewhart -RZ chart on the whole. The reason for choosing two
one-sided instead of one two-sided was explained by the authors: in general, the ratio distribution
can be asymmetrical, and designing two one-sided charts will be more flexible for practitioners. They
looked at two sub-charts:

• an upward EWMA-RZ chart (denoted as EWMA-RZ+) with a single control limit UCL+ (here
LCL+ = z0)

Y +
i =

{
max(z0, (1− λ+)Y +

i−1 + λ+Ẑi if i ≥ 1

z0 if i = 0

10



• a downward EWMA-RZ chart (denoted as EWMA-RZ−) with a single control limit LCL− (here
UCL− = z0)

Y −
i =

{
min(z0, (1− λ−)Y −

i−1 + λ−Ẑi if i ≥ 1

z0 if i = 0

here λ± ∈ (0, 1] is smooth parameter

The design of two one-sided EWMA-RZ charts consists in optimizing a couple λ and the control limit
such that the value of out-of-control ARL is smallest.

If the ARL values for the out-of-control process are uniformly smaller than the in-control ARL, it is
called an ARL-unbiased control chart. Otherwise, it takes a longer time on average to signal some
assignable causes than when there is no assignable cause. In this case, control limits are chosen such
that the ARL takes its maximum value at τ = 1. Tran and Knoth 10 studied the long-term properties
of ARL-unbiased EWMA-RZ control chart, they also investigated the steady-state ARL. Their results
show that when ∆τ = |τ − 1| increase, the values optimal λ∗ increase to 1; the performance of ARL-
unbiased EWMA-RZ charts depends strongly on the sample size n and the value of (γX , γY ). Their
report indicates that the unbiased ARL limits exhibit the most balanced performance in both the
zero-state and steady-state ARL. Hence, it is an attractive version of a two-sided EWMA RZ control
chart.

2.2.5 CUSUM-RZ charts

In this type of chart, instead of plotting individual observations, a cumulative sum of the deviations of
the individual measurements from the central line or target specifications is plotted. These charts are
particularly powerful for detecting small shifts: While in traditional Shewhart charts, such a deviation
does not generate an out-of-control condition within a large number of samples, the CUSUM chart
is very sensitive in this respect and quickly detects such slight changes. Tran et al. 11 proposed and
investigated the statistical properties of two Phase II one-sided CUSUM control charts for monitor-

ing the ratio of population means of a bi-variate normal distribution Ẑi =
n∑

j=1

Xi,j/
n∑

j=1

Yi,j . More

specifically, they suggest the following two separate one-sided CUSUM charts:

• upward CUSUM-RZ with the corresponding upper control limit ULC+ = H+ × z0

S+
i =

{
max(0, S+

i− + Ẑi − z0 +K+) if i ≥ 1

0 if i = 0

• downward CUSUM-RZ with the corresponding lower control limit LCL− = H− × z0

S−
i =

{
max(0, S−

i− − (Ẑi − z0)−K−) if i ≥ 1

0 if i = 0

where z0 is the in-control ratio andK+,K− are the reference parameters that tune the sensitivity
of the corresponding CUSUM-RZ charts.

The aim of their work is to find out the optimal couples (K±∗, H±∗) by minimizing the out-of-control
ARL according to the target in-control average run length (ARL0). The numeric results show a similar
tendency to the results in Celano and Castagliola 4 . As expected, compared to the Shewhart-RZ charts,
the one-sided CUSUM-RZ control charts have significantly better performance in the detection of out-
of-control conditions.
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Figure 4: The upward VSI Shewhart-RZ chart

2.3 Adaptive control charts types of ratio

An adaptive control chart involves varying at least one of the chart’s parameters, such as the sampling
interval, sample size, or the width constant of control limits. The purpose of this adaptive chart type
is to improve the effectiveness of the control chart (i.e. detect out-of-control situations as quickly as
possible). Varying the sampling interval (VSI) between samples is an alternative method adopted
for quicker detection of an out-of-control process as compared with the conventional fixed sampling
interval (FSI) Shewhart chart. The principle of this type is that the time until the next sample depends
on what is being observed in the current sample. Sampling is less frequent when the process is at
a high level of quality and vice versa. Nguyen et al. 12 suggest integrating the VSI feature into the
Shewart chart for monitoring the ratio of population means of a bivariate normal distribution. It is
demonstrated that the FSI RZ charts are slower than VSI-type charts in detecting process changes.
The domain of in-control is divided into two: one is the “save region” where the time to next sampling
is hL (“long”) and the “warning region” where the time to next sampling is hS (“short”). Because
of the property asymmetric of the distribution of the ratio, the run length (ARL) is biased. In order
to overcome this drawback, the researcher proposes designing two separate one-sided control charts,
involving an upper-sided chart, which detects an increase in the ratio (denoted as “upward Shewhart-
RZ chart”), and a lower-sided chart, which detects a decrease in the ratio (denoted as “downward
Shewhart-RZ chart”). For example, to illustrate the upper situation, we can look at Figure 4. Instead
of looking at the ARL, they are looking for the average time to signal (ATS) which counts the expected
time before a control chart signals an out-of-control condition after the occurrence of an assignable
cause or the issue of a false alarm.

ATS = E(h)×ARL (6)

where E(h) = (hSpS + hLpL)/(1 − q) is the average sampling interval. Here pS , pL, and q are the
probabilities that a sample point drops into the safe, warning, and out-of-control regions, respectively.

For the type EWMA and CUSUM, the readers can refer to Nguyen et al. 13 and Nguyen et al. 14 .

2.4 RZ - control charts under the effect of measurement errors

To enhance the practical use of the ratio chart, the effect of measurement error has been considered
in recent times. Most studies show that both the precision error and the accuracy error have negative
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impacts on the performance of the control chart. In this model, under the presence of measurement
error, the observations at time i will be

W∗
i,j,k = A+BWi,j + εi,j,k, k = 1, . . . ,m, (7)

where Wi,j = (Xi,j , Yi,j)
T ∼ N(µW,ΣW) is a bi-variate normal vector with mean µW and variance-

covariance matrixΣW, A = (aX , aY )
T is a (2×1) constants vector, B is a (2×2) matrix, ε ∼ N(0,ΣM )

is a centered bivariate normal random vector assumed to be independent of W.

The monitoring statistics

Ẑ∗
i =

µ̂X∗
i

µ̂Y ∗
i

=

∑n
j=1 X̄

∗
i,j∑n

j=1 Ȳ
∗
i,j

, (8)

are recommended, where X̄∗
i,j and Ȳ ∗

i,j are two components of the bi-variate normal vector W
∗
i,j .

In literature, we found that some models of RZ charts are considered with the effect of measurement
errors like Shewhart-RZ charts (see Tran et al. 15 ; Nguyen and Tran 16), EWMA-RZ charts (see Nguyen
et al. 17), Run sum RZ charts (see Abubakar et al. 18). Future research could be to investigate the
effect of measurement errors on the control charts, monitoring the ratio of random normal variables
like the CUSUM-RZ charts, Adaptive EWMA-RZ charts, Adaptive CUSUM-RZ charts, considering
the case of short runs or considering Phase I implementation.

3 Monitoring the Compositional Data

CoDa and the ratio of two normal random variables are two types of data that deal with ratios
or proportions of different components or variables. CoDa represents proportions or percentages of
different components that sum up to a constant, while the ratio of two normal random variables
represents the ratio of two continuous variables having normal distributions. Although these data
types are distinct, they share a common aspect of involving relative information of two or more
components or variables. The ratio of two normal variables can be regarded as a special case of CoDa
in which the number of components is limited to two, and the data has a normal distribution in a
Simplex space. Control charts can be used to monitor the ratios involved in both data types and detect
process changes over time. Due to their shared feature of involving ratios or proportions, we decided
to group the control charts for monitoring CoDa and the ratio of two normal variables together in our
analysis and review.

3.1 Modelling of Compositional Data

This section presents a brief overview of the CoDa and its simplex space, as well as several widely-used
transformation techniques to transform CoDa into a vector representation in real space.

In statistics, CoDa refers to data that often describes the proportions, percentages, concentrations, or
frequencies of some whole, and their individual values are strictly positive. An example of CoDa is
the mineral composition in a rock sample, where a geologist can obtain a rock sample and perform an
analysis to determine the proportions of its various mineral components. The applications of CoDa
can be found in many domains, including but not limited to chemical research, econometric and survey
data analyses, geology, the food industry, etc. where the composition of a sample is important for
understanding the properties or behavior of the system, see Aitchison 2 .
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According to the definition provided by Aitchison 2 , Pawlowsky-Glahn et al. 19 , a (row) vector x =
(x1, . . . , xp) is considered a p-part composition if its components are strictly positive and carry only
relative information. The term “relative information” here refers to the interrelationships among the
composition’s components, regardless of their numerical values. The sum of all the components of

x,

p∑
i=1

xi, is a constant κ. Depending on the value of κ, the measurements can be interpreted as

proportions (if κ = 1) or percentages (if κ = 100), for instance. Since the multiplication of a positive
vector by a positive constant does not change the ratios between its components, each composition
can be regarded as an equivalent class of proportional factors. Thus, if x = λy where x and y are
compositions, and λ is a constant, we say that x and y are compositionally equivalent. Alternatively,
it the closure of a p-part composition x = (x1, x2, . . . , xp) to κ > 0 is defined by

C(x) =
(

κx1∑p
i=1 xi

,
κx2∑p
i=1 xi

, . . . ,
κxp∑p
i=1 xi

)
(9)

then the two p-part compositions are considered to be compositionally equivalent if their closures are
equal, i.e., C(x) = C(y), for every positive constant κ.

The sample space of CoDa is represented by the simplex,

Sp =

{
x = (x1, x2, . . . , xp) | xi > 0, i = 1, . . . , D;

p∑
i=1

xi = κ

}
(10)

In Euclidean space, vectors can be added or multiplied by scalars using Euclidean geometry to deter-
mine their properties or compute the distance between them. However, applying this geometry directly
to CoDa in Sp is not feasible due to its special structure. To address this issue, Aitchison introduced
the Aitchison geometry, with two fundamental operations required for a vector space structure of the
simplex Sp: perturbation and powering operators. These operators are equivalent to the addition and
multiplication by scalar operations in real space, respectively. The perturbation operation, denoted
by ⊕, adds a vector y ∈ Sp to a vector x ∈ Sp, and is defined as follows:

x⊕ y = C(x1y1, . . . , xpyp) ∈ Sp

The powering operation, denoted by ⊙, multiplies a vector x ∈ Sp by a scalar constant α ∈ R, and is
defined as follows

α⊙ x = C(xα1 , . . . , xαp ) ∈ Sp

The simplex Sp with the perturbation and the power operations result in a vector space structure,
denoted by (Sp,⊕,⊙).

In practical applications, it is common to transform CoDa into vectors in the Euclidean space rather
than directly deploying the model in the Simplex space to eliminate the constraints of CoDa. One
widely used transformation technique is the centered log-ratio transformation (clr) proposed by Aitchi-
son 2 . This clr transformation is an isometry from the Simplex space Sp to a subspace U ⊂ Rp, defined
as follows

clr(x) =

(
ln

x1
gm(x)

, ln
x2

gm(x)
, . . . , ln

xp
gm(x)

)
= (ξ1, ξ2, . . . , ξp) (11)

Here, gm(x) =

(
p∏

i=1

xi

) 1
p

= exp

(
1

p

p∑
i=1

xi

)
represents the component-wise geometric mean of the
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composition, and

p∑
i=1

ξi = 0. The inverse of the clr transformation retrieves x from ξ = (ξ1, . . . , ξp) by

clr−1(ξ) = C(exp(ξ)) = C(exp(ξ1), exp(ξ2), . . . , exp(ξp)). (12)

According to Egozcue et al. 20 , the constraint in the component of clr(x) results in a singular variance-
covariance matrix for random composition. To address this issue, Egozcue et al. 20 introduced a
new transformation called the isometric log-ratio (ilr) transformation, which is associated with an
orthogonal basis in Sp. Let e1, e2, . . . , ep−1 be an orthonormal basis of Sp, hence any composition
x ∈ Sp can be expressed as a linear combination of this basis, i.e,

x =

p−1⊕
i=1

x∗i ⊙ ei, x∗i = ⟨clr(x), clr(ei)⟩

The ilr transformation of x ∈ Sp is given by ilr(x) = x∗ = (x∗1, x
∗
2, . . . , x

∗
p−1).

Let B be a (p − 1, p) matrix with the ith row defined as clr(ei), for i = 1, . . . , p − 1. This matrix is
commonly known as a contrast matrix associating to the orthonormal basis e1, e2, . . . , ep−1. The ilr
transformation of a composition x can be computed as follows:

x∗ = ilr(x) = clr(x) ·B⊺

There are many orthonormal basis candidates for Sp. One such candidate was proposed by Egozcue
and Pawlowsky-Glahn 21 using a sequential binary partition method. In this particular basis, ei is
defined as C(ei,1, . . . , ei,j , . . . , ei,p), where

ei,j =


exp

(√
1

i(i+ 1)

)
if j ≤ i

exp

(
−
√

i

i+ 1

)
if j = i+ 1

1 otherwise

Using this orthonormal basis to transform x, the resulting coordinates x∗i can be computed as

x∗i =

√
i

i+ 1
ln


(∏i

j=1 xj

) 1
i

xi+1

 .

Given the ilr coordinate x∗, the original composition x can be recovered by applying the inverse ilr
transformation as follows

ilr−1(x∗) = clr−1(x∗B) = C(exp(x∗B)).

Table 3 illustrates the practical application of the ilr transformation for the case where the number
of parts p is 4. The first five columns of the table present the components of ten compositions in S5,
while the remaining three columns show their corresponding ilr coordinates in R4. It can be observed
that the ilr coordinates x∗i are no longer constrained by the constant sum. For a more comprehensive
understanding of CoDa and its properties, see Pawlowsky-Glahn et al. 19 .
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x1 x2 x3 x4 x5 x∗1 x∗2 x∗3 x∗4

0.02 0.3 0.14 0.25 0.29 -1.91 -0.48 -0.84 -0.82

0.15 0.08 0.22 0.3 0.25 0.44 -0.57 -0.67 -0.32

0.11 0.17 0.23 0.11 0.38 -0.31 -0.42 0.34 -0.82

0.01 0.08 0.22 0.08 0.61 -1.47 -1.67 -0.31 -2.04

0.39 0.1 0.33 0.07 0.11 0.96 -0.42 1.05 0.33

0.23 0.08 0.42 0.05 0.22 0.75 -0.92 1.19 -0.4

0.31 0.03 0.46 0.04 0.16 1.65 -1.28 1.21 -0.35

0.04 0.06 0.33 0.2 0.37 -0.29 -1.56 -0.67 -1.07

0.22 0.35 0.13 0.26 0.04 -0.33 0.62 -0.16 1.55

0.24 0.38 0.11 0.25 0.02 -0.32 0.82 -0.13 2.78

Table 3: Example of ilr transformation in S5

3.2 Control charts for monitoring CoDa

The first control chart for monitoring this special data was proposed by Boyles 22 , in which the author
explored the application of a chi-square control chart for monitoring data (CoDa) derived from the
Dirichlet distribution. The degrees of freedom in the chi-square distribution were adjusted slightly
to accommodate this approach. Subsequently, other types of control charts, such as Shewhart-type
and memory-type charts, were also developed and examined. These control charts adhere to the
same principles as conventional control charts but have been adapted to accommodate the special
structure of CoDa, including its non-negative components and constant-sum constraints. The log-
ratio transformation method is commonly employed in this context, as mentioned in Section 3. In this
section, a brief review of research related to control charts for monitoring CoDa in Phase II MSPC
will be provided.

3.2.1 Chi-square control chart

The chi-square control chart was initially proposed by Boyles 22 when studying CoDa derived from
a Dirichlet distribution. Given a sample of size n independent observations x1,x2, . . . ,xn where
xi = (xi1, xi2, . . . , xip) follows a Dirichlet distribution D(α) with α = (α1, α2, . . . , αp) is a positive
parameter, the statistic of interest to be monitored is given by

X2 =
(xi1 − π1)

2

π1
+

(xi2 − π2)
2

π2
+ . . .+

(xiD − πp)
2

πp
, (13)

where π1, π2, . . . , πp denote the process averages. Boyles
22 demonstrated that when the CoDa originate

from a Dirichlet distribution, X2 is asymptotically distributed as a multiple of χ2
p−1, thereby the X2
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chart based on χ2
p−1 valid as a certain type of asymptotic approximation. To achieve an overall false

alarm rate of 0.0027, the upper control limit has been established based on the “3σ” threshold.

3.2.2 Shewhart-type control charts

Guevara et al. 23 pioneered the application of Hotelling T 2 control charts in Dirichlet regression to
examine the connection between a response variable and one or more explanatory variables. Sub-
sequently, Vives-Mestres et al. 24 studied a method for interpreting out-of-control signals in the T 2

C

control chart used for monitoring three-part CoDa. Building upon this work, Vives-Mestres et al. 25

proposed an extension of the T 2
C chart to monitor individual CoDa observations based on isometric

log-ratio (ilr) transformation. In these works, the authors conducted an investigation on the control
charts to detect shifts in the mean vector and assumed that the covariance matrix of the distribution
would remain constant throughout the study. Furthermore, they presumed that the in-control (IC)
and out-of-control (OC) distributions of the dataset followed a normal distribution. The general design
of the T 2

C chart is as follows: Let x1,x2, . . . , be Phase II p-parts compositions with the in-control (IC)
data follows a normal distribution N (µ0,Σ0) on the simplex space Sp. Let x∗

t = (x∗t1, x
∗
t2, . . . , x

∗
t,p−1)

denote its ilr coordinates (as defined in Section 3) then x∗
t follows a normal distribution N (µ∗

0,Σ
∗
0) in

the real space Rp−1. In case µ∗
0,Σ

∗
0 are known, the monitored statistic of this T 2

C at ith time point is
defined by

T 2
C = (x∗

i − µ∗
0)

′Σ∗−1
0 (x∗

i − µ∗
0) (14)

and the chart would give a signal of mean shift if T 2
C > χ2

1−α,p−1 where α ∈ [0, 1] is the given significant

level, χ2
1−α,p−1 is the 100(1− α)-th quantile of χ2

p−1 distribution. In scenarios where both µ∗
0 and Σ∗

0

are unknown, as is frequently encountered in practical applications, they can be estimated using the
sample mean vector x̄ and the sample covariance matrix S of the ilr transformed data of the IC sample
(obtain from Phase I). Suppose that an IC sample of size n is available, the T 2

C statistic at ith time
point becomes

T 2
C = (x∗

i − x̄)′S−1(x∗
i − x̄) (15)

and the chart would give a signal of mean shift when T 2
C >

(p− 1)(n− 1)(n+ 1)

n(n− p− 1)
F1−α,p−1,n−p−1 where

F1−α,p−1,n−p−1 is the 100(1− α)-th quantile of F distribution Fp−1,n−p−1.

Vives-Mestres et al. 25 compared this T 2
C chart using ilr transformation method to transform CoDa

with the T 2 control chart after removing one component of the composition and has shown its out-
performance with the other in terms of average run length (ARL) values. However, it (and Hotelling’s
T 2 control chart for monitoring other types of data) has a significant drawback in that it assumes
that the variance-covariance matrix of the process is constant over time, which may not always hold
in practical situations. Changes in raw materials, process parameters, equipment, environmental con-
ditions, personnel, and other factors can lead to variability in the covariance matrix of the process,
making the chart less effective in detecting changes in the process over time. Additionally, the control
chart makes decisions about process performance solely based on the observed data at the current
time point, which can be less sensitive to small shifts in the process distribution. This can lead to a
higher probability of false alarms and missed opportunities to identify and correct process issues.

3.2.3 Memory-type control charts

As in unconstrained cases and as mentioned before, multivariate Shewhart charts used for monitor-
ing CoDa assume that the variance-covariance matrix of the process is constant over time and relies
only on the observed data at the current time point to make decisions about process performance.
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While they effectively detect relatively large and transient shifts, they are less sensitive to relatively
small and persistent shifts in the process distribution. To address these limitations, researchers have
suggested using multivariate control charts such as multivariate exponentially weighted moving av-
erage (MEWMA) and multivariate cumulative sum (MCUSUM), which incorporate the information
from previous observations along with the current observation, improving their ability to detect small
shifts. These memory-type control charts use both past and present observations to make decisions
and update their estimates over time.

Suppose that at each sampling period i = 1, 2, . . ., a sample of size m independent p-part composi-
tions xi,1, . . . ,xi,m is collected and each xi,j follows a multivariate normal distribution NSp(µ,Σ), on
the simplex Sp. Assume also that when the process is in control, the composition center is µ0, and
when the process is out-of-control, the composition center is µ1. Let x∗

i,1, . . . ,x
∗
i,m represent the ilr

coordinates of xi,1, . . . ,xi,m hence x∗
i,j follows a multivariate normal distribution, NRp−1(µ∗

0,Σ
∗
0), on

Rp−1.

• Multivariate EWMA-CoDa control charts

Tran et al. 26 proposed to use a MEWMA scheme to monitor CoDa. The statistic to monitor
the process suggested by Tran et al. 26 is

Qi = w⊺
iΣ

−1
wi

wi, i = 1, 2, . . . (16)

where
wi = r(x̄∗

i − µ∗
0) + (1− r)wi−1, i = 1, 2, . . . (17)

is the EWMA vector, x̄∗
i is the sample mean of ith ilr-transformed sample, Σwi is the variance-

covariance matrix of wi. The smoothing parameter r in the EWMA vector determines the
weights given to the current and past observations. A higher value of r results in a faster
decrease in the weights given to past observations, meaning that past observations have less
influence on the MEWMA statistic and vice versa. The MEWMA chart issues an out-of-control
signal when the value of the statistic Qi exceeds the upper control limit H, where H is chosen
to achieve a specific in-control average run length (ARL0).

• Multivariate CUSUM-CoDa control chart

Imran et al. 27 considered the MCUSUM-CoDa control chart in both known and unknown pa-
rameters cases. In case µ∗

0,Σ
∗
0 are known, the monitoring statistic of the MCUSUM-CoDa will

be
Ci =

[
m(sTi Σ

∗−1
0 si−1)

]1/2
, i = 1, 2, . . . (18)

where

si =

{
0 if i = 0 or Qi ≤ k

(si−1 + x̄∗
i − µ∗

0)(1− k/Qi) otherwise

Qi =
(
m(si−1 + x̄∗

i − µ∗
0)

TΣ∗−1
0 (si−1 + x̄∗

i − µ∗
0)
)1/2

This MCUSUM-CoDa chart issues a signal when Ci > h, where h is chosen to achieve a specific
value of in-control ARL. In case µ∗

0,Σ
∗
0 are unknown, they can be estimated by the sample mean
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and sample covariance matrix of the available IC dataset

µ̂∗
0 =

1

n

n∑
j=1

x̄∗
j , Σ̂∗

0 =
1

n

n∑
j=1

S∗
j (19)

where n is the number of samples of size m IC data, S∗
j is the sample covariance matrix of jth

sample. The MCUSUM-CoDa chart has been demonstrated to exhibit similar performance to
the MEWMA-CoDa chart and to outperform the T 2-CoDa chart in terms of ARL values.

3.2.4 Adaptive control charts

• VSI MEWMA-CoDa control chart:

As an extension of the MEWMA-CoDa chart, Nguyen et al. 28 designed a Phase II MEWMA-
CoDa control chart with variable sampling intervals to monitor CoDa based on isometric log-
ratio transformation. In the FSI MEWMA-CoDa control chart, the sampling interval is set at
a consistent value denoted as hF . Conversely, in the VSI MEWMA-CoDa control chart, the
interval between consecutive samples X̄i, X̄i+1 changes based on the present value of Qi. This
chart maintains the same UCL as the FSI chart but adds an extra warning limit, represented as
w = UWL where 0 < UWL < UCL. This warning limit helps switch between longer (hL) and
shorter (hS) sampling intervals. The longer interval hL is used when the control statistic Q2

i ≤
UWL2 indicates a safe zone, and the shorter interval hS is applied when UWL2 < Q2

i ≤ UCL2,
marking a warning zone. A signal indicating the process is out of control is generated when
Q2

i > UCL2. As the sampling interval in the VSI chart is variable, the relationship between
Average Time to Signal (ATS) and Average Run Length (ARL) in this chart can be expressed
as:

ATSVSI = E(h)×ARLVSI (20)

Here, E(h) signifies the average sampling interval. The proposed FSI MEWMA-CoDa control
chart has shown its better performance compared with the original version of MEWMA-CoDa
in terms of Average Time to Signal (ATS) values.

• VSS MEWMA-CoDa control chart:

Traditionally, standard process monitoring control charts have primarily relied on a fixed sample
size (FSS) approach. As another extension to the MEWMA-CoDa chart,29 proposed a control
chart that leverages a variable sample size (VSS), namely VSS-MEWMA-CoDa, to enhance the
efficiency and effectiveness of the MEWMA control chart when applied to CoDa. In this work,
the MEWMA vectors are calculated by

wi = rẑi + (1− r)wi−1, (21)

where ẑi is the standardized sample mean of ith ilr-transformed sample with

ẑi =
x̂∗
i − µ∗

0

σ∗
0/
√
n
.

The asymptotic variance-covariance matrix proposed by Lowry et al. 30 is commonly used to
estimate the variance-covariance matrix ΣWi

ΣWi =
r

n(2− r)
Σ∗ (22)
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The VSS-MEWMA-CoDa CC issues a signal when the statistic Qi with

Qi = w⊺
iΣ

−1
wi

wi, i = 1, 2, . . . (23)

is greater than the upper control limit (UCL). The sample size n is varied based on the value
of statistic Qi. The transition from a small to a large sample size, or vice versa, is based on the
computed value of Qi. Specifically, a smaller sample size is employed, denoted as n = n1, when
the value of Qi falls within the range 0 < Qi < UWL. Conversely, a larger sample size, indicated
by n = n2, is utilized when Qi satisfies the condition UWL < Qi < UCL. It is important to note
that n1, n0, and n2 are related such that n1 < n0 < n2, where n0 represents the predetermined
fixed sample size.

3.2.5 Control charts under the effect of measurement error or autocorrelation between
samples

• Control charts under the effect of measurement error

The impact of measurement error on control chart performance has been a focal point of research
in statistical process monitoring, drawing attention to the need for addressing such errors to
maintain the integrity of control charts, particularly those dealing with CoDa. The groundwork
in this area was set by Zaidi et al. 31 , who investigated the effect of measurement errors on the
performance of the Hotelling T 2 control chart for CoDa. In this work, the authors defined the
sample mean composition at time i by

x̄i =
1

m
(xi1 ⊕ · · · ⊕ xim) = a⊕ (b · yi)⊕

1

m
(ϵi1 ⊕ · · · ⊕ ϵim).

where a ∈ Sp and b ∈ R are known constants, ϵij is a multivariate normal random error term
MNORSp(0,Σ∗

M ) that accounts for measurement inaccuracies, and Σ∗
M is the known measure-

ment error variance-covariance matrix. The Hotelling T 2 control chart accounts for measurement
errors through the statistic:

Zi = (x̄∗
i − a∗ − bµ∗

0)

(
b2Σ∗ +

1

m
Σ∗

M

)−1

(x̄∗
i − a∗ − bµ∗

0)
T .

Building upon this, Zaidi et al. 32 furthered the discourse by incorporating measurement errors
into the MEWMA-CoDa control chart analysis, which provided insights into the implications
for production processes. In a continued effort to unravel the effect of measurement errors,
Imran et al. 33 examined their influence on the multivariate CUSUM control charts. Most re-
cently, Imran et al. 34 emphasized the critical role of measurement error in the VSI Hotelling
T 2 charting scheme. These studies highlight the evolving recognition of measurement error as a
significant factor that affects the efficacy of control charts in ensuring quality and reliability in
manufacturing processes.

• CoDa control chart for autocorrelated data

In the SPC, it is a standard presumption that data is independent and lacks autocorrelation.
However, this assumption does not hold true in many practical industrial applications, especially
when dealing with CoDa. This prevalent autocorrelation within CoDa vectors poses a challenge,
as it can significantly impair the interpretative accuracy of control chart signals and diminish
their capacity for detecting anomalies. Addressing this issue, Zaidi et al. 35 introduced the appli-
cation of a time series autoregressive moving average (ARMA) model to manage autocorrelated
CoDa within the simplex space Sp. The ARMA model for CoDa is written as:
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xt = α1 ⊗ xt−1 ⊕ · · · ⊕ αp ⊗ xt−p ⊕ ϵt ⊖ β1 ⊗ ϵt−1 ⊕ · · · ⊕ βq ⊗ ϵt−q,

where α = (α1, . . . , αp) and β = (β1, . . . , βp) are the unknown parameters, p, q are the order of
autoregressive polynomial and moving average polynomial, respectively, and ϵt is the residual
term. The residual control chart for CoDa is applied by assuming a multivariate normal distri-
bution within the simplex space. Specifically, where the residual vector ϵ follows a multivariate
normal distribution MNORSp(µϵ,Σϵ) in the simplex space Sp, the Hotelling T 2 control chart
for residuals is formulated as:

T 2 = (ϵ∗ − ϵ̄∗)(Σ∗
ϵ)

−1(ϵ∗ − ϵ̄∗)T ,

where ϵ∗ is the ilr-transformed residual vector, ϵ̄∗ is the estimator of the mean vectorµϵ, and
Σ∗

ϵ is the estimator of variance-covariance matrix Σϵ. The Hotelling T 2 control chart that uti-
lizes residuals from the CoDa ARMA model demonstrated superior performance in detecting
shifts in the mean vector when compared to the Hotelling T 2 based on isometric log-ratio trans-
formed original data. This enhancement underscores the critical importance of accounting for
autocorrelation in SPC to ensure the reliability of quality monitoring techniques.

3.3 Analysis

In this section, we present a comprehensive analysis of the papers collected for reviewing the topic of
monitoring CoDa. Through a series of visualizations and summary tables, we aim to provide a clear
and insightful overview of the research landscape in this field. The analysis includes the distribution of
papers across various research categories, the publication trends over time, and a detailed breakdown
of the journals that have featured this research, as well as the key contributions of leading authors in
this field.

Table 4 provides a quick reference to key aspects across the 19 collected papers on monitoring CoDa,
spanning from 1997 to 2023. It delineates the progression and scope of research through various facets
such as control chart categorizations, the number of p-parts of the CoDa vector, the transforma-
tion/analyzing method, and comparison between the proposed control chart (if available).

In order to provide a clear overview of the research focus in the field of monitoring CoDa, Fig. 5
provides a pie chart category of 19 papers in distinct research categories: Shewhart type, Memory
type, Adaptive type, Control charts for monitoring CoDa under the influence of Measurement Error
and Autocorrelation, and Others type. This visual representation highlights the proportions of research
efforts dedicated to each category, offering insights into the most heavily researched areas and those
that may require further exploration. According to the pie chart, Shewhart-type control charts, a
classic in the field, account for 26% of the papers, indicating their importance in monitoring CoDa.
Similarly, control charts considering the measurement error and autocorrelation also make up 26%,
highlighting the importance of considering the effect of measurement error and the intricacies of data
dependencies in monitoring. Adaptive control charts represent 21%, reflecting their popularity of
consideration in this field. Notably, 11% of the papers integrate artificial intelligence with control
charts, pointing towards an innovative direction that could redefine future methodologies.
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Papers Control chart Type N0 of p-part Transformation Comparison with Best chart

/Analyzed method other charts

Boyles 22 Chi-square Shewhart-type Arbitrary No transformation - -

Guevara et al. 23 T 2 Shewhart-type Arbitrary Dirichlet Regression - -

Vives-Mestres et al. 24 T 2 Shewhart-type p = 3 ilr - -

Vives-Mestres et al. 25 T 2 Shewhart-type p = 3 ilr - -

Vives-Mestres et al. 36 T 2 Shewhart-type Arbitrary clr - -

Tran et al. 26 MEWMA Memory-type Arbitrary ilr T 2 MEWMA

Zaidi et al. 31 T 2 ME/Autocorrelation Arbitrary ilr - -

Zaidi et al. 32 MEWMA ME/Autocorrelation Arbitrary ilr T2 MEWMA

Nguyen et al. 28 VSI-MEWMA Addaptive Arbitrary ilr MEWMA VSI-MEWMA

Imran et al. 27 MCUSUM Memory-type Arbitrary ilr T2, MEWMA
CUSUM,

MEWMA

Imran et al. 33 CUSUM ME/Autocorrelation Arbitrary ilr - -

Imran et al. 29 VSS-MEWMA Addaptive Arbitrary ilr FSS-MEWMA VSS-MEWMA

Imran et al. 37 VSI-MEWMA Addaptive Arbitrary ilr FSI-MEWMA VSI-MEWMA

Weiß 38 Ordinal Others Arbitrary alr - -

Zaidi et al. 35 T 2
ARMA ME/Autocorrelation Arbitrary T 2, CoDa ARMA T 2 T 2

ARMA

Imran et al. 34 VSI T 2 ME/Autocorrelation Arbitrary ilr - -

Zaidi et al. 39 T 2 AI with CC Arbitrary MLFFNN - -

Imran et al. 40 T 2 AI with CC p = 3, p = 5 MLPNN - -

Imran et al. 37 VSI MEWMA Addaptive Arbitrary ilr FSI-MEWMA VSI-MEWMA

Table 4: Sumary of control chart for monitoring CoDa papers
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Figure 5: Cumulative number of papers over time

Figure 6: Cumulative number of papers over time

Figure 6 depicts the cumulative number of papers published from 1997 to 2023. It illustrates a signifi-
cant upward trajectory in research related to monitoring CoDa, with a notably steep increase observed
in 2023.

Table 5 presents the distribution of journals for the 19 papers reviewed in the field of monitoring
CoDa. It is evident that “Quality and Reliability Engineering International” is at the forefront, with
five papers (26.32%) of the total corpus, signifying its prominence as a platform for scholarly discourse
in this field. Close behind is the “Journal of Applied Statistics”, hosting four papers (21.05%), which
underscores its influential role in disseminating research findings. Computers & Industrial Engineer-
ing has two papers (10.53%) and other journals, each contributing one paper (5.26%), illustrating the
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Journal Number Percentage

Quality and Reliability Engineering International 5 26.32%

Journal of Applied Statistics 4 21.05%

Computers & Industrial Engineering 2 10.53%

Revista Colombiana de Estad́ıstica 1 5.26%

Journal of Quality Technology 1 5.26%

IIE Transactions 1 5.26%

Journal of Statistical Computation and Simulation 1 5.26%

CMES-Computer Modeling in Engineering & Sciences 1 5.26%

Statistical Modelling 1 5.26%

IFAC-PapersOnLine 1 5.26%

Expert Systems with Applications 1 5.26%

Table 5: Number and percentage of papers in each journal

field’s interdisciplinary breadth. This spread across various journals indicates a wide interest in appli-
cations of CoDa analysis. The data denotes a vibrant academic ecosystem where multiple specialized
journals serve as conduits for advancing the frontiers of monitoring CoDa research.

Table 6 provides a snapshot of the contributions made by various authors, presenting a clear disparity in
the number of contributions among them. Fatima Sehar Zaidi emerges as the most prolific contributor,
with a total of 11 contributions. Following closely is Muhammad Imran, with 9 contributions, and Kim
Phuc Tran along with Jinsheng Sun, each with 7 contributions, showcasing their active participation.
Other authors have made moderate contributions, ranging from 1 to 4 papers, indicating steady
engagement in the field.

4 Perspectives for Monitoring the Ratio of Two Normal Variables
and Compositional Data in the Industry 5.0

In this section, we will offer our perspective on applying existing ML methodologies in monitoring
CoDa and the ratio of two normal random variables, and highlight potential areas for future research
within the dynamic and evolving landscape of Industry 5.0. We place a special emphasis on the
integration of ML techniques at various stages – from the design to the pattern recognition, and the
interpretation of control charts. By dissecting the current trends and forecasting future developments,
this section endeavors to provide valuable insights for researchers and practitioners alike, navigating
the intricate intersection of statistical control processes and advanced technological paradigms.
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Author Number of contributions

Fatima Sehar Zaidi 11

Muhammad Imran 9

Kim Phuc Tran 7

Jinsheng Sun 7

Zameer Abbas 4

Hafiz Zafar Nazir 4

Marina Vives-Mestres 3

Josep Daunis-I-Estadella 3

Josep-Antoni Mart́ın-Fernández 3

Philippe Castagliola 3

Michael Boon Chong Khoo 3

Xuelong Hu 3

Hong-Liang Dai 3

Anan Tang 2

Russell Boyles 1

Rubén Daŕıo Guevara-González 1

José Alberto Vargas-Navas 1

Dorian Luis Linero-Segrera 1

Giovanni Celano 1

Thi Thuy Van Nguyen 1

Cédric Heuchenne 1

Christian H. Weiß 1

Table 6: Authors’ contribution to the area of monitoring CoDa
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4.1 Intergrating ML techniques in designing control charts

As stated before, autocorrelation is a common occurrence in real-life data, especially in industrial and
manufacturing processes, where it significantly affects the integrity and interpretation of time-series
data, making it a critical factor to consider in the design of control charts for monitoring CoDa. In re-
sponse, advanced ML techniques present a formidable solution. For example, long short-term memory
(LSTM) networks, as introduced by Schmidhuber et al. 41 , excel in capturing temporal dependencies,
crucial for accurate data analysis in autocorrelated environments. Gaussian process regression (GPR),
detailed by Williams and Rasmussen 42 , provides a powerful probabilistic approach, suitable for han-
dling complex, interdependent variables in such data. Additionally, transformer models introduced in
the paper “Attention is all you need” by Vaswani et al. 43 with their novel multihead attention mecha-
nisms, are highly effective in identifying relevant sequential data patterns. The attention mechanisms
in transformer models allow them to focus on specific parts of a data sequence that are most relevant
for predictions. This feature is particularly useful in scenarios with autocorrelation, as it helps in
identifying significant changes or trends within the data. Autoencoders (AE), recognized for anomaly
detection and feature extraction, can distinguish between normal and aberrant patterns, especially
valuable in cases of complex deviations due to autocorrelation. By integrating these advanced ML
techniques with existing control chart methodologies, a more robust, accurate, and adaptive control
chart can be designed. This integration not only enhances the accuracy and reliability of control charts
but also ensures they are well-equipped to handle the complexities of modern industrial data, leading
to improved monitoring, decision-making, and operational efficiency in various industrial applications.

As an example of such integration, in our forthcoming paper, titled “A novel transformer-based
anomaly detection approach for ECG monitoring healthcare system”, we explored the integration
of a Transformer-based variational AE with a MEWMA-Support vector data description (SVDD)
control chart for the purpose of monitoring electrocardiogram (ECG) data. This innovative approach
has demonstrated significant potential, yielding impressive results in terms of both accuracy and
control of false alarm rates. The effectiveness of this method is particularly critical in healthcare
settings, where precise and reliable monitoring is paramount, but it also holds substantial promise for
various other fields that require precise data analysis and anomaly detection. This work exemplifies
the advancements in leveraging sophisticated ML techniques to enhance the efficacy and reliability
of monitoring systems in critical applications. Another example that can be mentioned is the work
of Wang and Liu 44 . In this work, the authors proposed a new control chart utilizing the isolation
forest (iForest) algorithm, offering advantages such as lower computational complexity, superior per-
formance in detecting small shifts in various distributions, and effectiveness in handling challenging
distributions with heavy tails, suggesting its potential applicability in designing efficient control charts
for monitoring CoDa.

Toward the control chart for monitoring the ratio of two normal variables, considering autocorrelation
is also important. In this context, incorporating a bivariate first-order vector autoregressive (VAR(1))
model is a prudent choice. This model accounts for both autocorrelation and cross-correlation, which
are prevalent in scenarios with high-frequency data collection. In Nguyen et al. 45 , the authors ex-
emplified this approach and showed that autocorrelation among observations adversely affects the
performance of the Shewhart control chart for monitoring the ratio of two normal variables. For
future research, it is important to consider the performance of other types of control charts, such as
EWMA and CUSUM, for monitoring ratios in the presence of autocorrelation. Additionally, conduct-
ing research to design advanced control charts that can alleviate the adverse effects of autocorrelation
is crucial for enhancing process monitoring effectiveness.
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4.2 ML-based control charts pattern recognition for monitoring CoDa/Ratio

This perspective will be applied to both control charts used for monitoring CoDa and the ratio of two
normal random variables, which, for brevity and clarity in our discussion, will henceforth be referred
to as “CoDa/Ratio”.

The integration of ML techniques in Control Chart Pattern Recognition (CCPR) represents a trans-
formative development in the field of SPC, including monitoring of CoDa/Ratio. In the 21st century,
the rapid advancement of information technology and the proliferation of big data have catalyzed
a significant shift in how control charts are interpreted and utilized. Historically, the interpretation
of control charts relied heavily on heuristic rules, drawing largely on the experience and judgment
of operators. This approach, while valuable, had its limitations, particularly in its dependence on
human expertise and the potential for variability in interpretations. The emergence of expert systems
marked a significant stride in addressing these limitations. These systems, which combine a set of
expert-derived rules with data flows from the processes being controlled, represented an early form of
automation in process monitoring. However, at the end of the 1980s, Neural Networks (NNs) began to
be utilized for automating the reading and interpretation of control charts, as noted by Pugh 46 . NN,
as a form of ML, offers a more dynamic and adaptable approach compared to expert systems. They
could learn directly from data, identify patterns, and make predictions or decisions without being
explicitly programmed with the rules. This marked the beginning of the dominance of ML in pattern
recognition, including CCPR.

ML algorithms have been shown to outperform traditional models in various practical situations. For
instance, Guh 47 highlighted the capabilities of NN models in learning, self-organizing, and recogniz-
ing patterns from noisy or incomplete data representations – tasks that are challenging for human
operators, even with the support of expert systems. Li et al. 48 proposed a Support Vector Machine
(SVM)-based CCPR framework, demonstrating its superior accuracy in classifying the sources of
out-of-control signals compared to conventional multivariate control schemes. Similarly, Diren et al. 49

reported that traditional CCPR models often fall short in predicting unexpected new situations, a gap
effectively bridged by ML techniques. By learning from historical data, ML models can anticipate and
adapt to new scenarios, enhancing the predictive capabilities of control charts. The evolving landscape
of ML-based techniques CCPR brings a promising development for monitoring complex scenarios. For
instance, SVM, since its introduction by Vapnik et al. 50 , has been instrumental in CCPR. Their abil-
ity to classify data in a higher-dimensional space for linear separability enhances their applicability
in recognizing complex control chart patterns, see, for example, Lin et al. 51 . Neural Networks (NNs)
and Deep Learning have brought a new dimension to CCPR. The pioneering work of Pugh 46 and the
subsequent advancements by researchers like Cheng 52 and Addeh et al. 53 have highlighted the robust
pattern recognition capabilities of these models. NNs’ adaptability in various conditions, including
their effectiveness in environments with noise or incomplete data, positions them as powerful tools
for intricate monitoring tasks. These ML techniques collectively represent a significant advancement
in the field of CCPR, offering refined and accurate tools for analyzing complex data patterns. Their
effectiveness across various monitoring scenarios underscores their potential to revolutionize process
control and monitoring in industries requiring high precision and reliability.

The application of advanced ML techniques for CCPR, particularly for CoDa/Ratio, remains a largely
unexplored area. There is a significant need for further research to develop methods using ML to effec-
tively monitor these types of data. While existing studies have made strides in reducing assumptions
about data distribution when designing ML-based control charts, there are still challenges, such as au-
tocorrelation in data, which is often encountered in time series data collected from Internet of Things
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(IoT) sensors, and industrial processes. Currently, in Zaidi et al. 39 , a novel methodology is introduced
for monitoring CoDa. This method integrates a multilayer feed-forward neural network with a T 2 con-
trol chart to enhance the detection of patterns within control charts. Demonstrated to be effective
even amidst out-of-control conditions, its proficiency is corroborated through detailed simulations and
analytical assessments. This advancement represents a significant stride in the development of ML
techniques, challenging and potentially superseding the conventional assumptions embedded in tradi-
tional SPC. The efficiency and effectiveness offered by this novel approach underscore its potential in
refining the monitoring of intricate data structures inherent in contemporary industrial processes. The
direct future studies from this study can be the integration of MLFFNN with MEWMA, MCUSUM,
and other advanced control charts (as mentioned in previous sections) for monitoring CoDa/Ratio.

For a comprehensive understanding of ML techniques in CCPR, one can refer to the detailed work
of Tran et al. 54 . In their study, the authors provide an in-depth summary and analysis of the field,
offering valuable insights into the application and effectiveness of various ML approaches in enhancing
CCPR.

4.3 Interpreting out-of-control signal for CoDa control charts

In this subsection, we will give our perspective exclusively on interpreting out-of-control signals in
control charts for monitoring CoDa. This focused approach stems from the fact that the ratio of
two normal variables is effectively managed using univariate control charts and has a well-established
framework for signal interpretation. Given this established understanding, there is no pressing need
to delve into the interpretation of out-of-control signals for this type of chart. Therefore, we will only
concentrate on the more complex and nuanced realm of CoDa, where the interpretation of signals is
required due to its multidimensional nature and the constraints it presents.

Interpreting out-of-control signals when monitoring CoDa presents a particular challenge, especially
when considering the special structure of CoDa and the presence of autocorrelation in data in gen-
eral. Traditional multivariate control charts, such as Hotelling’s T 2, MEWMA, and MCUSUM, for
monitoring such data often only signal the general mean shifts without specifying the responsible vari-
able(s). In general, some ML methods are being integrated into the process with promising results.
NNs, SVM, decision trees, MLP, and DL have been explored to isolate and identify the specific causes
of out-of-control conditions, see Niaki and Abbasi 55 ; Cheng and Cheng 56 ; Guh and Shiue 57 , and
Diren et al. 49 among many others for more information. These ML techniques not only offer a more
precise identification of variables responsible for shifts but also improve upon the traditional charts’
sensitivity to process anomalies. As these methods continue to evolve, they represent a significant
potential in advancing the interpretability of control charts. These methods can be integrated into
control charts for monitoring the ratio of two normal variables, however, due to the special structure
of CoDa, these ML techniques can not be applied directly. Recently, there has been an attempt to
interpret the out-of-control signals in CoDa monitoring by employing an NN technique in the work
of39. In this study, an MLPNN with back-propagation learning has been introduced to interpret sig-
nals within Hotelling’s T 2 control chart specifically for CoDa monitoring processes. This approach
helps in pinpointing the specific variables causing deviations, rather than merely indicating shifts in
the overall mean. Such focused detection is crucial for refining process control strategies, ultimately
improving the efficiency of industrial operations. The model’s effectiveness was validated in scenarios
involving different components of CoDa, p = 3 and p = 5. This innovation represents a significant
step forward in applying ML to ensure the precision and reliability of process monitoring in indus-
trial settings. Future research directions could consider the integration of MLPNN with MCUSUM
or MEWMA CoDa control charts to increase adaptability. Additionally, merging MLPNN with clus-
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tering algorithms or econometric models may offer new opportunities for innovation in the analysis of
CoDa. Besides, the scarcity of robust methods for interpreting out-of-control signals in the monitoring
of CoDa underscores a critical need for concentrated research efforts to develop new techniques in this
field.

5 Conclusion

This chapter delivers an in-depth review and analysis of the methodologies for monitoring the ratio
of two normal variables and CoDa within the Industry 5.0 framework. We began with a short intro-
duction, setting the stage for the importance and challenges of CoDa/Ratio monitoring in industrial
processes. Subsequently, we delved into an extensive examination of published research, analyzing 68
papers focused on monitoring the ratio of two normal variables and 19 dedicated to CoDa. In this
exploration, we categorized the existing methodologies into relevant groups, offering a comprehensive
analysis of these findings. This includes examining trends, assessing the distribution of publications
across various journals, and highlighting the contributions of key authors in the field. Throughout
each segment, we interjected our perspectives and insights, enriching the reader’s understanding with
deeper context and expert commentary on the results.

In our perspectives section, we offered insights on applying existing ML methodologies to CoDa and
the ratio of two normal random variables. We stressed the importance of integrating ML techniques at
various stages, from design to pattern recognition and interpretation of control charts. This perspective
is essential for navigating the intersection of statistical control processes and advanced technological
paradigms in Industry 5.0.

The paper concludes by emphasizing the need for ongoing research and development in this area. The
integration of emerging technologies like AI and big data analytics with traditional monitoring methods
promises further advancements in the field, potentially revolutionizing the efficacy and reliability of
monitoring systems in smart manufacturing and Industry 5.0.
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transformations for compositional data analysis. Mathematical Geology, 35(3):279–300, 2003.

[21] J.J. Egozcue and V. Pawlowsky-Glahn. Groups of Parts and Their Balances in Compositional
Data analysis. Mathematical Geology, 37(7):795–828, 2005.

[22] R. A. Boyles. Using the chi-square statistic to monitor compositional process data. Journal of
Applied Statistics, 24(5):589–602, 1997.

[23] R. Guevara, J. Vargas, and D. Linero Segrera. Profile monitoring for compositional data. Revista
Colombiana de Estad́ıstica, 37:159, 07 2014.

30



[24] M. Vives-Mestres, J. Daunis-I-Estadella, and J.A. Martin-Fernandez. Out-of-Control Signals in
Three-Part Compositional T 2 Control Chart. Quality and Reliability Engineering International,
30(3):337–346, 2014.

[25] M. Vives-Mestres, J. Daunis-I-Estadella, and J.A. Martin-Fernandez. Individual T 2 Control Chart
for Compositional Data. Journal of Quality Technology, 46(2):127–139, 2014.

[26] K. P. Tran, P. Castagliola, G. Celano, and Michael B.C. Khoo. Monitoring compositional data
using multivariate exponentially weighted moving average scheme. Quality and Reliability Engi-
neering International, 34(3):391–402, 2018.

[27] M. Imran, J. Sun, F.S. Zaidi, Z. Abbas, and H.Z. Nazir. Multivariate cumulative sum control
chart for compositional data with known and estimated process parameters. Quality and reliability
engineering international, 38(5), 2022-07. ISSN 0748-8017.

[28] T.T.V. Nguyen, C. Heuchenne, and K.P. Tran. Anomaly detection for compositional data using
vsi mewma control chart. IFAC-PapersOnLine, 55(10):1533–1538, 2022. ISSN 2405-8963. 10th
IFAC Conference on Manufacturing Modelling, Management and Control MIM 2022.

[29] M. Imran, J. Sun, F.S. Zaidi, Z. Abbas, and H.Z. Nazir. On designing efficient multivariate
exponentially weighted moving average control chart for compositional data using variable sample
size. Journal of Statistical Computation and Simulation, 93(10):1622–1643, 2023.

[30] C.A. Lowry, W.H. Woodall, C.W. Champ, and S.E. Rigdon. A Multivariate Exponentially
Weighted Moving Average Control Chart. Technometrics, 34(1):pp. 46–53, 1992. ISSN 00401706.

[31] F.S. Zaidi, P. Castagliola, K.P. Tran, and M.B.C. Khoo. Performance of the hotelling t2 control
chart for compositional data in the presence of measurement errors. Journal of Applied Statistics,
46(14):2583–2602, 2019.

[32] F.S. Zaidi, PY. Castagliola, K.P. Tran, and M.B.C. Khoo. Performance of the mewma-coda
control chart in the presence of measurement errors. Quality and Reliability Engineering Inter-
national, 36(7):2411–2440, 2020.

[33] M. Imran, J. Sun, F.S. Zaidi, Z. Abbas, and H.Z. Nazir. Effect of measurement error on the mul-
tivariate cusum control chart for compositional data. CMES-Computer Modeling in Engineering
& Sciences, 136(2), 2023.

[34] M. Imran, J. Sun, F.S Zaidi, Z. Abbas, and H.Z. Nazir. Evaluating the performance of vari-
able sampling interval hotelling t2 charting scheme for compositional data in the presence of
measurement error. Quality and Reliability Engineering International, 2023.

[35] F.S. Zaidi, H.L. Dai, M. Imran, and K.P. Tran. Monitoring autocorrelated compositional data vec-
tors using an enhanced residuals hotelling t2 control chart. Computers & Industrial Engineering,
181:109280, 2023.

[36] M. Vives-Mestres, J. Daunis-i Estadella, and J. A. Martin-Fernandez. Signal interpretation in
hotelling’s t 2 control chart for compositional data. IIE Transactions, 48(7):661–672, 2016.

[37] M. Imran, J. Sun, X. Hu, F.S. Zaidi, and A. Tang. Investigating zero-state and steady-state
performance of mewma-coda control chart using variable sampling interval. Journal of Applied
Statistics, pages 1–22, 2023.

[38] C.H. Weiß. Ordinal compositional data and time series. Statistical Modelling, page
1471082X231190971, 2023.

31



[39] F.S. Zaidi, H.L. Dai, M. Imran, and K.P. Tran. Analyzing abnormal pattern of hotelling t2
control chart for compositional data using artificial neural networks. Computers & Industrial
Engineering, 180:109254, 2023.

[40] M. Imran, H.L. Dai, F.S. Zaidi, X. Hu, K.P. Tran, and J. Sun. Analyzing out-of-control signals
of t2 control chart for compositional data using artificial neural networks. Expert Systems with
Applications, page 122165, 2023.

[41] J. Schmidhuber, S. Hochreiter, et al. Long short-term memory. Neural Comput, 9(8):1735–1780,
1997.

[42] C.K.I. Williams and C.E. Rasmussen. Gaussian processes for machine learning, volume 2. MIT
press Cambridge, MA, 2006.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

[44] J. Wang and L. Liu. A new multivariate control chart based on the isolation forest algorithm.
Quality Engineering, pages 1–17, 2023.

[45] H.D. Nguyen, A.A. Nadi, K.D. Tran, P. Castagliola, G. Celano, and K.P. Tran. The shewhart-
type rz control chart for monitoring the ratio of autocorrelated variables. International Journal
of Production Research, 61(20):6746–6771, 2023.

[46] G.A. Pugh. Synthetic neural networks for process control. Computers & industrial engineering,
17(1-4):24–26, 1989.

[47] R.S. Guh. Real-time recognition of control chart patterns in autocorrelated processes using
a learning vector quantization network-based approach. International Journal of Production
Research, 46(14):3959–3991, 2008.

[48] T. Li, S. Hu, Z.Y. Wei, Z.Q. Liao, et al. A framework for diagnosing the out-of-control signals
in multivariate process using optimized support vector machines. Mathematical Problems in
Engineering, 2013, 2013.

[49] D.D. Diren, S. Boran, and I. Cil. Integration of machine learning techniques and control charts
in multivariate processes. 2020.

[50] V. Vapnik, I. Guyon, and T. Hastie. Support vector machines. Machine Learning, 20(3):273–297,
1995.

[51] S.Y. Lin, R.S. Guh, and Y.R. Shiue. Effective recognition of control chart patterns in autocorre-
lated data using a support vector machine based approach. Computers & Industrial Engineering,
61(4):1123–1134, 2011.

[52] C.S. Cheng. A neural network approach for the analysis of control chart patterns. International
Journal of Production Research, 35(3):667–697, 1997.

[53] A. Addeh, A. Khormali, and N.A. Golilarz. Control chart pattern recognition using rbf neural
network with new training algorithm and practical features. ISA transactions, 79:202–216, 2018.

[54] P.H. Tran, A. Ahmadi Nadi, T.H. Nguyen, K.D. Tran, and K.P. Tran. Application of machine
learning in statistical process control charts: A survey and perspective. In Control charts and
machine learning for anomaly detection in manufacturing, pages 7–42. Springer, 2022.

32



[55] S.T.A. Niaki and B. Abbasi. Fault diagnosis in multivariate control charts using artificial neural
networks. Quality and reliability engineering international, 21(8):825–840, 2005.

[56] C.S. Cheng and H.P. Cheng. Identifying the source of variance shifts in the multivariate process
using neural networks and support vector machines. Expert Systems with Applications, 35(1-2):
198–206, 2008.

[57] R.S. Guh and Y.R. Shiue. An effective application of decision tree learning for on-line detection
of mean shifts in multivariate control charts. Computers & Industrial Engineering, 55(2):475–493,
2008.

33


