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INTRODUCTION

This paper concerns the statistical mechanics of the focusing nonlinear Schrödinger equation with anharmonic potential i𝜕 𝑡 𝑢 + (Δ -|𝑥| 𝑠 )𝑢 = -𝛼|𝑢| 𝑝-2 𝑢 on the Euclidean space ℝ 𝑑 , 𝑑 ≥ 1, restricted to radial functions for 𝑑 ≥ 2. We will assume that 𝑠 > 1, 𝑝 > 2 and 𝛼 > 0. More precisely, we study the integrability and non-integrability of the associated, formally time-invariant, Gibbs measures given by 𝑑𝜌 𝐾 (𝑢) =  -1 𝐾 𝟏 {|𝑀(𝑢)|≤𝐾} 𝑒 𝛼𝑅 𝑝 (𝑢) 𝑑𝜇(𝑢), (1.1)

gibbs
where 𝜇 is the Gaussian measure associated with the anharmonic operator

 = -Δ + |𝑥| 𝑠 (1.2)
anharmonic given formally by

𝑑𝜇(𝑢) =  -1 𝑒 -1 2 ⟨𝑢,𝑢⟩ 𝑑𝑢 =  -1 𝑒 -1 2 ∫ ℝ 𝑑 |∇𝑢(𝑥)| 2 +|𝑥| 𝑠 |𝑢(𝑥)| 2 𝑑𝑥 𝑑𝑢 (1.3)
gaussian with a normalization constant . The potential energy 𝑅 𝑝 (𝑢) is defined by

𝑅 𝑝 (𝑢) ∶= 1 𝑝 ∫ ℝ 𝑑 |𝑢(𝑥)| 𝑝 𝑑𝑥.
(1.4)

Rp

Since we consider the focusing case 𝛼 > 0, we must impose a mass cut-off |𝑀(𝑢)| ≤ 𝐾 for some parameter 𝐾 > 0 in (1.1), where

𝑀(𝑢) = ∫ ℝ 𝑑 |𝑢(𝑥)| 2 𝑑𝑥
is the (conserved) 𝐿 2 mass if 𝑠 > 2. If 𝑠 ≤ 2, this is infinite 𝜇-almost surely, and hence we consider the Wick-ordered version

𝑀(𝑢) = ∫ ℝ 𝑑 ∶|𝑢(𝑥)| 2 ∶𝑑𝑥
i.e. formally the 𝐿 2 -mass minus its' expectation value in the Gaussian measure.

Our main purpose is to identify the range of values for the parameters (𝑠, 𝑝, 𝛼) that delineates whether the Gibbs measure (1.1) is well-defined or not.

This paper is a continuation of a recent work of the third and fourth authors with Robert and Seong [START_REF] Robert | Focusing Gibbs measures with harmonic potential[END_REF] where the normalizability/non-normalizability of the focusing Gibbs measure with harmonic potential (𝑠 = 2) were investigated. More precisely, the following result was proved in [START_REF] Robert | Focusing Gibbs measures with harmonic potential[END_REF].

THM:RSTW Theorem 1.1 (The harmonic oscillator case, [START_REF] Robert | Focusing Gibbs measures with harmonic potential[END_REF]). Let 𝑑 ≥ 1, 𝑠 = 2 and restrict the measures to radial functions when 𝑑 ≥ 2. Then, the following statements hold:

(i) (subcritical case) If 2 < 𝑝 < 2 + 4
𝑑 , then for any 𝐾 > 0, the focusing Gibbs measure

𝑑𝜌 𝐾 (𝑢) =  -1 𝐾 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢(𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 1 𝑝 ‖𝑢‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) 𝑑𝜇(𝑢)
is well-defined as a probability measure and it is absolutely continuous with respect to the base Gaussian free field 𝜇. (ii) (critical/supercritical cases) If 𝑝 ≥ 2 + 4 𝑑 and 𝑝 < 2𝑑 𝑑-2 when 𝑑 ≥ 3, then for any 𝐾 > 0, the focusing Gibbs measure

𝑑𝜌 𝐾 (𝑢) =  -1 𝐾 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢(𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 1 𝑝 ‖𝑢‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) 𝑑𝜇(𝑢)
is not well-defined as a probability measure.

In the present paper we focus on the case where the parameter 𝑠 exceeds 1 but is not equal to 2 (although our approach can lead to simplifications in the latter case). Our main findings can be divided into two distinct cases: the superharmonic case where 𝑠 > 2 and the subharmonic case where 𝑠 < 2.

In the case of superharmonic potentials, we identify the critical nonlinearity as

𝑝 𝑠>2 ∶= 2 + 4 𝑑 .
The Gibbs measure (1.1) is normalizable for any 𝛼, 𝐾 > 0 provided that the power nonlinearity is subcritical, i.e., 𝑝 < 𝑝 𝑠>2 . On the other hand, it is non-normalizable for any 𝛼, 𝐾 > 0 as long as the power nonlinearity is supercritical and below the energy-critical exponent, i.e., 𝑝 > 𝑝 𝑠>2 and 𝑝 < 2𝑑 𝑑-2 if 𝑑 ≥ 3. For the critical nonlinearity 𝑝 = 𝑝 𝑠>2 we observe a phase transition: the Gibbs measure is well-defined for 𝛼 𝑑 2 𝐾 < ‖𝑄‖ 2 𝐿 2 (ℝ 𝑑 ) , and it is not well-defined for 𝛼 𝑑 2 𝐾 > ‖𝑄‖ 2 𝐿 2 (ℝ 𝑑 ) . Here 𝑄 is an optimizer of the Gagliardo-Nirenberg-Sobolev inequality on ℝ 𝑑 .

In the case of subharmonic potentials, we identify a new critical nonlinearity 𝑝 𝑠<2 ∶= 2 + 4𝑠 (𝑑 -1)𝑠 + 2 which is below the usual mass-critical one above. The Gibbs measure is again normalizable when the power nonlinearity is subcritical and is non-normalizable for supercritical power nonlinearity regardless of the values of 𝛼, 𝐾 > 0. For the critical nonlinearity, the phase transition is characterized in terms of the nonlinear strength 𝛼: for each 𝐾 > 0, there exists 𝛼 0 = 𝛼 0 (𝐾) > 0 such that the Gibbs measure is well-defined for all 𝛼 < 𝛼 0 , and it is not well-defined for all 𝛼 > 𝛼 0 .

1.1. Known results and motivation. The construction of Gibbs measures associated with focusing nonlinear Schrödinger equations was initiated by Lebowitz, Rose and Speer [START_REF] Lebowitz | Statistical mechanics of the nonlinear Schrödinger equation[END_REF]. They considered the focusing NLS on the one-dimensional torus and proposed to study the Gibbs measure with a mass cutoff, namely 𝑑𝜇(𝑢), where  𝐾 is the normalization constant (often referred to as the partition function). The imposition of a mass cutoff is reasonable since the mass is a conserved quantity under the NLS flow.

𝑑𝜌 𝐾 (𝑢) =  -1 𝐾 𝟏 {| ∫ 𝕋 |𝑢| 2 𝑑𝑥|≤𝐾} 𝑒 1 𝑝 ∫ 𝕋 |𝑢| 𝑝 𝑑𝑥
It was asserted in [START_REF] Lebowitz | Statistical mechanics of the nonlinear Schrödinger equation[END_REF] that the aforementioned measure is normalizable under two distinct conditions: when 2 < 𝑝 < 6 for any possitive mass cutoff 𝐾, and when 𝑝 = 6 for 𝐾 smaller than the mass of 𝑄 -the unique (up to symmetries) optimizer of the Gagliardo-Nirenberg-Sobolev inequality

∫ ℝ |𝑢| 6 𝑑𝑥 ≤ 𝐶 GNS ( ∫ ℝ |𝑢 ′ | 2 𝑑𝑥 ) ( ∫ ℝ |𝑢| 2 𝑑𝑥 ) 2
such that 𝐶 GNS = 2‖𝑄‖ 2 𝐿 2 (ℝ) . They also proved that the Gibbs measure is not well-defined when 𝑝 = 6 and 𝐾 exceeds the mass of 𝑄, and when 𝑝 > 6 regardless of the mass cutoff size 𝐾.

While the proof of normalizability presented in [START_REF] Lebowitz | Statistical mechanics of the nonlinear Schrödinger equation[END_REF] uses an elegant probabilistic argument, it however contains a gap as pointed out and rectified for 𝑝 < 6 in [START_REF] Carlen | Exponential relaxation to equilibrium for a onedimensional focusing non-linear Schrödinger equation with noise[END_REF]. Later, Bourgain [6] gave an analytic proof for the normalizability for 2 < 𝑝 < 6 with any positive mass cutoff size 𝐾, and for 𝑝 = 6 with sufficiently small 𝐾. He also proved the invariance of these measures under the NLS dynamics. Recently, the third author together with Oh and Sosoe in [START_REF] Oh | Optimal integrability threshold for Gibbs measures associated with focusing NLS on the torus[END_REF] proved the normalizability when 𝑝 = 6 and 𝐾 is smaller than the mass of 𝑄, which resolves the issue in [START_REF] Lebowitz | Statistical mechanics of the nonlinear Schrödinger equation[END_REF]. Remarkably, they were also able to prove the normalizability with the mass cutoff 𝐾 exactly equal to the mass of 𝑄. This result is rather surprising since the focusing quintic NLS on the 1D torus admits blow-up solutions with this minimal mass, as found by Ogawa and Tsutsumi [START_REF] Ogawa | Blow-up of solutions for the nonlinear schrödinger equation with quartic potential and periodic boundary condition[END_REF]. Essentially, this implies that the Gibbs measure lives on Sobolev spaces of low regularity on which there are no blow-up solutions at the critical mass threshold. The result of [START_REF] Oh | Optimal integrability threshold for Gibbs measures associated with focusing NLS on the torus[END_REF] shows a phase transition for the focusing Gibbs measure on the one-dimensional torus at the critical nonlinearity. Specifically, the partition function  𝐾 is not analytic with respect to 𝐾 when 𝑝 = 6.

Similar results hold for the Gibbs measure

𝑑𝜌 𝐾 (𝑢) =  -1 𝐾 𝟏 {| ∫ 𝔻 |𝑢| 2 𝑑𝑥|≤𝐾} 𝑒 1 𝑝 ∫ 𝔻 |𝑢| 𝑝 𝑑𝑥 𝑑𝜇(𝑢).
associated with the focusing NLS on the two-dimensional unit disc with Dirichlet boundary condition, restricted to radial functions.

In [START_REF] Tzvetkov | Invariant measures for the nonlinear Schrödinger equation on the disc[END_REF], Tzvetkov constructed and proved the invariance of the focusing Gibbs measure with the subcritical nonlinearity 𝑝 < 4 and any positive 𝐾. Later, Bourgain and Bulut [START_REF] Bourgain | Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball i: The 2D case[END_REF] extended Tzvetkov's result to the critical nonlinearity 𝑝 = 4 and sufficiently small mass cutoff 𝐾. In a subsequent work [START_REF] Oh | Optimal integrability threshold for Gibbs measures associated with focusing NLS on the torus[END_REF], the third author, in collaboration with Oh and Sosoe, demonstrated the normalizability of the Gibbs measure when 𝑝 = 4 and 𝐾 is less than the mass of 𝑄 -the (positive and radial) ground state solution of

-Δ𝑄 + 𝑄 -𝑄 3 = 0 in ℝ 2 .
They also established the non-normalizability of the Gibbs measure when 𝑝 = 4 and 𝐾 exceeds the mass of 𝑄, and when 𝑝 > 4 no matter the size of the mass cutoff 𝐾. Recently, Xian [63] proved the optimal mass normalizability in the critical case, that is, the above Gibbs measure is normalizable when 𝑝 = 4 and 𝐾 equals the mass of 𝑄.

Concerning the Gibbs measures associated with focusing NLS with potential on the real line, the pioneering work was undertaken by Burq, Thomann and Tzvetkov [START_REF] Burq | Long time dynamics for the one dimensional non linear Schrödinger equation[END_REF], where they studied the focusing Gibbs measure for the cubic nonlinearity with harmonic potential 𝑉 (𝑥) = |𝑥| 2 . In this setting, the Gibbs measure is slightly different to the cases discussed earlier on the 1D torus and 2D unit disc:

𝑑𝜌 𝐾 (𝑢) =  -1 𝐾 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢| 2 ∶𝑑𝑥|≤𝐾} 𝑒 1 𝑝 ∫ ℝ 𝑑 |𝑢| 𝑝 𝑑𝑥 𝑑𝜇(𝑢).
Here a Wick-ordered renormalized mass is employed instead of the usual mass since the latter is infinite on the support of the Gaussian measure.

In one dimension, Burq, Thomann and Tzvetkov [START_REF] Burq | Long time dynamics for the one dimensional non linear Schrödinger equation[END_REF] demonstrated the normalizability for 𝑝 = 4 and any positive 𝐾. They also proved the invariance of this measure under the dynamics of the nonlinear Schrödinger equation. In the two-dimensional case, the focusing Gibbs measure with harmonic potential was investigated by Deng [START_REF] Deng | Two dimensional nonlinear schrödinger equation with random radial data[END_REF] under a radial assumption. More precisely, he constructed the focusing Gibbs measure for any 2 < 𝑝 < 4 and any positive 𝐾 and proved its invariance under the NLS flow. More recently, the last two authors, in collaboration with Robert and Seong, revisited the construction of focusing Gibbs measure with harmonic potential. By exploiting the so-called Boué-Dupuis variational formula and refined stochastic analysis, they proved the focusing measure is normalizable when 2 < 𝑝 < 2 + 4 𝑑 , but non-normalizable when 𝑝 ≥ 2 + 4 𝑑 and 𝑝 < 2𝑑 𝑑-2 if 𝑑 ≥ 3 regardless of the mass cutoff size 𝐾 (see Theorem 1.1). Their result completes the picture of focusing Gibbs measures with harmonic potential in one dimension and higher dimensions for radial data. Notably, a distinguishing feature from the cases of the 1D torus or 2D unit disc is the absence of a critical nonlinearity, thus precluding a phase transition.

One advantage of considering the harmonic potential is that eigenfunctions and eigenvalues of the linear operator -Δ + |𝑥| 2 are explicit, which allows one to obtain precise 𝐿 𝑝 -estimates of the eigenfunctions (see e.g., [START_REF] Koch | 𝑙 𝑝 eigenfunction bounds for the Hermite operator[END_REF] and [START_REF] Imekraz | On random hermites series[END_REF]). However, this advantageous feature is no longer accessible when dealing with a general anharmonic potential |𝑥| 𝑠 with 𝑠 ≠ 2.

In [START_REF] Dinh | Invariant Gibbs measures for 1D NLS in a trap[END_REF], the first two authors investigated the one-dimensional focusing Gibbs measure with a potential exhibiting a growth of |𝑥| 𝑠 at infinity. They successfully overcame the aforementioned difficulty by employing techniques from many-body quantum mechanics, specifically the application of a Lieb-Thirring type inequality and operator-inequalities in Schatten ideals, which originated from [START_REF] Lewin | Gibbs measures based on 1D (an) harmonic oscillators as mean-field limits[END_REF]. Instead of relying on 𝐿 𝑝 -estimates for eigenfunctions, which are unavailable in this context, they observed that the construction of the focusing Gibbs measure hinged on 𝐿 𝑝 -estimates for the (diagonal part of the) Green function of -Δ + 𝑉 (𝑥):

𝐺(𝑥, 𝑥) = ∑ 𝑛≥0 𝜆 -2 𝑛 𝑒 2 𝑛 (𝑥),
where (𝑒 𝑛 , 𝜆 2 𝑛 ) 𝑛≥0 represent the (normalized) eigenfunctions and eigenvalues of -Δ + 𝑉 (𝑥). Acquiring this information proved to be considerably more tractable, thanks to the application of standard inequalities like Hölder and Kato-Seiler-Simon within Schatten spaces. With these methods, they could define the focusing Gibbs measure with a cubic nonlinearity 𝑝 = 4 for any positive 𝐾, provided that 𝑠 > 8 5 . Note that the potential energy 1 4 ∫ ℝ |𝑢| 4 𝑑𝑥 is finite almost surely with respect to the Gaussian measure as long as 𝑠 > 1. Thus there is a gap between 1 and 8 5 for the measure construction. This gap is technical due to the use of a fractional Gagliardo-Nirenberg inequality (see [START_REF] Dinh | Invariant Gibbs measures for 1D NLS in a trap[END_REF]Lemma 3.8]). In this paper, we will fill this gap and prove the normalizability of focusing Gibbs measure for all 𝑠 > 1. We also aim at extending these result to higher dimensional radial NLS equations. Upon a suitable change of variables, the radial Schrödinger operator with an anharmonic potential on ℝ 𝑑 transforms into a one-dimensional Schrödinger operator with an inverse square potential plus the anharmonic potential on (0, +∞). The appearance of the inverse square potential necessitates new approaches, as standard inequalities in Schatten spaces, as used in [START_REF] Lewin | Gibbs measures based on 1D (an) harmonic oscillators as mean-field limits[END_REF][START_REF] Dinh | Invariant Gibbs measures for 1D NLS in a trap[END_REF], are no longer applicable. Hence, novel arguments are required to address this potential term.

In addition to the previously discussed works on nonlinear Gibbs measures, we would like to mention related research on the probabilistic theory of Schrödinger operators with trapping potential ( [START_REF] Poiret | Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator[END_REF] and [START_REF] Robert | Random weighted Sobolev inequalities and application to quantum ergodicity[END_REF]). Additionally, there are notable works on the deterministic theory for the nonlinear Schrödinger equation with harmonic potential (see e.g., [START_REF] Killip | Energy-critical NLS with quadratic potentials[END_REF], [START_REF] Jao | The energy-critical quantum harmonic oscillator[END_REF], and a series of studies by Carles ([14,[START_REF] Carles | Nonlinear Schrödinger equations with repulsive harmonic potential and applications[END_REF][START_REF] Carles | Global existence results for nonlinear Schrödinger equations with quadratic potentials[END_REF][START_REF] Carles | Nonlinear Schrödinger equation with time-dependent potential[END_REF]).

Another motivation for this study comes from the mean-field approximation of Bose gases and Bose-Einstein condensates. More specifically, the Gibbs measure linked with the nonlinear Schrödinger equation was rigorously derived from many-body quantum mechanics (see [START_REF] Rout | A microscopic derivation of Gibbs measures for the 1D focusing cubic nonlinear Schrödinger equation[END_REF][START_REF] Rout | A microscopic derivation of Gibbs measures for the 1D focusing quintic nonlinear Schrö dinger equation[END_REF] for the 1D focusing NLS, [START_REF] Lewin | Derivation of nonlinear Gibbs measures from many-body quantum mechanics[END_REF][START_REF] Lewin | Gibbs measures based on 1D (an) harmonic oscillators as mean-field limits[END_REF][START_REF] Fröhlich | A microscopic derivation of time dependent correlation functions of the 1D cubic nonlinear Schrödinger equation[END_REF][START_REF] Sohinger | A microscopic derivation of Gibbs measures for nonlinear Schrödinger equations with unbounded interaction potentials[END_REF] for the 1D defocusing NLS and [START_REF] Lewin | Classical field theory limit of many-body quantum Gibbs states in 2D and 3D[END_REF][START_REF] Fröhlich | Gibbs measures of nonlinear Schrödinger equations as limits of quantum many-body states in dimensions 𝑑 ≤ 3[END_REF][START_REF] Fröhlich | A path-integral analysis of interacting Bose gases and loop gases[END_REF][START_REF] Fröhlich | The Euclidean 𝜑 4 2 theory as a limit of an interacting bose gas[END_REF] for higher dimensions). In [START_REF] Rout | A microscopic derivation of Gibbs measures for the 1D focusing cubic nonlinear Schrödinger equation[END_REF], Rout and Sohinger rigorously derived the Gibbs measure associated with the focusing cubic NLS on the 1D torus, considering any mass cutoff size 𝐾. More recently, in their subsequent work [START_REF] Rout | A microscopic derivation of Gibbs measures for the 1D focusing quintic nonlinear Schrö dinger equation[END_REF], they successfully extended this result to the focusing quintic NLS provided that the mass cutoff size is small. It is expected that some form of phase transition, as proved in [START_REF] Oh | Optimal integrability threshold for Gibbs measures associated with focusing NLS on the torus[END_REF], should happen at the many-body level provided that the number of particles is close to a critical value. However, this remains an open question. 1.2. Measure construction and main results. In this subsection, we go over the construction of the Gibbs measures (1.1), and state our main results precisely.

Let us start by recalling some basic properties of the operator (1.2). It is known (under the radial assumption when 𝑑 ≥ 2) that  has a sequence of eigenvalues 𝜆 2 𝑛 with

0 < 𝜆 0 ≤ 𝜆 1 ≤ ⋯ ≤ 𝜆 𝑛 → ∞
and that the corresponding normalized eigenfunctions 𝑒 𝑛 , i.e.

𝑒 𝑛 = 𝜆 2 𝑛 𝑒 𝑛 ,
form an orthonormal basis of 𝐿 2 (ℝ 𝑑 ). The radial assumption is invoked hereafter whenever the spatial dimension is two or larger. We also use the liberty to choose a real-valued eigenbasis. More details on the radial Schrödinger operator are given in Section 2 below. We define Sobolev spaces associated with the operator  as follows.

Definition 1.2 (Sobolev spaces).

For 1 ≤ 𝑞 ≤ ∞ and 𝜎 ∈ ℝ, the Sobolev space  𝜎,𝑞 (ℝ 𝑑 ) is defined by the norm

DEF:sob ‖𝑢‖  𝜎,𝑞 (ℝ 𝑑 ) = ‖ 𝜎 2 𝑢‖ 𝐿 𝑞 (ℝ 𝑑 ) .
When 𝑝 = 2, we write  𝜎,2 (ℝ 𝑑 ) =  𝜎 (ℝ 𝑑 ) and for 𝑢 = ∑ ∞ 𝑛=0 𝑢 𝑛 𝑒 𝑛 we have

‖𝑢‖ 2  𝜎 (ℝ 𝑑 ) = ∞ ∑ 𝑛=0 𝜆 2𝜎 𝑛 |𝑢 𝑛 | 2 .
With the above notation, we define the Hamiltonian as

𝐻(𝑢) = 1 2 ∫ ℝ 𝑑 | 1 2 𝑢(𝑥)| 2 𝑑𝑥 - 𝛼 𝑝 ∫ ℝ 𝑑 |𝑢(𝑥)| 𝑝 𝑑𝑥.
(1.5)

Hamil

In particular, using the eigenbasis {𝑒 𝑛 } 𝑛≥0 , we can decompose any 𝑢 ∈  ′ (ℝ 𝑑 ) as

𝑢 = ∞ ∑ 𝑛=0 𝑢 𝑛 𝑒 𝑛 , 𝑢 𝑛 = ⟨𝑢, 𝑒 𝑛 ⟩ = ∫ ℝ 𝑑 𝑢(𝑥)𝑒 𝑛 (𝑥)𝑑𝑥.
Then, in the coordinates 𝑢 = (𝑢 𝑛 ) 𝑛≥0 , the Hamiltonian (1.5) has the form

𝐻(𝑢) = 𝐻 ( ∞ ∑ 𝑛=0 𝑢 𝑛 𝑒 𝑛 ) = 1 2 ∞ ∑ 𝑛=0 𝜆 2 𝑛 |𝑢 𝑛 | 2 - 𝛼 𝑝 ∫ ℝ 𝑑 | | | ∞ ∑ 𝑛=0 𝑢 𝑛 𝑒 𝑛 (𝑥) | | | 𝑝 𝑑𝑥.
From the above computation, we may define the Gaussian measure with the Cameron-Martin space  1 (ℝ 𝑑 ) formally given by

𝑑𝜇 =  -1 𝑒 -1 2 ‖𝑢‖ 2  1 𝑑𝑢 =  -1 ∞ ∏ 𝑛=0 𝑒 -1 2 𝜆 2 𝑛 |𝑢 𝑛 | 2 𝑑𝑢 𝑛 𝑑𝑢 𝑛 , (1.6) 

Gaussian

where 𝑑𝑢 𝑛 𝑑𝑢 𝑛 is the Lebesgue measure on ℂ. We note that this Gaussian measure 𝜇 is the induced probability measure under the map

𝜔 ∈ Ω ⟼ 𝑢 𝜔 = ∞ ∑ 𝑛=0 𝑔 𝑛 (𝜔) 𝜆 𝑛 𝑒 𝑛 , (1.7) 
maps where {𝑔 𝑛 } 𝑛≥0 is a sequence of independent standard complex-valued Gaussian random variables on a probability space (Ω,  , ℙ). From (1.7) and (2.61), we see that

𝔼 [ ‖𝑢 𝜔 ‖ 2 𝐿 2 (ℝ 𝑑 ) ] = ∞ ∑ 𝑛=0 𝜆 -2 𝑛 { < ∞ if 𝑠 > 2, = ∞ if 𝑠 < 2.
(1.8)

L2

This implies that a typical function 𝑢 in the support of 𝜇 is not square integrable when 𝑠 < 2. On the other hand, when 𝑠 < To define the Gaussian measure 𝜇 in (1.6) rigorously, we start with a finite dimensional version. First, define the spectral projection 𝐏 𝑁 by

𝐏 𝑁 𝑢 = 𝑁 ∑ 𝑛=0 𝑢 𝑛 𝑒 𝑛 .
(1.9)

projN

The image of 𝐏 𝑁 is the finite-dimensional space

𝐸 𝑁 = span{𝑒 0 , ⋯ , 𝑒 𝑁 }.
Through the isometric map

(𝑢 𝑛 ) 𝑁 𝑛=0 ↦ 𝑁 ∑ 𝑛=0 𝑢 𝑛 𝑒 𝑛 , (1.10) iso from ℂ 𝑁+1
to 𝐸 𝑁 , we may identify 𝐸 𝑁 with ℂ 𝑁+1 . Consider a Gaussian measure on ℂ 𝑁+1 (or on ℝ 2𝑁+2 ) given by

𝑑𝜇 𝑁 = 𝑁 ∏ 𝑛=0 𝜆 2 𝑛 2𝜋 𝑒 -𝜆 2 𝑛 2 |𝑢 𝑛 | 2 𝑑𝑢 𝑛 𝑑𝑢 𝑛 .
This Gaussian measure defines a probability measure on the finite dimensional space 𝐸 𝑁 via the map (1.10), which will be also denoted by 𝜇 𝑁 . The measure 𝜇 𝑁 can also be viewed as the induced probability measure under the map

𝜔 ↦ 𝑢 𝜔 𝑁 ∶= 𝑁 ∑ 𝑛=0 𝑔 𝑛 (𝜔) 𝜆 𝑛 𝑒 𝑛 .
(1.11)

RVN

Given any 𝜎 > 1 𝑠 -1 2 , the sequence (𝑢 𝜔 𝑁 ) is a Cauchy sequence in 𝐿 2 (Ω;  -𝜎 (ℝ 𝑑 )) converging to 𝑢 𝜔 given in (1.7). See Corollary 3.4 (ii). In particular, the distribution of the random variable 𝑢 𝜔 ∈  -𝜎 (ℝ 𝑑 ) is the Gaussian measure 𝜇. The measure 𝜇 can be decomposed as

𝜇 = 𝜇 𝑁 ⊗ 𝜇 ⟂ 𝑁 , (1.12) 
mu where the measure 𝜇 ⟂ 𝑁 is the distribution of the random variable given by

𝑢 𝜔,⟂ 𝑁 (𝑥) ∶= ∞ ∑ 𝑛=𝑁+1 𝑔 𝑛 (𝜔) 𝜆 𝑛 𝑒 𝑛 (𝑥).
Recall from the discussion in the introduction that, to define the focusing Gibbs measure (1.1), a mass cut-off is necessary. As previously mentioned, note that 𝑢 𝜔 ∉ 𝐿 2 (ℝ 𝑑 ) 𝜇-almost surely when 𝑠 < 2. This motivates the introduction of a Wick-ordered renormalized 𝐿 2 -mass, similar to the approach used in [START_REF] Bourgain | Nonlinear Schrödinger equations. Hyperbolic equations and frequency interactions[END_REF][START_REF] Burq | Long time dynamics for the one dimensional non linear Schrödinger equation[END_REF][START_REF] Oh | Optimal integrability threshold for Gibbs measures associated with focusing NLS on the torus[END_REF][START_REF] Robert | Focusing Gibbs measures with harmonic potential[END_REF]. Given 𝑥 ∈ ℝ 𝑑 , 𝑢 𝜔 𝑁 (𝑥) in (1.11) is a mean-zero complex-valued Gaussian random variable with variance

𝜎 𝑁 (𝑥) = 𝔼 [ |𝑢 𝜔 𝑁 (𝑥)| 2 ] = 2 𝑁 ∑ 𝑛=0 𝑒 2 𝑛 (𝑥) 𝜆 2 𝑛 , ( 1.13) 
variance from which and Corollary 2.6 we have

𝔼 [ ‖𝑢 𝜔 𝑁 ‖ 2 𝐿 2 (ℝ 𝑑 ) ] = ∫ ℝ 𝑑 𝜎 𝑁 (𝑥)𝑑𝑥 = 𝑁 ∑ 𝑛=0 2 𝜆 2 𝑛 ∼ 𝜆 -1+ 2 𝑠 𝑁 → ∞ as 𝑁 → ∞ provided 𝑠 ∈ (1, 2).
Here 𝜎 𝑁 depends on 𝑥 ∈ ℝ 𝑑 as the random process 𝑢 𝜔 given by (1.7) is not stationary. We can then define the Wick power

∶|𝑢 𝑁 | 2 ∶ via ∶|𝑢 𝑁 | 2 ∶ = |𝑢 𝑁 | 2 -𝜎 𝑁 . (1.14)

Wick

It is known (See Corollary 3.5 below) that

∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥 → ∫ ℝ 𝑑 ∶|𝑢(𝑥)| 2 ∶𝑑𝑥 (1.15)
Wick bis 𝜇-almost surely, which defines the renormalized (Wick-ordered) 𝐿 2 mass in the right-hand side.

The main purpose of this paper is to define the focusing Gibbs measure (1.1) with Wick-ordered 𝐿 2 -cutoff. We start with a finite dimensional approximation.

𝑑𝜌 𝐾,𝑁 (𝑢) =  -1 𝐾,𝑁 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 𝛼 𝑝 ‖𝑢 𝑁 ‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) 𝑑𝜇 𝑁 (𝑢 𝑁 ) ⊗ 𝑑𝜇 ⟂ 𝑁 (𝑢 ⟂ 𝑁 ), (1.16 
)

tru_rho
where 𝑢 𝑁 = 𝐏 𝑁 𝑢, 𝑢 ⟂ 𝑁 = 𝐏 ⟂ 𝑁 𝑢 ∶= 𝑢 -𝐏 𝑁 𝑢, and the partition function  𝐾,𝑁 is given by

 𝐾,𝑁 = ∫ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 𝛼 𝑝 ‖𝑢 𝑁 ‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) 𝑑𝜇(𝑢).
(1.17)

partition
Our main findings are sharp criteria under which the above (1.16) converges to a probability measure as 𝑁 → ∞ (i.e. 0 < 𝑍 𝐾,𝑁 < ∞ uniformly in 𝑁). They are stated as follows:

THM:main Theorem 1.3 (Gibbs measure construction, subharmonic case).

Let 𝑑 ≥ 1, 1 < 𝑠 < 2 and assume the radial condition when 𝑑 ≥ 2. Then the following statements hold:

(i) (subcritical case) If 4 𝑠 < 𝑝 < 2 + 4𝑠 (𝑑 -1)𝑠 + 2 ,
then for any 𝛼, 𝐾 > 0, we have uniform exponential integrability of the density: given any finite

𝑟 ≥ 1, sup 𝑁∈ℕ ‖ ‖ ‖ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 𝛼 𝑝 ‖𝑢 𝑁 ‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) ‖ ‖ ‖𝐿 𝑟 (𝜇) < ∞. (1.18)
uniint_p Moreover, we have

lim 𝑁→∞ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 𝛼 𝑝 ‖𝑢 𝑁 ‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) = 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢(𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 𝛼 𝑝 ‖𝑢‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) (1.19) cov-lp
in 𝐿 𝑟 (𝜇). As a consequence, the Gibbs measure 𝜌 𝑁,𝐾 in (1.16) converges, in total variation, to the focusing Gibbs measure 𝜌 𝐾 defined by

𝑑𝜌 𝐾 (𝑢) =  -1 𝐾 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢(𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 𝛼 𝑝 ‖𝑢‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) 𝑑𝜇(𝑢). (1.20)
rho Furthermore, the resulting measure 𝜌 𝐾 is absolutely continuous with respect to the base Gaussian free field 𝜇 in (1.12).

(ii) (critical case)

If 𝑝 = 2 + 4𝑠 (𝑑 -1)𝑠 + 2 ,
we have the following phase transition for the Gibbs measure in (1.1). Then, for every 𝐾 > 0, there exists 𝛼 0 = 𝛼 0 (𝐾) ∈ (0, ∞) such that (a) (weakly nonlinear regime). Let 𝛼 < 𝛼 0 . Then the Gibbs measure 𝜌 𝐾,𝑁 in (1.16) converges, in total variation, to the focusing Gibbs measure 𝜌 𝐾 defined by

𝑑𝜌 𝐾 (𝑢) =  -1 𝐾 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢(𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 𝛼 𝑝 ‖𝑢‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) 𝑑𝜇(𝑢).
(1.21) rho1 (b) (strongly nonlinear regime). When 𝛼 > 𝛼 0 , the focusing Gibbs measure (1.1), even with a Wick-ordered 𝐿 2 -cutoff, cannot be defined as a probability measure. Moreover, we have that

0 < inf 𝐾>0 𝛼 0 (𝐾) ≤ sup 𝐾>0 𝛼 0 (𝐾) < ∞,
so (a) and (b) hold for 𝛼 ≪ 1 and 𝛼 ≫ 1 (respectively), independently of the particular value of 𝐾 > 0.

(iii) (supercritical case) Let 𝑝 > 2 + 4𝑠 (𝑑 -1)𝑠 + 2 and further assume that

𝑝 < 2𝑑 𝑑 -2 if 𝑑 ≥ 3.
Then, for any 𝛼, 𝐾 > 0, we have

sup 𝑁∈ℕ  𝐾,𝑁 = sup 𝑁∈ℕ ‖ ‖ ‖ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 𝛼 𝑝 ‖𝑢 𝑁 ‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) ‖ ‖ ‖𝐿 1 (𝜇) = ∞, (1.22) 
non_int where  𝐾,𝑁 is the partition function given in (1.17). The same divergence holds for  𝐾 , i.e.

 𝐾 = ∫ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢(𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 𝛼 𝑝 ‖𝑢‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) 𝑑𝜇 = ∞. (1.23) non_int2
As a consequence, the focusing Gibbs measure (1.1), even with a Wick-ordered 𝐿 2 -cutoff, cannot be defined as a probability measure.

Remark 1.1. For the critical case, Theorem 1.3 (ii) claims the normalizability/non-normalizability of the Gibbs measure for 𝛼 ≪ 1 and 𝛼 ≫ 1 respectively, uniformly in the cut-off size 𝐾. Furthermore, when 𝛼 ∼ 1, there exists a critical coupling constant 𝛼 0 (𝐾) for given 𝐾 > 0. However, whether the critical coupling constant 𝛼 0 is independent of 𝐾 is not clear.

Similar results also hold for superharmonic potentials. In this setting, we have a more precise description of the phase transition.

THM:main1

Theorem 1.4 (Gibbs measure construction, superharmonic case). Let 𝑑 ≥ 1, 𝑠 > 2 and assume the radial condition when 𝑑 ≥ 2. Given 𝛼, 𝐾 > 0, define the partition function  𝐾 by

 𝐾 = 𝔼 𝜇 [ 𝑒 𝛼 𝑝 ∫ ℝ 𝑑 |𝑢| 𝑝 𝑑𝑥 𝟏 {‖𝑢‖ 2 𝐿 2 (ℝ 𝑑 ) ≤𝐾} ] , (1.24) 

Z1

where 𝔼 𝜇 denotes an expectation with respect to the Gaussian measure 𝜇. Then, the following statements hold:

(i) (subcritical case) If 2 < 𝑝 < 2 + 4 𝑑 , then  𝐾 < ∞ for any 𝛼, 𝐾 > 0. (ii) (critical case) Let 𝑝 = 2 + 4 𝑑 . Then,  𝐾 < ∞ if 𝛼 𝑑 2 𝐾 < ‖𝑄‖ 2 𝐿 2 (ℝ 𝑑 ) , and  𝐾 = ∞ if 𝛼 𝑑 2 𝐾 > ‖𝑄‖ 2 𝐿 2 (ℝ 𝑑 ) .
Here, 𝑄 is an optimizer of the Gagliardo-Nirenberg-Sobolev inequality on

ℝ 𝑑 ‖𝑢‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) ≤ 𝐶 GNS ‖∇𝑢‖ 𝑑(𝑝-2) 2 𝐿 2 (ℝ 𝑑 ) ‖𝑢‖ 4-(𝑑-2)(𝑝-2) 2 𝐿 2 (ℝ 𝑑 ) , 𝑢 ∈ 𝐻 1 (ℝ 𝑑 ). (1.25) GNS (iii) (supercritical case) If 𝑝 > 2 + 4 𝑑 and 𝑝 < 2𝑑 𝑑-2 if 𝑑 ≥ 3, then  𝐾 = ∞ for any 𝛼, 𝐾 > 0.
As previously mentioned, when 𝑝 = 4, Theorems 1.3 and 1.4 represent an improvement over a recent work [START_REF] Dinh | Invariant Gibbs measures for 1D NLS in a trap[END_REF], where the normalizability of the focusing Gibbs measure was established only for 𝑠 > 8 5 . Here we not only demonstrate its normalizability for all 𝑠 > 1, but we also extend the result to other nonlinearities.

Furthermore, our main results also extend a recent work [START_REF] Robert | Focusing Gibbs measures with harmonic potential[END_REF], where the normalizability and nonnormalizability were established specifically for the case of the harmonic potential 𝑠 = 2. The extension to anharmonic potentials with 𝑠 > 1 is not a direct adaptation of the arguments presented in [START_REF] Robert | Focusing Gibbs measures with harmonic potential[END_REF], primarily due to a lack of explicit knowledge concerning the eigenfunctions and eigenvalues of the Schrödinger operator with anharmonic potential.

An intriguing feature of our main results is the identification of a new critical nonlinearity (below the standard mass-critical nonlinearity 𝑝 = 2 + 4 𝑑 ) that exhibits a phase transition in the subharmonic case 1 < 𝑠 < 2. It is noteworthy that, at this level of nonlinearity, the associated nonlinear Schrödinger equation always exhibits global dynamics given sufficiently high regularity data (so that the energy is finite). This leads to the suggestion that a new blow-up phenomenon may emerge for solutions of the NLS with low regularity (within the support of the Gibbs measure) due to the weak growth of the trapping potential. To the best of our knowledge, no such result is available in the existing literature.

As previously discussed, we address the challenge arising from the absence of an explicit formula for the eigenvalues and 𝐿 𝑝 -estimates of eigenfunctions by examining the Green function of the Schrödinger operator  defined in (1.2).

First, in order to determine the regularity of the Gaussian measure, we need to establish an upper bound on the trace of  raised to certain negative powers (see Lemma 2.2). In the one-dimensional case, this was proved in [41, Example 3.2] using a version of the Lieb-Thirring inequality originating in [START_REF] Dolbeault | Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems[END_REF]. This does not apply to the radial case in higher dimensions, which leads to a Schrödinger operator with an inverse square potential. We circumvent this issue by employing the fundamental solution of the heat equation with an inverse-square potential, as provided by Ortner and Wagner [START_REF] Ortner | Calculation of the propagator of Schrödinger's equation on (0, ∞) with the potential 𝑘𝑥 -2 + 𝜔 2 𝑥 2 by laplace's method[END_REF]. This fundamental solution is expressed in terms of the modified Bessel function of the first kind. Taking advantage of the asymptotic behavior of this special function near the origin and at infinity, we establish a variant of the Lieb-Thirring inequality adapted to our context.

Next, we need an 𝐿 𝑝 -bound for the diagonal of the Green function (see Lemma 2.3). To achieve this, we first employ the asymptotics of the modified Bessel function to deduce a decay property near the origin. Subsequently, to capture decay behavior at infinity, we utilize the odd extension technique to extend the underlying operator to the entire real line and then use previously known results for the one-dimensional anharmonic oscillator by [START_REF] Lewin | Gibbs measures based on 1D (an) harmonic oscillators as mean-field limits[END_REF]. In the case of two dimensions, careful considerations are required due to the negative sign in front of the inverse-square potential, which is addressed through a refined Hardy inequality recently established by Frank and Merz [START_REF] Frank | On sobolev norms involving Hardy operators in a half-space[END_REF].

Finally, we establish a Weyl-type asymptotic for the number of eigenvalues below a large threshold for the radial Schrödinger operator with an anharmonic potential. In one dimension, this type of estimate is known as the Cwikel-Lieb-Rozenbljum bound (see, for example, [START_REF] Dinh | Invariant Gibbs measures for 1D NLS in a trap[END_REF]Lemma D.1]). The proof is based on coherent states and semi-classical analysis on the phase space. Specifically, we define a quantum energy whose minimizer is attained by a fermionic density matrix. The problem of counting the number of eigenvalues below a large threshold is then reduced to computing the trace of this fermionic density matrix, which is determined by comparing lower and upper bounds.

The results of Theorem 1.3 and Theorem 1.4, together with the previous work on 𝑠 = 2 in [START_REF] Robert | Focusing Gibbs measures with harmonic potential[END_REF], give a complete characterization of the construction of regular1 focusing Gibbs measures with trapping potentials.

We observe different critical phenomena for different values of 𝑠: when 𝑠 > 2, the phase transition at the critical exponent depends on the cutoff parameter 𝐾; when 𝑠 = 2, there is no phase transition at the critical case [START_REF] Robert | Focusing Gibbs measures with harmonic potential[END_REF]; when 𝑠 ∈ (1, 2), the critical exponent depends on 𝑠, and moreover, the phase transition depends on the coupling strength 𝛼. These differences reflect the distinct spectral properties of the Schrödinger operators for different 𝑠, and require different techniques for each case.

We apply the Barashkov-Gubinelli variational method [START_REF] Barashkov | A variational method for Φ 4 3[END_REF] to prove Theorem 1.3 and Theorem 1.4. Specifically, we use the variational formula of Boué-Dupuis [START_REF] Boué | A variational representation for certain functionals of Brownian motion[END_REF]64], Lemma 3.1, to reformulate the Gibbs measure construction as a stochastic optimization problem. Then, to show the normalizability part of Theorems 1.3 and 1.4, we need to control the stochastic optimization problems uniformly; see Subsections 4.1 and 5.1. To show the non-normalizability parts, we need to find suitable sequences of appropriate drift terms, which drive the stochastic optimization problem to diverge; see Subsections 4.2 and 5.2. We remark that the asymptotic behaviour of the variational formulae, which depends on the behaviour of Schatten norms of trapped Laplacian in Corollary 2.6, determines the different criticality of different 𝑠.

For the subharmonic trapping case 𝑠 ∈ (1, 2), the proof of Theorem 1.3 is inspired by recent works [START_REF] Oh | Focusing Φ 4 3 -model with a hartree-type nonlinearity[END_REF][START_REF] Oh | Stochastic quantization of the Φ 3 3 -model[END_REF][START_REF] Tolomeo | Phase transition for invariant measures of the focusing schrödinger equation[END_REF]. In particular, in [START_REF] Oh | Focusing Φ 4 3 -model with a hartree-type nonlinearity[END_REF], the authors studied a focusing Φ 3 4 -model with a Hartree-type nonlinearity, where the potential for the Hartree nonlinearity is given by the Bessel potential of order 𝛽. They show that the case 𝛽 = 2 is critical, leading to phase transition regarding the coupling strength. In [START_REF] Oh | Stochastic quantization of the Φ 3 3 -model[END_REF], similar critical behaviour was shown for the Φ 3 3 measure. However, both the above-mentioned works only consider cases where the coupling strength is either very weak, i.e. weakly nonlinear regime 𝛼 ≪ 1, or very strong, i.e. strongly nonlinear regime 𝛼 ≫ 1; and leave the case 𝛼 ∼ 1 open. Theorem 1.3 shows the existence of a critical coupling strength 𝛼 0 for normalizability. However, if 𝛼 = 𝛼 0 , then the normalizability is undetermined by Theorem 1.3.

For the superharmonic trapping case 𝑠 > 2, the trap is strong enough to make the problem almost a local one, similar to the case on 𝕋 . Heuristically, this is because the trapping potential penalises functions which have nontrivial mass outside of a large ball. Indeed, when the trapping is strong enough, i.e. in the superharmonic case 𝑠 > 2, we have ‖𝑢‖ 𝐿 2 < ∞ 𝜇-a.s., at which point the analysis becomes similar to the case of a bounded domain. Therefore, the Gibbs measure is less singular and the proof of Theorem 1.4 exploits ideas from the torus setting [START_REF] Liang | Gibbs measure for the focusing fractional nls on the torus[END_REF][START_REF] Oh | Optimal integrability threshold for Gibbs measures associated with focusing NLS on the torus[END_REF]. In particular, the ground state, which is the minimizer of the Gagliardo-Nirenberg-Sobolev inequality, is essential to characterize the critical behaviour of the Gibbs measure, as in the torus cases in [START_REF] Liang | Gibbs measure for the focusing fractional nls on the torus[END_REF][START_REF] Oh | Optimal integrability threshold for Gibbs measures associated with focusing NLS on the torus[END_REF]. Our proof also relies on the exponential decay of the ground state at infinity to eliminate the unbounded trapping by using a suitable scaling argument. (ii) In the absence of the radial assumption, a renormalization would be necessary for any (even) 𝑝 > 2 as soon as 𝑑 ≥ 2. We are aware of the sole work by de Bouard and Debussche [START_REF] De Bouard | Two-dimensional Gross-Pitaevskii equation with space-time white noise[END_REF], where they established the construction of the Gibbs measure associated with the 2D defocusing cubic NLS with a harmonic potential. Extending this construction to other (even) power nonlinearities 𝑝 > 4 and potentially exploring it with other (anharmonic) potentials would be a highly interesting problem. On the other hand, in the focusing case, even with a renormalization of the potential energy, we expect that the Gibbs measure would remain non-normalizable, similar to the work of Brydges and Slade [START_REF]Statistical mechanics of the 2-dimensional focusing nonlinear Schrödinger equation[END_REF].

The structure of this paper is as follows. In Section 2, we study the radial Schrödinger operator with anharmonic potential including some properties of the resolvent and a Weyl-type asymptotic. In Section 3, we recall the Boué-Dupuis variational formula, which plays a vital role in our proof. We also give some applications of the resolvent estimates derived in the preceding section. Section 4 is devoted to demonstrating the normalizability and non-normalizability for the subharmonic potential, while Section 5 addresses the case of the superharmonic potential. Finally, we recall in the appendices some essential tools used in proving Weyl-type asymptotics, and extend our result to the case of fractional Schrödinger operators with anharmonic potentials.
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RADIAL SCHRÖDINGER OPERATORS WITH ANHARMONIC POTENTIAL

sec:Schro

In this section, we collect some properties of the Schrödinger operator with anharmonic potential. In dimensions larger than 1, we restrict its' domain to radial functions.

Let 𝑑 ≥ 1, 𝑠 > 0 and consider the Schrödinger operator

 ∶= -Δ + |𝑥| 𝑠 on ℝ 𝑑 .
When 𝑑 ≥ 2, we restrict our consideration to radial functions, that is we look at

 ∶= -𝜕 2 𝑟 - 𝑑 -1 𝑟 𝜕 𝑟 + 𝑟 𝑠 on (0, +∞). ( 2 

.1)

eq:RadLap

We may define the above as the Friedrichs extension of the associated quadratic form, starting from the domain of 𝐶 ∞ functions vanishing at infinity. We will rely on the change of variable

𝑈 ∶ 𝑓 (𝑟) ↦ 𝑟 𝑑-1 2 𝑓 (𝑟) (2.2) 
eq:changerad to reduce our study to the operator

 1 = -𝜕 2 𝑟 + (𝑑 -1)(𝑑 -3) 4𝑟 2 + 𝑟 𝑠 (2.3) L1
acting on 𝐿 2 ((0, +∞), 𝑑𝑟) with a Dirichlet boundary condition at 0. More precisely, the radial Laplacian corresponds to the Friedrichs extension of (2.3) (see below).

Properties of the resolvent.

LEM:main1

Lemma 2.1 (Definition of the radial Laplacian with trap).

The follow properties hold:

(i) When 𝑑 ≥ 2, the self-adjoint extension of  (still denoted by ) has domain () such that 𝑈 () is a subset of continuous functions vanishing at the origin. (ii) ( + 1) -1 is compact.

(iii) There exists a sequence of eigenvalues (𝜆 2 𝑛 ) 𝑛≥0 of  satisfying 0 < 𝜆 0 ≤ 𝜆 1 ≤ ⋯ ≤ 𝜆 𝑛 → +∞ and the corresponding eigenfunctions (𝑒 𝑛 ) 𝑛≥0 form an orthonormal basis of 𝐿 2 (ℝ 𝑑 ) (radial functions of 𝐿 2 (ℝ 𝑑 ) when 𝑑 ≥ 2). In addition, eigenfunctions can be chosen to be real-valued.

The Dirichlet condition at the origin inherited by the domain of  1 will be crucial to employ results from [START_REF] Ortner | Calculation of the propagator of Schrödinger's equation on (0, ∞) with the potential 𝑘𝑥 -2 + 𝜔 2 𝑥 2 by laplace's method[END_REF] in the sequel (see (2.14) and (2.15) below).

Proof. The 1D case is standard (see e.g., [START_REF] Berezin | The Schrödinger equation[END_REF]Theorem 3.1]). Let us consider the case 𝑑 ≥ 2 where the radial assumption is imposed. Consider the quadratic form associated to  1 in (2.3), namely

(𝑓 , 𝑓 ) ∶= ∫ +∞ 0 |𝜕 𝑟 𝑓 (𝑟)| 2 + (𝑑 -1)(𝑑 -3) 4𝑟 2 |𝑓 (𝑟)| 2 + 𝑟 𝑠 |𝑓 (𝑟)| 2 𝑑𝑟, 𝑓 ∈ 𝐶 ∞ 0 ((0, +∞)).
(2.4)

eq:RadForm

When 𝑑 ≥ 3, it is clear that  is non-negative. When 𝑑 = 2, we use the following Hardy inequality (see e.g., [START_REF] Davies | A review of Hardy inequalities[END_REF]):

∫ +∞ 0 1 4𝑟 2 |𝑓 (𝑟)| 2 𝑑𝑟 ≤ ∫ +∞ 0 |𝜕 𝑟 𝑓 (𝑟)| 2 𝑑𝑟, 𝑓 ∈ 𝐶 ∞ 0 ((0, +∞)) (2.

5)

Hardy-ineq to deduce that  is also non-negative. The Friedrichs extension theorem (see e.g., [START_REF] Reed | Methods of modern mathematical physics. II: Fourier analysis, self-adjointness[END_REF]Theorem X.23]) ensures that  1 admits a self-adjoint realization [START_REF] Ortner | Calculation of the propagator of Schrödinger's equation on (0, ∞) with the potential 𝑘𝑥 -2 + 𝜔 2 𝑥 2 by laplace's method[END_REF], still denoted by  1 , whose core is 𝐶 ∞ 0 ((0, +∞)). Observe that the map 𝑈 defined in (2.2) maps the quadratic form domain of the radial Laplacian (2.1) to the domain of (2.4). Hence the Friedrichs extension, whose domain includes the quadratic form domain, is the appropriate one. Other self-adjoint extensions exist (see [START_REF] Bruneau | Homogeneous Schrödinger operators on half-line[END_REF]), but we shall prove below that they are not selected by conjugating (2.1) with (2.2).

When 𝑑 ≥ 3, it is immediate that the quadratic form domain of (2.4) is embedded in 𝐻 1 ((0, +∞)) ∩ 𝐿 2 ((0, +∞), 𝑟 𝑠 𝑑𝑟), which is well-known to be compactly embedded in 𝐿 2 ((0, +∞)). Hence the Friedrichs realization of  1 has compact resolvent. Since the above also continuously embeds into 𝐶 0 ((0, +∞)) and the second term in (2.4) comes with a positive sign, it is also clear that functions of the domain must vanish at the origin. When 𝑑 = 2, we need the following refined Hardy inequality 2 proved recently by Frank and Merz [START_REF] Frank | On sobolev norms involving Hardy operators in a half-space[END_REF]: for 0 < 𝜃 < 1,

∫ +∞ 0 |(-𝜕 2 𝑟 ) 𝜃∕2 𝑓 (𝑟)| 2 𝑑𝑟 ≤ 𝐶 ∫ +∞ 0 | | | ( -𝜕 2 𝑟 - 1 4𝑟 2 ) 𝜃∕2 𝑓 (𝑟) | | | 2 𝑑𝑟, ∀𝑓 ∈ 𝐶 ∞ 0 ((0, +∞)).
(2.6)

Hardy-ineq-2
Since 𝑥 ↦ 𝑥 𝜃 with 0 < 𝜃 < 1 is concave, Jensen's inequality for operators (see 3 e.g. [57, Theorem 8.9]) yields

(𝑓 , 𝑓 ) ≥ 𝐶 ( ∫ +∞ 0 |(-𝜕 2 𝑟 ) 𝜃∕2 𝑓 (𝑟)| 2 𝑑𝑟 ) 1 𝜃 + ∫ +∞ 0 𝑟 𝑠 |𝑓 (𝑟)| 2
𝑑𝑟, which implies that the bottom of the spectrum of  1 is positive. Also

(-𝜕 2 𝑟 ) 𝜃 ≤ 𝐶 ( -𝜕 2 𝑟 - 1 4𝑟 2
) 𝜃 2 The inverse inequality holds for all 0 < 𝜃 < 3 2 . In particular, we have the equivalence of norms for all 0 < 𝜃 < 1. 3 In [57, Theorem 8.9], Jensen's inequality was proved in a finite dimensional setting. However, the same proof applies for the infinite dimensional case using the multiplication operator form of the spectral theorem for unbounded self-adjoint operators (see e.g. [START_REF] Reed | Methods of modern mathematical physics. II: Fourier analysis, self-adjointness[END_REF]Theorem VII.4]).

as operators. By the operator monotonicity of 𝑥 ↦ 𝑥 𝜃 with 0 < 𝜃 < 1 (see [START_REF] Carlen | Trace inequalities and quantum entropy: an introductory course[END_REF]Theorem 2.6]), we infer that

(-𝜕 2 𝑟 ) 𝜃 ≤ 𝐶 ( -𝜕 2 𝑟 - 1 4𝑟 2 + 1 2 𝑟 𝑠 ) 𝜃 ≤ 𝐶 ( -𝜕 2 𝑟 - 1 4𝑟 2 + 1 2 𝑟 𝑠 ) (2.7) est-A-theta or -𝜕 2 𝑟 - 1 4𝑟 2 + 𝑟 𝑠 ≥ 𝐶 -1 (-𝜕 2 𝑟 ) 𝜃 + 1 2 𝑟 𝑠
for some constant 𝐶 > 0 depending only on the bottom of the spectrum of  1 . Here the constant 𝐶 varies line-by-line. Hence, for all 0 < 𝜃 < 1 the quadratic form domain of  1 continuously embeds into

𝐻 𝜃 ((0, +∞)) ∩ 𝐿 2 ((0, +∞), 𝑟 𝑠 𝑑𝑟),
which is compactly embedded in 𝐿 2 ((0, +∞)) when 𝜃 > 1∕2. Hence  1 has compact resolvent. Since the above space also continuously embeds into continuous functions and (2.2) maps regular functions to functions vanishing at the origin, we also deduce that functions from the Friedrichs domain of  1 must vanish at the origin.

Applying the spectral theorem for compact operators (see e.g., [START_REF] Reed | Methods of modern mathematical physics. IV: Analysis of operators[END_REF]Theorem XIII.64]), there exists a sequence of eigenfunctions 𝑓 𝑛 of ( 1 + 1) -1 which forms an orthonormal basis of 𝐿 2 ((0, +∞), 𝑑𝑟). Moreover, the corresponding eigenvalues satisfy 𝜇 𝑛 → 0 + as 𝑛 → ∞. Note that

( 1 + 1) -1 𝑓 𝑛 = 𝜇 𝑛 𝑓 𝑛 ⇔  1 𝑓 𝑛 = (𝜇 -1
𝑛 -1)𝑓 𝑛 . In particular, 𝑓 𝑛 is also an eigenfunction of  1 with the corresponding eigenvalue 𝜇 -1 𝑛 -1 → +∞ as 𝑛 → ∞. The rest of the lemma follows by setting

𝑒 𝑛 = 𝑟 𝑑-1 2 𝑓 𝑛 and 𝜆 2 𝑛 = 𝜇 -1 𝑛 -1. □
We will now specify which Schatten space the resolvent of the operator we just constructed belongs to:

LEM:main2
Lemma 2.2 (Schatten-norm bounds for the resolvent).

Let 𝑠 > 0 and (𝜆 2 𝑛 ) 𝑛≥0 be the eigenvalues of  given in Lemma 2.1. Then we have [START_REF] Dinh | Invariant Gibbs measures for 1D NLS in a trap[END_REF]Lemma A.1]. In the following, we only consider the higher dimensional cases. To this end, we shall show the following Lieb-Thirring type inequality for the radial Schrödinger operator  = -Δ + 𝑉 (𝑟): for 𝛼 > 1 2 ,

Tr[ -𝛼 ] = ∑ 𝑛≥0 𝜆 -2𝛼 𝑛 < ∞ (2.8) traceEst provided 𝛼 > 1 2 + 1 𝑠 . Proof. The 1D case was proved in [40, Example 3.2] and
Tr[ -𝛼 ] ≤ 𝐶(𝛼) ∫ +∞ 0 (𝑉 (𝑟)) 1 2 -𝛼 𝑑𝑟.
(2.9)

Lieb-Thir-in Assume (2.9) for the moment, let us prove (2.8). Since  ≥ 𝜆 0 , we infer that

Tr[ -𝛼 ] ≤ 2 𝛼 Tr[( + 𝜆 0 ) -𝛼 ],
where 𝜆 0 > 0 is the first eigenvalue of . Applying (2.9) with 𝑉 (𝑟) = 𝑟 𝑠 + 𝜆 0 , we have

Tr[ -𝛼 ] ≤ 𝐶 ∫ +∞ 0 (𝑟 𝑠 + 𝜆 0 ) 1 2 -𝛼 𝑑𝑟 < ∞ provided 𝑠𝛼 -𝑠 2 > 1 or 𝛼 > 1 2 + 1 𝑠 . This proves (2.8).
It remains to prove (2.9). Let us start with the following observation. Let (𝜆 2 , 𝑓 ) be an eigenpair of

 = -Δ + 𝑉 (𝑟), namely ( -𝜕 2 𝑟 - 𝑑 -1 𝑟 𝜕 𝑟 + 𝑉 (𝑟) ) 𝑓 (𝑟) = 𝜆 2 𝑓 (𝑟).
By the change of variable

𝑔(𝑟) = 𝑟 𝑑-1 2 𝑓 (𝑟), (2.10 
)

chan-vari it becomes ( -𝜕 2 𝑟 + (𝑑 -1)(𝑑 -3) 4𝑟 2 + 𝑉 (𝑟) ) 𝑔(𝑟) = 𝜆 2 𝑔(𝑟) or (𝜆 2 , 𝑔) is an eigenpair of  1 ∶= -𝜕 2 𝑟 + (𝑑 -1)(𝑑 -3) 4𝑟 2 + 𝑉 (𝑟)
acting on 𝐿 2 ((0, +∞), 𝑑𝑟) with the Dirichlet boundary condition at 0. In particular, we have

Tr[ -𝛼 ] = ∑ 𝑛≥0 𝜆 -2𝛼 𝑛 = Tr[ -𝛼 1 ]
(2.11)

TraceL1

hence the proof of (2.9) is reduced to proving

Tr[ -𝛼 1 ] ≤ 𝐶(𝛼) ∫ +∞ 0 (𝑉 (𝑟)) 1 2 -𝛼 𝑑𝑟.
(2.12)

LT-proof

To show this, we rely on an idea of Dolbeault et al. [START_REF] Dolbeault | Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems[END_REF] which is done in two steps.

Step 1. A Golden-Thompson type inequality. We first prove that: for 𝑡 > 0,

Tr[𝑒 -𝑡 1 ] ≤ 𝐶𝑡 -1∕2 ∫ +∞ 0 𝑒 -𝑡𝑉 (𝑟) 𝑑𝑟. (2.

13)

Gold-Thom-in

To prove (2.13), we recall the following result of Ortner and Wagner [START_REF] Ortner | Calculation of the propagator of Schrödinger's equation on (0, ∞) with the potential 𝑘𝑥 -2 + 𝜔 2 𝑥 2 by laplace's method[END_REF] concerning the fundamental solution to the heat equation with an inverse-square potential on the half line with Dirichlet condition at 0. More precisely, the unique solution to

⎧ ⎪ ⎨ ⎪ ⎩ ( 𝜕 𝑡 -𝜕 2 𝑟 + (𝑑-1)(𝑑-3) 4𝑟 2 ) 𝑢(𝑡, 𝑟) = 0, 𝑡 > 0, 𝑟 > 0, 𝑢(𝑡 = 0, 𝑟) = 𝑔(𝑟), 𝑟 > 0, 𝑢(𝑡, 𝑟 = 0) = 0, 𝑡 > 0.
(2.14)

heat-equa is given by

𝑢(𝑡, 𝑟) = ∫ +∞ 0 𝐺(𝑡, 𝑟, 𝜏)𝑔(𝜏)𝑑𝜏,
where

𝐺(𝑡, 𝑟, 𝜏) = √ 𝑟𝜏 2𝑡 exp ( - 𝑟 2 + 𝜏 2 4𝑡 ) 𝐼 𝜈 ( 𝑟𝜏 2𝑡 ) (2.

15)

heat-kern with 𝜈 = 𝑑-2 2 and 𝐼 𝜈 the modified Bessel function of the first kind with index 𝜈, namely

𝐼 𝜈 (𝑥) = ∑ 𝑗≥0 1 Γ(𝑗 + 𝜈 + 1)𝑗! ( 𝑥 2 ) 2𝑗+𝜈 .
We have the following asymptotic behaviors of the modified Bessel function 𝐼 𝜈 (see e.g., [48, Section 10.30]):

𝐼 𝜈 (𝑥) ∼ 1 Γ(𝜈 + 1) ( 𝑥 2
) 𝜈 as 𝑥 → 0 (2.16)

I-nu-zero and 𝐼 𝜈 (𝑥) ∼ 1 √ 2𝜋𝑥
𝑒 𝑥 as 𝑥 → +∞.

(2.17)

I-nu-infi
Using Trotter's formula 4 (see [START_REF] Kato | Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroup[END_REF]), we have

𝑒 -𝑡 1 = 𝑠 -lim 𝑛→∞ ( 𝑒 -𝑡 𝑛 𝐻 𝑒 -𝑡 𝑛 𝑉 (𝑟)
) 𝑛 ,

where

𝐻 ∶= -𝜕 2 𝑟 + (𝑑 -1)(𝑑 -3) 4𝑟 2 . (2.18) H The integral kernel of ( 𝑒 -𝑡 𝑛 𝐻 𝑒 -𝑡 𝑛 𝑉 (𝑟)
) 𝑛 is written as

𝐾(𝑡, 𝑟, 𝜏) = ∫ (0,+∞) 𝑛-1 𝐺 ( 𝑡 𝑛 , 𝑟, 𝜏 1 ) 𝑒 -𝑡 𝑛 𝑉 (𝜏 1 ) 𝐺 ( 𝑡 𝑛 , 𝜏 1 , 𝜏 2 ) 𝑒 -𝑡 𝑛 𝑉 (𝜏 2 ) ...𝐺 ( 𝑡 𝑛 , 𝜏 𝑛-1 , 𝜏 ) 𝑒 -𝑡 𝑛 𝑉 (𝜏) 𝑑𝜏 1 𝑑𝜏 2 ...𝑑𝜏 𝑛-1 .
Thus Tr

[( 𝑒 -𝑡 𝑛 𝐻 𝑒 -𝑡 𝑛 𝑉 (𝑟)
) 𝑛 ] is

∫ +∞ 0 𝐾(𝑡, 𝜏, 𝜏)𝑑𝜏 = ∫ (0,+∞) 𝑛 𝐺 ( 𝑡 𝑛 , 𝜏, 𝜏 1 ) 𝑒 -𝑡 𝑛 𝑉 (𝜏 1 ) 𝐺 ( 𝑡 𝑛 , 𝜏 1 , 𝜏 2 ) 𝑒 -𝑡 𝑛 𝑉 (𝜏 2 ) ...𝐺 ( 𝑡 𝑛 , 𝜏 𝑛-1 , 𝜏 ) 𝑒 -𝑡 𝑛 𝑉 (𝜏) 𝑑𝜏 1 𝑑𝜏 2 ...𝑑𝜏 𝑛-1 𝑑𝜏.
Set 𝜏 0 = 𝜏. We rewrite this as

∫ (0,+∞) 𝑛 𝐺 ( 𝑡 𝑛 , 𝜏 0 , 𝜏 1 ) 𝐺 ( 𝑡 𝑛 , 𝜏 1 , 𝜏 2 ) ...𝐺 ( 𝑡 𝑛 , 𝜏 𝑛-1 , 𝜏 0 ) 𝑒 -𝑡 𝑛 (𝑉 (𝜏 0 )+𝑉 (𝜏 1 )+...+𝑉 (𝜏 𝑛-1 )) 𝑑𝜏 0 𝑑𝜏 1 𝑑𝜏 2 ...𝑑𝜏 𝑛-1 .
By the convexity of 𝑥 ↦ 𝑒 -𝑥 , we have

𝑒 -𝑡 𝑛 (𝑉 (𝜏 0 )+𝑉 (𝜏 1 )+...+𝑉 (𝜏 𝑛-1 )) ≤ 1 𝑛 𝑛-1 ∑ 𝑘=0 𝑒 -𝑡𝑉 (𝜏 𝑘 ) .

Thus we get

Tr[𝑒 -𝑡 1 ] ≤ 1 𝑛 𝑛-1 ∑ 𝑘=0 ∫ (0,+∞) 𝑛 𝐺 ( 𝑡 𝑛 , 𝜏 0 , 𝜏 1 ) 𝐺 ( 𝑡 𝑛 , 𝜏 1 , 𝜏 2 ) ...𝐺 ( 𝑡 𝑛 , 𝜏 𝑛-1 , 𝜏 0 ) 𝑒 -𝑡𝑉 (𝜏 𝑘 ) 𝑑𝜏 0 𝑑𝜏 1 ...𝑑𝜏 𝑛-1 .
The right hand side can be rewritten as 4 For 𝐴, 𝐵 two positive operators on a Hilbert space , then for all 𝑡 > 0, we have

1 𝑛 𝑛-1 ∑ 𝑘=0 ∫ +∞ 0 𝐹 (𝜏 𝑘 )𝑒 -𝑡𝑉 (𝜏 𝑘 ) 𝑑𝜏 𝑘 ,
𝑒 -𝑡(𝐴+𝐵) = 𝑠 -lim 𝑛→∞ (𝑒 -𝑡𝐴∕𝑛 𝑒 -𝑡𝐵∕𝑛 ) 𝑛 .
where

𝐹 (𝜏 𝑘 ) ∶= ∫ (0,+∞) 𝑛-1 𝐺 ( 𝑡 𝑛 , 𝜏 0 , 𝜏 1 ) 𝐺 ( 𝑡 𝑛 , 𝜏 1 , 𝜏 2 ) ...𝐺 ( 𝑡 𝑛 , 𝜏 𝑛-1 , 𝜏 0 ) 𝑑𝜏 0 𝑑𝜏 1 ...𝑑𝜏 𝑘-1 𝑑𝜏 𝑘+1 ...𝑑𝜏 𝑛-1 .
We recall that the heat kernel (2.15) is symmetric in 𝑟, 𝜏, and satisfies

∫ +∞ 0 𝐺(𝑡, 𝑟, 𝜏 ′ )𝐺(𝑠, 𝜏 ′ , 𝜏)𝑑𝜏 ′ = 𝐺(𝑡 + 𝑠, 𝑟, 𝜏),
where the latter comes from the fact that 𝑒 -𝑡𝐻 𝑒 -𝑠𝐻 = 𝑒 -(𝑡+𝑠)𝐻 . We thus deduce

𝐹 (𝜏 𝑘 ) = 𝐺(𝑡, 𝜏 𝑘 , 𝜏 𝑘 ) = 1 √ 2𝑡 √ 𝜏 2 𝑘 2𝑡 exp ( - 𝜏 2 𝑘 2𝑡 ) 𝐼 𝜈 ( 𝜏 2 𝑘 2𝑡 ) ≤ 𝐶𝑡 -1∕2 , 𝑘 = 0, ..., 𝑛 -1,
where we have used (2.16) and (2.17) to get the last estimate. This shows that

Tr[𝑒 -𝑡 1 ] ≤ 1 𝑛 𝑛-1 ∑ 𝑘=0 ∫ +∞ 0 𝐶𝑡 -1∕2 𝑒 -𝑡𝑉 (𝜏 𝑘 ) 𝑑𝜏 𝑘 ≤ 𝐶𝑡 -1∕2 ∫ +∞ 0 𝑒 -𝑡𝑉 (𝑟) 𝑑𝑟
which is (2.13).

Step 2. A Lieb-Thirring type inequality. Using the Gamma function

𝜆 -𝛼 = 1 Γ(𝛼) ∫ +∞ 0 𝑒 -𝑡𝜆 𝑡 𝛼-1 𝑑𝑡, 𝛼 > 0, 𝜆 > 0, (2.19) 
Gamma the functional calculus gives

Tr[ -𝛼 1 ] = 1 Γ(𝛼) ∫ +∞ 0 Tr[𝑒 -𝑡 1 ]𝑡 𝛼-1 𝑑𝑡.

Using (2.13), we get

Tr[ -𝛼 1 ] ≤ 1 Γ(𝛼) ∫ +∞ 0 ( 𝐶𝑡 -1∕2 ∫ +∞ 0 𝑒 -𝑡𝑉 (𝑟) 𝑑𝑟 ) 𝑡 𝛼-1 𝑑𝑡 = 𝐶 Γ(𝛼) ∫ +∞ 0 ( ∫ +∞ 0 𝑒 -𝑡𝑉 (𝑟) 𝑡 𝛼-1 2 -1 𝑑𝑡 ) 𝑑𝑟 = 𝐶Γ ( 𝛼 -1 2 ) Γ(𝛼) ∫ +∞ 0 (𝑉 (𝑟)) 1 2 -𝛼 𝑑𝑟
which proves (2.12). □

We next turn to integrability properties of the diagonal part of the resolvent's integral kernel:

LEM:main3

Lemma 2.3 (𝐿 𝑝 bounds for the resolvent's integral kernel).

Let 𝑠 > 0 and (𝜆 2 𝑛 , 𝑒 𝑛 ) 𝑛≥0 be the eigenpairs of  given in Lemma 2.1. Then, the Green function of  satisfies

 -1 (𝑥, 𝑥) = ∑ 𝑛≥0 𝑒 2 𝑛 (𝑥) 𝜆 2 𝑛 ∈ 𝐿 𝑝 (ℝ 𝑑 ) (2.20) GreenEst provided max { 1, 2 𝑠 } < 𝑝 < { ∞ if 𝑑 = 1, 2, 𝑑 𝑑-2 if 𝑑 ≥ 3.
Proof. For 𝑑 = 1, this is contained in [START_REF] Lewin | Gibbs measures based on 1D (an) harmonic oscillators as mean-field limits[END_REF]Lemma 3.2] and [START_REF] Dinh | Invariant Gibbs measures for 1D NLS in a trap[END_REF]Lemma 3.3]. By the change of variable (2.10), we observe that

 -1 (𝑥, 𝑥) = ∑ 𝑛≥0 𝑒 2 𝑛 (𝑥) 𝜆 2 𝑛 ∈ 𝐿 𝑝 (ℝ 𝑑 ) is equivalent to 𝑟 -(𝑑-1) ( 1-1 𝑝 )  -1 1 (𝑟, 𝑟) = 𝑟 -(𝑑-1) ( 1-1 𝑝 ) ∑ 𝑛≥0 𝑔 2 𝑛 (𝑟) 𝜆 2 𝑛 ∈ 𝐿 𝑝 ((0, +∞), 𝑑𝑟), ( 2.21) 
GreenEst-pro

where 𝑔 𝑛 (𝑟) = 𝑟 𝑑-1

2 𝑒 𝑛 (𝑟) are eigenfunctions of  1 . We proceed in several steps.

Step 1. A decay property near the origin. We first show the following estimate of the Green function: for any 0 < 𝛽 < 1, there exists 𝐶 𝛽 > 0 such that for all 𝑟 > 0,

𝑟 -𝛽  -1 1 (𝑟, 𝑟) ≤ 𝐶 𝛽 . (2.22) beta In fact, since  1 ≥ 𝐶(𝐻 + 1) with 𝐻 as in (2.18), the operator monotonicity of 𝑥 ↦ 𝑥 -1 gives  -1 1 ≤ 𝐶 -1 (𝐻 + 1) -1 , hence  -1 1 (𝑟, 𝑟) ≤ 𝐶 -1 (𝐻 + 1) -1 (𝑟, 𝑟). (2.23) boun-H1-L
We will use the Gamma function (2.19) to express the integral kernel of (𝐻 + 1) -1 in terms of the heat kernel of 𝑒 -𝑡𝐻 . More precisely, we have

(𝐻 + 1) -1 = 1 Γ(1) ∫ +∞ 0 𝑒 -𝑡𝐻 𝑒 -𝑡 𝑑𝑡 which implies (𝐻 + 1) -1 (𝑟, 𝜏) = 1 Γ(1) ∫ +∞ 0 𝐺(𝑡, 𝑟, 𝜏)𝑒 -𝑡 𝑑𝑡 = 1 Γ(1) ∫ +∞ 0 √ 𝑟𝜏 2𝑡 exp ( - 𝑟 2 + 𝜏 2 4𝑡 ) 𝐼 𝜈 ( 𝑟𝜏 2𝑡 ) 𝑒 -𝑡 𝑑𝑡,
where 𝐺 is as in (2.15). We write

(𝐻 + 1) -1 (𝑟, 𝑟) = 1 Γ(1) ∫ +∞ 0 ( 𝑟 2 2𝑡 ) 1 2 exp ( - 𝑟 2 2𝑡 ) 𝐼 𝜈 ( 𝑟 2 2𝑡 ) 𝑒 -𝑡 (2𝑡) -1 2 𝑑𝑡
and use (2.16), (2.17) to deduce

(𝐻 + 1) -1 (𝑟, 𝑟) ≤ 𝐶 ∫ +∞ 0 𝑒 -𝑡 𝑡 -1 2 𝑑𝑡 < ∞.
In particular, we have

 -1 1 (𝑟, 𝑟) ∈ 𝐿 ∞ ((0, +∞), 𝑑𝑟).
(2.24)

L-infty

Now we write

𝑟 -𝛽 (𝐻 + 1) -1 (𝑟, 𝑟) = 1 Γ(1) ∫ +∞ 0 𝑟 -𝛽 ( 𝑟 2 2𝑡 ) 1 2 exp ( - 𝑟 2 2𝑡 ) 𝐼 𝜈 ( 𝑟 2 2𝑡 ) 𝑒 -𝑡 (2𝑡) -1 2 𝑑𝑡 = 1 Γ(1) ∫ +∞ 0 ( 𝑟 2 2𝑡 ) 1 2 -𝛽 2 exp ( - 𝑟 2 2𝑡 ) 𝐼 𝜈 ( 𝑟 2 2𝑡 ) 𝑒 -𝑡 (2𝑡) -1 2 -𝛽 2 𝑑𝑡.
According to the asymptotic behaviors of the modified Bessel function (see (2.16) and (2.17)), we split the integral into three parts

Ω 1 = { 𝑡 ∈ (0, +∞) ∶ 𝑟 2 2𝑡 ≤ 𝐶 1 } , Ω 2 = { 𝑡 ∈ (0, +∞) ∶ 𝐶 1 ≤ 𝑟 2 2𝑡 ≤ 𝐶 2 } , Ω 3 = { 𝑡 ∈ (0, +∞) ∶ 𝑟 2 2𝑡 ≥ 𝐶 2 } , for some 𝐶 1 ≪ 1 and 𝐶 2 ≫ 1. On Ω 2 , it is clear that ( 𝑟 2 2𝑡 ) 1 2 -𝛽 2 exp ( - 𝑟 2 2𝑡 ) 𝐼 𝜈 ( 𝑟 2 2𝑡 ) ≲ 1.
On Ω 1 , we use (2.16) to get

( 𝑟 2 2𝑡 ) 1 2 -𝛽 2 exp ( - 𝑟 2 2𝑡 ) 𝐼 𝜈 ( 𝑟 2 2𝑡 ) ≲ ( 𝑟 2 2𝑡 ) 1 2 -𝛽 2 +𝜈 exp ( - 𝑟 2 2𝑡
) ≲ 1.

On Ω 3 , by (2.17), we have

( 𝑟 2 2𝑡 ) 1 2 -𝛽 2 exp ( - 𝑟 2 2𝑡 ) 𝐼 𝜈 ( 𝑟 2 2𝑡 ) ≲ ( 𝑟 2 2𝑡 ) -𝛽 2 ≲ 1.
Thus we obtain

𝑟 -𝛽 (𝐻 + 1) -1 (𝑟, 𝑟) ≲ ∫ +∞ 0 𝑒 -𝑡 𝑡 -1 2 -𝛽 2 𝑑𝑡 < ∞ as 0 < 𝛽 < 1. This proves (2.

22).

Step 2. The superharmonic case 𝑠 > 2. By (2.8) and (2.11), we see that

Tr[ -1 1 ] < ∞. Hence  -1 1 (𝑟, 𝑟) ∈ 𝐿 1 ((0, +∞), 𝑑𝑟), which together with (2.24) implies  -1 1 (𝑟, 𝑟) ∈ 𝐿 𝑝 ((0, +∞), 𝑑𝑟), ∀𝑝 ∈ [1, ∞]. (2.

25)

Lp-L1

We now estimate for 𝑝 > 1,

‖(⋅) -(𝑑-1) ( 1-1 𝑝 )  -1 1 (⋅, ⋅)‖ 𝑝 𝐿 𝑝 ((0,+∞),𝑑𝑟) = ∫ +∞ 0 ( 𝑟 -(𝑑-1) ( 1-1 𝑝 )  -1 1 (𝑟, 𝑟) ) 𝑝 𝑑𝑟 = ∫ 1 0 ( 𝑟 -(𝑑-1) ( 1-1 𝑝 )  -1 1 (𝑟, 𝑟) ) 𝑝 𝑑𝑟 + ∫ +∞ 1 ( 𝑟 -(𝑑-1) ( 1-1 𝑝 )  -1 1 (𝑟, 𝑟) ) 𝑝 𝑑𝑟. (2.

26)

Lp-est-proof

The integration on (1, +∞) is finite using (2.25). On the other hand, using (2.22), we have

∫ 1 0 ( 𝑟 -(𝑑-1) ( 1-1 𝑝 )  -1 1 (𝑟, 𝑟) ) 𝑝 𝑑𝑟 = ∫ 1 0 ( 𝑟 -(𝑑-1) ( 1-1 𝑝 ) +𝛽 𝑟 -𝛽  -1 1 (𝑟, 𝑟) ) 𝑝 𝑑𝑟 ≲ ∫ 1 0 𝑟 - ( (𝑑-1) ( 1-1 𝑝 ) -𝛽 ) 𝑝 𝑑𝑟
which is finite as long as ( (𝑑 -1)

( 1 - 1 𝑝 ) -𝛽 ) 𝑝 < 1
which we guarantee by picking

𝑝 < 𝑑 𝑑 -1 -𝛽 .
Since 𝛽 can be chosen arbitrarily in (0, 1), we infer that the integration on (0, 1) is ensured to be finite provided

1 < 𝑝 < 𝑑 𝑑 -2 . ( 2 

.27)

Lp-est-01

Step 3. The (sub)-harmonic case 1 < 𝑠 ≤ 2. It remains to show the boundedness of the integration on (1, +∞) in (2.26). To do this, we consider separately 𝑑 ≥ 3 and 𝑑 = 2.

𝑑 ≥ 3 We observe that

 1 ≥ -𝜕 2 𝑟 + 𝑟 𝑠 so  -1 1 (𝑟, 𝑟) ≤ (-𝜕 2 𝑟 + 𝑟 𝑠 ) -1 (𝑟, 𝑟).
(2.28)

est-Green-d-

To compute the Green function of -𝜕 2 𝑟 + 𝑟 𝑠 on the half-line (0, +∞), we take 𝜑 ∈ 𝐶 ∞ 0 ((0, +∞)). The unique solution to

{ (-𝜕 2 𝑟 + 𝑟 𝑠 )𝑢 = 𝜑, 𝑟 > 0, 𝑢(0) = 0, (2.29) 
equ-As is given by

𝑢(𝑟) = (-𝜕 2 𝑟 + 𝑟 𝑠 ) -1 𝜑(𝑟) = ∫ +∞ 0 (-𝜕 2 𝑟 + 𝑟 𝑠 ) -1 (𝑟, 𝜏)𝜑(𝜏)𝑑𝜏. (2.

30)

As

We use the odd extension technique to extend (2.29) to the whole line. More precisely, we denote

𝑢 odd (𝑟) ∶= ⎧ ⎪ ⎨ ⎪ ⎩ 𝑢(𝑟) if 𝑟 > 0, -𝑢(-𝑟) if 𝑟 < 0, 0 if 𝑟 = 0, 𝜑 odd (𝑟) ∶= ⎧ ⎪ ⎨ ⎪ ⎩ 𝜑(𝑟) if 𝑟 > 0, -𝜑(-𝑟) if 𝑟 < 0, 0 if 𝑟 = 0, (2.31) 
odd-exte-u the odd extensions of 𝑢 and 𝜑 respectively. Then 𝑢 odd solves

(-𝜕 2 𝑟 + |𝑟| 𝑠 )𝑢 odd = 𝜑 odd , 𝑟 ∈ (-∞, +∞
) which admits a unique solution given by

𝑢 odd (𝑟) = (-𝜕 2 𝑟 + |𝑟| 𝑠 ) -1 𝜑 odd (𝑟) = ∫ +∞ -∞ 𝐾(𝑟, 𝜏)𝜑 odd (𝜏)𝑑𝜏,
where 𝐾(𝑟, 𝜏) is the Green function of -𝜕 2 𝑟 + |𝑟| 𝑠 on the whole line ℝ. Restricting to (0, +∞), we get for 𝑟 > 0,

𝑢(𝑟) = ∫ +∞ -∞ 𝐾(𝑟, 𝜏)𝜑 odd (𝜏)𝑑𝜏 = ∫ 0 -∞ 𝐾(𝑟, 𝜏) (-𝜑(-𝜏)) 𝑑𝜏 + ∫ +∞ 0 𝐾(𝑟, 𝜏)𝜑(𝜏)𝑑𝜏 = ∫ +∞ 0 (𝐾(𝑟, 𝜏) -𝐾(𝑟, -𝜏)) 𝜑(𝜏)𝑑𝜏.
Comparing to (2.30), we obtain

(-𝜕 2 𝑟 + 𝑟 𝑠 ) -1 (𝑟, 𝜏) = 𝐾(𝑟, 𝜏) -𝐾(𝑟, -𝜏), 𝑟, 𝜏 ∈ (0, +∞). Thanks to the fact that 𝐾(𝑟, 𝑟) ∈ 𝐿 𝑝 ((-∞, +∞), 𝑑𝑟) for all 2 𝑠 < 𝑝 ≤ ∞ due to [41, Lemma 3.2] and 𝐾(𝑟, 𝜏) = ∑ 𝑛≥1 𝜇 -2 𝑛 𝑙 𝑛 (𝑟)𝑙 𝑛 (𝜏),
where (𝜇 2 𝑛 , 𝑙 𝑛 ) is the eigenpair of -𝜕 2 𝑟 + |𝑟| 𝑠 on ℝ, we infer that

(-𝜕 2 𝑟 + 𝑟 𝑠 ) -1 (𝑟, 𝑟) ∈ 𝐿 𝑝 ((0, +∞), 𝑑𝑟), ∀𝑝 ∈ ( 2 𝑠 , ∞ ] .
This together with (2.28) show that the integration on (1, +∞) is finite for all 2 𝑠 < 𝑝 ≤ ∞. Combining with (2.27) yields 𝑟

-(𝑑-1) ( 1-1 𝑝 ) 𝐻 -1 1 (𝑟, 𝑟) ∈ 𝐿 𝑝 ((0, +∞), 𝑑𝑟) for all 2 𝑠 < 𝑝 < 𝑑 𝑑 -2 . 𝑑 = 2
In this case, we recall from the proof of Lemma 2.1 that for 0 < 𝜃 < 1

-𝜕 2 𝑟 - 1 4𝑟 2 + 𝑟 𝑠 ≥ 𝐶 -1 (-𝜕 2 𝑟 ) 𝜃 + 1 2 𝑟 𝑠
for some constant 𝐶 > 0. In particular, we have

 -1 1 (𝑟, 𝑟) ≤ ( 𝐶 -1 (-𝜕 2 𝑟 ) 𝜃 + 1 2 𝑟 𝑠 ) -1 (𝑟, 𝑟). (2.32) est-Green-2d
Using an odd extension as above, we have

( 𝐶 -1 (-𝜕 2 𝑟 ) 𝜃 + 1 2 𝑟 𝑠 ) -1 (𝑟, 𝜏) = 𝐾(𝑟, 𝜏) -𝐾(𝑟, -𝜏), ∀𝑟, 𝜏 ∈ (0, +∞),
where 𝐾(𝑟, 𝜏) is the integral kernel of

( 𝐶 -1 (-𝜕 2 𝑟 ) 𝜃 + 1 2 |𝑟| 𝑠
) -1 defined on ℝ. Thanks to an estimate on the Green function of the fractional Schrödinger operator with an anharmonic oscillator (see Proposition B.2), we have for 𝜃 ∈ (1∕2, 1), 𝐾(𝑟, 𝑟) ∈ 𝐿 𝑝 (ℝ) for all 2𝜃 𝑠(2𝜃-1) < 𝑝 ≤ ∞. This implies that

( 𝐶 -1 (-𝜕 2 𝑟 ) 𝜃 + 1 2 𝑟 𝑠 ) -1 (𝑟, 𝑟) ∈ 𝐿 𝑝 ((0, +∞), 𝑑𝑟), ∀𝑝 ∈ ( 2𝜃 𝑠(2𝜃 -1) , ∞
] .

Since 𝜃 can be taken arbitrarily in (1∕2, 1), we deduce from (2.32) that

 -1 1 (𝑟, 𝑟) ∈ 𝐿 𝑝 ((0, +∞), 𝑑𝑟), ∀𝑝 ∈ ( 2 𝑠 , ∞ ] .
From this, we can conclude as in the case 𝑑 ≥ 3. The proof is complete. □ Lemmas 2.2 and 2.3 are crucial in the proof of Theorem 1.3 (i), i.e. the normalizability in the subcritical cases. To deal with the critical/supercritical cases, we also need tighter estimates, in particular estimates on the number of eigenvalues below a given threshold. subsec:Weyl

Weyl-type asymptotics for radial Schrödinger operators. Let

𝑁(, Λ) ∶= #{𝜆 2 𝑛 ∶ 𝜆 2 𝑛 ≤ Λ}, where 𝜆 2
𝑛 are the eigenvalues of  given in Lemma 2.1. We start with the following, whose equivalent in 1D is known as the "Cwikel-Lieb-Rozenbljum" bound (see e.g. [START_REF] Dinh | Invariant Gibbs measures for 1D NLS in a trap[END_REF]Lemma D.1]).

eo-Weyl-rad Theorem 2.4 (Weyl's law for radial Schrödinger operators). Let 𝑑 ≥ 2 and 𝑠 > 0. Then, for two constants 𝑐, 𝐶 > 0

𝑐Λ 1 2 + 1 𝑠 ≤ 𝑁(, Λ) ≤ 𝐶Λ 1 2 + 1 𝑠 as Λ → ∞.
(2.33)

Weyl-rad
We use the method of coherent states and semi-classical analysis on the phase space ℝ × ℝ, whose basic ingredients we recall in Appendix A. In the following, the single integral sign stands for the integral over the configuration space ℝ and the double integral one is for the integration over the phase space ℝ × ℝ.

Proof of Theorem 2.4. We have 𝑁(, Λ) = 𝑁( 1 , Λ), where  1 is given in (2.3). Thus, the analysis is reduced to study  1 , which we do in several steps.

Step 1. An odd extension. It is convenient to extend the operator  1 to the whole line. More precisely, let 𝑢 be an eigenfunction of  1 with the eigenvalue 𝜆 2 , i.e.,

-𝜕 2 𝑟 𝑢 + (𝑑 -1)(𝑑 -3) 4𝑟 2 𝑢 + 𝑟 𝑠 𝑢 = 𝜆 2 𝑢
with 𝑢 ∈ 𝐿 2 ((0, +∞), 𝑑𝑟) satisfying 𝑢(0) = 0. We extend 𝑢 to the whole line using the odd extension, denoted 𝑢 odd (see (2.31)). In particular, 𝑢 odd is a solution to

-𝜕 2 𝑥 𝑢 + (𝑑 -1)(𝑑 -3) 4|𝑥| 2 𝑢 + |𝑥| 𝑠 𝑢 = 𝜆 2 𝑢,
where 𝑢 ∈ 𝐿 2 (ℝ) is an odd function. In particular, (𝜆 2 , 𝑢 odd ) is an eigenpair of

1 = -𝜕 2 𝑥 + (𝑑 -1)(𝑑 -3) 4|𝑥| 2 + |𝑥| 𝑠
acting on 𝐿 2 odd (ℝ) the space of odd 𝐿 2 -functions. In addition, we have

𝑁( 1 , Λ) = 𝑁( 1 , Λ). (2.34) odd-exte
Step 2. A semiclassical reduction. To estimate 𝑁( 1 , Λ), we use a suitable scaling to reduce the problem to a semiclassical one that counts number of eigenvalues of a semiclassical operator below 1.

More precisely, if 𝑢 is an eigenfunction of 1 with the eigenvalue 𝜆 2 , then 𝑣(𝑥) ∶= 𝑢(Λ

1 𝑠 𝑥) solves Λ -1-2 𝑠 ( -𝜕 2 𝑥 + (𝑑 -1)(𝑑 -3) 4|𝑥| 2 ) 𝑣 + |𝑥| 𝑠 𝑣 = 𝜆 2 Λ -1 𝑣. Set ℏ ∶= Λ -1 2 -1 𝑠 , 𝜇 2 = 𝜆 2 Λ -1 . (2.

35) hbar

Then 𝑣 solves the semiclassical equation

1,ℏ 𝑣 = 𝜇 2 𝑣, 1,ℏ ∶= ℏ 2 ( -𝜕 2 𝑥 + (𝑑 -1)(𝑑 -3) 4|𝑥| 2 ) + |𝑥| 𝑠 .
In particular, 𝑁( 1 , Λ) = 𝑁( 1,ℏ , 1).

(2.36)

scaling

The study of 𝑁( 1,ℏ , 1) is now a semiclassical problem. To proceed further, we consider the following quantum energy:

𝐸 qu ℏ ∶= inf {  qu ℏ [𝛾] = Tr[( 1,ℏ -1)𝛾] ∶ 𝛾 ∈ 𝔖 1 (𝐿 2 odd ), 0 ≤ 𝛾 ≤ 𝟏 } , ( 2.37) 
eq:quantum e

where 𝔖 1 (𝐿 2 odd (ℝ)) is the space of trace-class operators on 𝐿 2 odd (ℝ). Let (𝑢 ℏ 𝑛 ) 𝑛≥0 be an orthonormal basis of 𝐿 2 odd (ℝ) consisting of eigenfunctions of 1,ℏ , with associated eigenvalues (𝜆 ℏ 𝑛 ) 2 . One readily sees that the quantum energy in (2.37) is achieved by the following fermionic density matrix

𝛾 ℏ = ∑ 𝑛≥0 𝟏 (𝜆 ℏ 𝑛 ) 2 ≤1 |𝑢 ℏ 𝑛 ⟩⟨𝑢 ℏ 𝑛 |. (2.

38)

gamma-h

In particular, we have

Tr[𝛾 ℏ ] = ∑ (𝜆 ℏ 𝑛 ) 2 ≤1 1 = 𝑁( 1,ℏ , 1).
Our goal is to show that 

sup ℏ→0 ℏTr[𝛾 ℏ ] ∈ (0, ∞) (2.
Tr[𝛾 test ] = 1 2𝜋ℏ ∬ 𝑚 𝐾 (𝑥, 𝑝)⟨𝑓 ℏ 𝑥,𝑝 , 𝑓 ℏ 𝑥,𝑝 ⟩𝑑𝑥𝑑𝑝 = 1 2𝜋ℏ ∬ 𝑚 𝐾 (𝑥, 𝑝)𝑑𝑥𝑑𝑝 ≤ 𝐶(𝐾, ℏ).
Note that

∬ 𝑚 𝐾 (𝑥, 𝑝)𝑑𝑥𝑑𝑝 = ∫ ( ∫ 𝟏 {|𝑝| 2 +|𝑥| 𝑠 -1≤0}∩{|𝑥|≥𝐾} 𝑑𝑝 ) 𝑑𝑥 = ∫ |𝑥|≥𝐾 ( ∫ {|𝑝|≤(|𝑥| 𝑠 -1) 1∕2 -} 𝑑𝑝 ) 𝑑𝑥 = 2 ∫ |𝑥|≥𝐾 (|𝑥| 𝑠 -1) 1∕2 -𝑑𝑥 < ∞, (2.42) 
inte-m0

where 𝑉 -(𝑥) = max {-𝑉 (𝑥), 0} is the negative part of 𝑉 (𝑥).

We will use the energy of 𝛾 test as an upper bound to the quantum energy:

𝐸 qu ℏ ≤  qu ℏ [ 𝛾 test ] .
By the Plancherel identity, we compute

ℏTr[-ℏ 2 𝜕 2 𝑥 𝛾 test ] = 1 2𝜋 ∬ 𝑚 𝐾 (𝑥, 𝑝)⟨𝑓 ℏ 𝑥,𝑝 , -ℏ 2 𝜕 2 𝑦 𝑓 ℏ 𝑥,𝑝 ⟩𝑑𝑥𝑑𝑝 = 1 2𝜋 ∬ 𝑚 𝐾 (𝑥, 𝑝) ( ∫ |𝑞| 2 | ℏ [𝑓 ℏ 𝑥,𝑝 ](𝑞)| 2 𝑑𝑞 ) 𝑑𝑥𝑑𝑝 = 1 2𝜋 ∬ 𝑚 𝐾 (𝑥, 𝑝) ⎛ ⎜ ⎜ ⎝ ℏ -1∕2 ∫ |𝑞| 2 | | | | | | f ( 𝑞 -𝑝 √ ℏ ) | | | | | | 2 𝑑𝑞 ⎞ ⎟ ⎟ ⎠ 𝑑𝑥𝑑𝑝 = 1 2𝜋 ∬ 𝑚 𝐾 (𝑥, 𝑝) ( ∫ |𝑝 + √ ℏ𝑞| 2 | f (𝑞)| 2 𝑑𝑞 ) 𝑑𝑥𝑑𝑝 = 1 2𝜋 ∬ 𝑚 𝐾 (𝑥, 𝑝) ( ∫ (|𝑝| 2 + 2 √ ℏ𝑝𝑞 + ℏ|𝑞| 2 )| f (𝑞)| 2 𝑑𝑞 ) 𝑑𝑥𝑑𝑝,
where  ℏ is the semi-classical Fourier transform (see Appendix A for the definition). We observe that

∫ |𝑝| 2 | f (𝑞)| 2 𝑑𝑞 = |𝑝| 2 ‖ f ‖ 2 𝐿 2 = |𝑝| 2 and ∫ |𝑞| 2 | f (𝑞)| 2 𝑑𝑞 = ‖𝑓 ′ ‖ 2 𝐿 2 .
Since 𝑓 is an odd function, so is f , hence for 𝑝 fixed,

∫ 𝑝𝑞| f (𝑞)| 2 𝑑𝑞 = 0.
In particular, we obtain

ℏTr[-ℏ 2 𝜕 2 𝑥 𝛾 test ] = 1 2𝜋 ∬ 𝑚 𝐾 (𝑥, 𝑝)(|𝑝| 2 + ℏ‖𝑓 ′ ‖ 2 𝐿 2 )𝑑𝑥𝑑𝑝. (2.43) iden-1
We next have ℏTr

[ ℏ 2 (𝑑 -1)(𝑑 -3) 4|𝑥| 2 𝛾 test ] = (𝑑 -1)(𝑑 -3)ℏ 2 8𝜋 ∬ 𝑚 𝐾 (𝑥, 𝑝) ⟨ 𝑓 ℏ 𝑥,𝑝 , 1 |𝑦| 2 𝑓 ℏ 𝑥,𝑝 ⟩ 𝑑𝑥𝑑𝑝.
It suffices to estimate the bracket on the region {|𝑥| ≥ 𝐾} (see (2.41)). We have

⟨ 𝑓 ℏ 𝑥,𝑝 , 1 |𝑦| 2 𝑓 ℏ 𝑥,𝑝 ⟩ = ∫ 1 |𝑦| 2 |𝑓 ℏ 𝑥,𝑝 (𝑦)| 2 𝑑𝑦 = ℏ -1∕2 ∫ 1 |𝑦| 2 | | | 𝑓 ( 𝑦 -𝑥 √ ℏ ) | | | 2 𝑑𝑦 = ∫ 1 |𝑥 + √ ℏ𝑦| 2 |𝑓 (𝑦)| 2 𝑑𝑦.
Since |𝑥| ≥ 𝐾 and 𝑓 has compact support, there exists ℏ 0 ∈ (0, 1] small such that

|𝑥 + √ ℏ𝑦| ≥ |𝑥| - √ ℏ|𝑦| ≥ 𝐾 2 for all ℏ ∈ (0, ℏ 0 ) and all 𝑦 ∈ supp(𝑓 ). It follows that ⟨ 𝑓 ℏ 𝑥,𝑝 , 1 |𝑦| 2 𝑓 ℏ 𝑥,𝑝 ⟩ ≤ 4 𝐾 2 ‖𝑓 ‖ 2 𝐿 2 = 4 𝐾 2 , hence ℏTr [ ℏ 2 (𝑑 -1)(𝑑 -3) 4|𝑥| 2 𝛾 test ] ≤ 𝐶 𝐾 ℏ 2 ∬ 𝑚 𝐾 (𝑥, 𝑝)𝑑𝑥𝑑𝑝 (2.44) iden-2
for all ℏ ∈ (0, ℏ 0 ). We also have

ℏTr[|𝑥| 𝑠 𝛾 test ] = 1 2𝜋 ∬ 𝑚 𝐾 (𝑥, 𝑝)⟨𝑓 ℏ 𝑥,𝑝 , |𝑦| 𝑠 𝑓 ℏ 𝑥,𝑝 ⟩𝑑𝑥𝑑𝑝 = 1 2𝜋 ∬ 𝑚 𝐾 (𝑥, 𝑝) ( ∫ |𝑦| 𝑠 |𝑓 ℏ 𝑥,𝑝 (𝑦)| 2 𝑑𝑦 ) 𝑑𝑥𝑑𝑝 = 1 2𝜋 ∬ 𝑚 𝐾 (𝑥, 𝑝) ( ℏ -1∕2 ∫ |𝑦| 𝑠 | | | 𝑓 ( 𝑦 -𝑥 √ ℏ ) | | | 2 𝑑𝑦 ) 𝑑𝑥𝑑𝑝 = 1 2𝜋 ∬ 𝑚 𝐾 (𝑥, 𝑝) ( ∫ |𝑥 + √ ℏ𝑦| 𝑠 |𝑓 (𝑦)| 2 𝑑𝑦 ) 𝑑𝑥𝑑𝑝.
Using the inequality

|𝑥 + √ ℏ𝑦| 𝑠 ≤ { |𝑥| 𝑠 + 𝐶| √ ℏ𝑦| 𝑠 + 𝐶 √ ℏ|𝑥| 𝑠-1 |𝑦| if 𝑠 ≥ 1, |𝑥| 𝑠 + 𝐶| √ ℏ𝑦| 𝑠 if 0 < 𝑠 < 1, (2.45) 
diff-est we get

∫ |𝑥 + √ ℏ𝑦| 𝑠 |𝑓 (𝑦)| 2 𝑑𝑦 ≤ |𝑥| 𝑠 + 𝐶ℏ 𝑠∕2 ∫ |𝑦| 𝑠 |𝑓 (𝑦)| 2 𝑑𝑦 + 𝐶ℏ 1∕2 |𝑥| 𝑠-1 ∫ |𝑦||𝑓 (𝑦)| 2 𝑑𝑦
for 𝑠 ≥ 1 and

∫ |𝑥 + √ ℏ𝑦| 𝑠 |𝑓 (𝑦)| 2 𝑑𝑦 ≤ |𝑥| 𝑠 + 𝐶ℏ 𝑠∕2 ∫ |𝑦| 𝑠 |𝑓 (𝑦)| 2 𝑑𝑦
for 0 < 𝑠 < 1. In the following, we consider only the case 𝑠 ≥ 1 since the one for 0 < 𝑠 < 1 is similar. In particular, we obtain for 𝑠 ≥ 1,

ℏTr[|𝑥| 𝑠 𝛾 test ] ≤ 1 2𝜋 ∬ |𝑥| 𝑠 𝑚 𝐾 (𝑥, 𝑝)𝑑𝑥𝑑𝑝 + 𝐶ℏ 1∕2 ‖|𝑦| 1∕2 𝑓 ‖ 2 𝐿 2 ∬ |𝑥| 𝑠-1 𝑚 𝐾 (𝑥, 𝑝)𝑑𝑥𝑑𝑝 + 𝐶ℏ 𝑠∕2 ‖|𝑦| 𝑠∕2 𝑓 ‖ 2 𝐿 2 ∬ 𝑚 𝐾 (𝑥, 𝑝)𝑑𝑥𝑑𝑝.
(2.46)

iden-3

Collecting (2.43), (2.44), (2.46), and using the resolution of the identity (A.1) yields

ℏ𝐸 qu ℏ ≤ ℏ qu ℏ [𝛾 test ] = ℏTr[( 1,ℏ -1)𝛾 test ] ≤ 1 2𝜋 ∬ (|𝑝| 2 + |𝑥| 𝑠 -1)𝑚 𝐾 (𝑥, 𝑝)𝑑𝑥𝑑𝑝 + 𝐶 ( ℏ 2 + ℏ 𝑠∕2 ‖|𝑦| 𝑠∕2 𝑓 ‖ 2 𝐿 2 ) ∬ 𝑚 𝐾 (𝑥, 𝑝)𝑑𝑥𝑑𝑝 + 𝐶ℏ 1∕2 ‖|𝑦| 1∕2 𝑓 ‖ 2 𝐿 2 ∬ |𝑥| 𝑠-1 𝑚 𝐾 (𝑥, 𝑝)𝑑𝑥𝑑𝑝 (2.47) trial-boun
for all ℏ ∈ (0, ℏ 0 ) and some constant 𝐶 > 0 independent of ℏ. Since (see ( 

=  qu ℏ [𝛾 ℏ ]. Since 1,ℏ ≥ 0, we have ℏ𝐸 qu ℏ = ℏ qu ℏ [𝛾 ℏ ] ≥ -ℏTr[𝛾 ℏ ]. It follows that lim inf ℏ→0 ℏTr[𝛾 ℏ ] ≥ -lim sup ℏ→0 ℏ𝐸 qu ℏ ≥ - 1 2𝜋 ∬ (|𝑝| 2 + |𝑥| 𝑠 -1)𝑚 𝐾 (𝑥, 𝑝)𝑑𝑥𝑑𝑝.
This proves (2.40) since

- 1 2𝜋 ∬ (|𝑝| 2 + |𝑥| 𝑠 -1)𝑚 𝐾 (𝑥, 𝑝)𝑑𝑥𝑑𝑝 = 2 3𝜋 ∫ |𝑥|≥𝐾 (|𝑥| 𝑠 -1) 3∕2 -𝑑𝑥 ∈ (0, ∞).
Step 

Since -𝜕 2 𝑥 + (𝑑-1)(𝑑-3) 4|𝑥| 2
≥ 0, we have 

0 ≥ ℏ𝐸 qu ℏ = ℏ qu ℏ [𝛾 ℏ ] = ℏTr[( 1,ℏ -1)𝛾 ℏ ] ≥ ℏTr[(|𝑥| 𝑠 -1)𝛾 ℏ ] = ℏ ∫ (|𝑥| 𝑠 -
ℏ𝐸 qu ℏ = ℏ qu ℏ [𝛾 ℏ ] = ℏTr[( 1,ℏ -1)𝛾 ℏ ] ≥ ℏTr[(-ℏ 2 𝜕 2 𝑥 + |𝑥| 𝑠 -1)𝛾 ℏ ]. (2.

52)

boun-d-geq3-By Plancherel's identity, we compute

Tr[-ℏ 2 𝜕 2 𝑥 𝛾 ℏ ] = ∑ 𝑛≥0 𝜇 ℏ 𝑛 ⟨𝑢 ℏ 𝑛 , -ℏ 2 𝜕 2 𝑥 𝑢 ℏ 𝑛 ⟩ = ∫ |𝑞| 2 𝑡 ℏ (𝑞)𝑑𝑞, where 𝑡 ℏ (𝑞) = ∑ 𝑛≥1 𝜇 ℏ 𝑛 | ℏ [𝑢 ℏ 𝑛 ](𝑞)| 2 .
We also have

Tr[(|𝑥| 𝑠 -1)𝛾 ℏ ] = ∑ 𝑛≥0 𝜇 ℏ 𝑛 ∫ (|𝑥| 𝑠 -1)|𝑢 ℏ 𝑛 (𝑥)| 2 𝑑𝑥 = ∫ (|𝑥| 𝑠 -1)𝜌 ℏ (𝑥)𝑑𝑥.
Thus we get

ℏTr[(-ℏ 2 𝜕 2 𝑥 + |𝑥| 𝑠 -1)𝛾 ℏ ] = ℏ ( ∫ |𝑞| 2 𝑡 ℏ (𝑞)𝑑𝑞 + ∫ (|𝑥| 𝑠 -1)𝜌 ℏ (𝑥)𝑑𝑥 ) . (2.53) boun-d-geq3-
On the other hand, we have (see Lemma A.2)

1 2𝜋 ∬ 𝑚 ℏ (𝑥, 𝑝)|𝑝| 2 𝑑𝑥𝑑𝑝 = ℏ ∫ |𝑝| 2 𝑡 ℏ * |𝑔 ℏ | 2 (𝑝)𝑑𝑝 = ℏ ∫ 𝑡 ℏ (𝑞) ( ∫ |𝑝| 2 |𝑔 ℏ (𝑝 -𝑞)| 2 𝑑𝑝 ) 𝑑𝑞 = ℏ ∫ 𝑡 ℏ (𝑞) ( ℏ -1∕2 ∫ |𝑝| 2 | | | f ( 𝑝 -𝑞 √ ℏ ) | | | 2 𝑑𝑝 ) 𝑑𝑞 = ℏ ∫ 𝑡 ℏ (𝑞) ( ∫ (|𝑞| 2 + 2 √ ℏ𝑝𝑞 + ℏ|𝑝| 2 )| f (𝑝)| 2 𝑑𝑝 ) 𝑑𝑞 = ℏ ∫ 𝑡 ℏ (𝑞) ( |𝑞| 2 + ℏ‖𝑓 ′ ‖ 2 𝐿 2 ) 𝑑𝑞 = ℏ ∫ 𝑡 ℏ (𝑞)|𝑞| 2 𝑑𝑞 + ℏ 2 ‖𝑓 ′ ‖ 2 𝐿 2 ∫ 𝑡 ℏ (𝑞)𝑑𝑞,
where we have performed a similar calculation as in Step 3. We also have

1 2𝜋 ∬ 𝑚 ℏ (𝑥, 𝑝)(|𝑥| 𝑠 -1)𝑑𝑥𝑑𝑝 = ℏ ∫ (|𝑥| 𝑠 -1)𝜌 ℏ * |𝑓 ℏ | 2 (𝑥)𝑑𝑥 = ℏ ∫ 𝜌 ℏ (𝑦) ( ∫ (|𝑥| 𝑠 -1)|𝑓 ℏ (𝑥 -𝑦)| 2 𝑑𝑥 ) 𝑑𝑦 = ℏ ∫ 𝜌 ℏ (𝑦) ( ∫ (|𝑦 + √ ℏ𝑥| 𝑠 -1)|𝑓 (𝑥)| 2 𝑑𝑥 ) 𝑑𝑦 = ℏ ∫ 𝜌 ℏ (𝑦)(|𝑦| 𝑠 -1)𝑑𝑦 + ℏ ∫ 𝜌 ℏ (𝑦) ( ∫ |𝑦 + √ ℏ𝑥| 𝑠 |𝑓 (𝑥)| 2 𝑑𝑥 -|𝑦| 𝑠 ) 𝑑𝑦,
where we used ‖𝑓 ‖ 𝐿 2 = 1. To estimate the second term, we use (2.45) to have

| | | ∫ |𝑦 + √ ℏ𝑥| 𝑠 |𝑓 (𝑥)| 2 𝑑𝑥 -|𝑦| 𝑠 | | | ≤ 𝐶ℏ 1∕2 |𝑦| 𝑠-1 ∫ |𝑥||𝑓 (𝑥)| 2 𝑑𝑥 + 𝐶ℏ 𝑠∕2 ∫ |𝑥| 𝑠 |𝑓 (𝑥)| 2 𝑑𝑥 ≤ 𝐶ℏ 1∕2 |𝑦| 𝑠-1 ‖|𝑥| 1∕2 𝑓 ‖ 2 𝐿 2 + 𝐶ℏ 𝑠∕2 ‖|𝑥| 𝑠∕2 𝑓 ‖ 2 𝐿 2 .
This shows that

| | | ℏ ∫ 𝜌 ℏ (𝑦) ( ∫ |𝑦 + √ ℏ𝑥| 𝑠 |𝑓 (𝑥)| 2 𝑑𝑥 -|𝑦| 𝑠 ) 𝑑𝑦 | | | ≤ 𝐶ℏ 3∕2 ‖|𝑥| 1∕2 𝑓 ‖ 2 𝐿 2 ∫ |𝑦| 𝑠-1 𝜌 ℏ (𝑦)𝑑𝑦 + 𝐶ℏ 𝑠∕2+1 ‖|𝑥| 𝑠∕2 𝑓 ‖ 2 𝐿 2 ∫ 𝜌 ℏ (𝑦)𝑑𝑦.
Using the inequality |𝑦| 𝑠-1 ≤ 𝐶(|𝑦| 𝑠 + 1) and 𝑠 ≥ 1 (there is no such term if 0 < 𝑠 < 1), we infer from (2.50) that

| | | ℏ ∫ 𝜌 ℏ (𝑦) ( ∫ |𝑦 + √ ℏ𝑥| 𝑠 |𝑓 (𝑥)| 2 𝑑𝑥 -|𝑦| 𝑠 ) 𝑑𝑦 | | | = 𝑂(ℏ 3∕2 ) ∫ 𝜌 ℏ (𝑦)𝑑𝑦
for all ℏ ∈ (0, ℏ 0 ), where ℏ 0 is as in (2.51) and 𝐴 ℏ = 𝑂(ℏ 𝛼 ) means that |𝐴 ℏ | ≤ 𝐶ℏ 𝛼 for some constant 𝐶 > 0 independent of ℏ. Collecting the above estimates, we have

1 2𝜋 ∬ 𝑚 ℏ (𝑥, 𝑝)(|𝑝| 2 + |𝑥| 𝑠 -1)𝑑𝑥𝑑𝑝 = ℏ ( ∫ 𝑡 ℏ (𝑞)|𝑞| 2 𝑑𝑞 + ∫ 𝜌 ℏ (𝑥)(|𝑥| 𝑠 -1)𝑑𝑥 ) (2.54) boun-d-geq3- + 𝑂(ℏ 2 ) ∫ 𝑡 ℏ (𝑞)𝑑𝑞 + 𝑂(ℏ 3∕2 ) ∫ 𝜌 ℏ (𝑥)𝑑𝑥.
From (2.51), (2.52), (2.53), and (2.54), we obtain

0 ≥ ℏ𝐸 qu ℏ ≥ ℏ ( ∫ |𝑞| 2 𝑡 ℏ (𝑞)𝑑𝑞 + ∫ (|𝑥| 𝑠 -1)𝜌 ℏ (𝑥)𝑑𝑥 ) ≥ 1 2𝜋 ∬ 𝑚 ℏ (𝑥, 𝑝)(|𝑝| 2 + |𝑥| 𝑠 -1)𝑑𝑥𝑑𝑝 -𝐶ℏ 2 ∫ 𝑡 ℏ (𝑞)𝑑𝑞 -𝐶ℏ 3∕2 ∫ 𝜌 ℏ (𝑥)𝑑𝑥 ≥ 1 2𝜋 ∬ 𝑚 ℏ (𝑥, 𝑝)(|𝑝| 2 + |𝑥| 𝑠 -1)𝑑𝑥𝑑𝑝 -𝐶ℏ ∫ 𝑡 ℏ (𝑞)𝑑𝑞 -𝐶ℏ ∫ 𝜌 ℏ (𝑥)𝑑𝑥 = 1 2𝜋 ∬ 𝑚 ℏ (𝑥, 𝑝)(|𝑝| 2 + |𝑥| 𝑠 -1 -2𝐶)𝑑𝑥𝑑𝑝 (2.55) boun-d-geq3-
for all ℏ ∈ (0, ℏ 0 ), where we used (A.2) to get the last identity.

Set 𝑊 (𝑥, 𝑝) ∶= |𝑝| 2 + |𝑥| 𝑠 -1 -2𝐶 ≥ -1 -2𝐶, ∀𝑥, 𝑝 ∈ ℝ.
From (2.55), we have

0 ≥ 1 2𝜋 ∬ 𝑚 ℏ (𝑥, 𝑝)𝑊 (𝑥, 𝑝)𝑑𝑥𝑑𝑝 = 1 2𝜋 ∬ {𝑊 ≤1} 𝑚 ℏ (𝑥, 𝑝)𝑊 (𝑥, 𝑝)𝑑𝑥𝑑𝑝 + 1 2𝜋 ∬ {𝑊 ≥1} 𝑚 ℏ (𝑥, 𝑝)𝑊 (𝑥, 𝑝)𝑑𝑥𝑑𝑝 ≥ - 1 + 2𝐶 2𝜋 ∬ {𝑊 ≤1} 𝑚 ℏ (𝑥, 𝑝)𝑑𝑥𝑑𝑝 + 1 2𝜋 ∬ {𝑊 ≥1} 𝑚 ℏ (𝑥, 𝑝)𝑑𝑥𝑑𝑝 = 1 2𝜋 ∬ 𝑚 ℏ (𝑥, 𝑝)𝑑𝑥𝑑𝑝 - 1 + 𝐶 𝜋 ∬ {𝑊 ≤1} 𝑚 ℏ (𝑥, 𝑝)𝑑𝑥𝑑𝑝 ≥ 1 2𝜋 ∬ 𝑚 ℏ (𝑥, 𝑝)𝑑𝑥𝑑𝑝 - 1 + 𝐶 𝜋 ∬ {𝑊 ≤1} 𝑑𝑥𝑑𝑝,
where we used 0 ≤ 𝑚 ℏ (𝑥, 𝑝) ≤ 1 for all 𝑥, 𝑝 ∈ ℝ. Therefore, we obtain

1 2𝜋 ∬ 𝑚 ℏ (𝑥, 𝑝)𝑑𝑥𝑑𝑝 ≤ 1 + 𝐶 𝜋 ∬ {𝑊 ≤1} 𝑑𝑥𝑑𝑝 = constant (2.56) boun-m
for some 𝐶 > 0 since {𝑊 ≤ 1} is a non-empty compact set of ℝ 2 . This together with (A.2) proves (2.49) when 𝑑 ≥ 3. 𝑑 = 2 In this case, we first extend the refined Hardy inequality (2.6) to the whole line, i.e., for

0 < 𝜃 < 1, ∫ |(-𝜕 2 𝑥 ) 𝜃∕2 𝑓 (𝑥)| 2 𝑑𝑥 ≤ 𝐶 ∫ | | | ( -𝜕 2 𝑥 - 1 4|𝑥| 2 ) 𝜃∕2 𝑓 (𝑥) | | | 2 𝑑𝑥, ∀𝑓 ∈ 𝐶 ∞ 0 (ℝ) odd functions.
As operators, we have from the operator monotonicity of 𝑥 ↦ 𝑥 𝜃 with 0 < 𝜃 < 1 that

(-ℏ 2 𝜕 2 𝑥 ) 𝜃 ≤ 𝐶 [ ℏ 2 ( -𝜕 2 𝑥 - 1 4|𝑥| 2 )] 𝜃 ≤ 𝐶 [ ℏ 2 ( -𝜕 2 𝑥 - 1 4|𝑥| 2 ) + 1 
] 𝜃 ≤ 𝐶 [ ℏ 2 ( -𝜕 2 𝑥 - 1 4|𝑥| 2 ) + 1 ] which gives ℏ 2 ( -𝜕 2 𝑥 - 1 4|𝑥| 2 ) ≥ 𝐶(-ℏ 2 𝜕 2 𝑥 ) 𝜃 -1.
In particular, we have

H1,ℏ ≥ 𝐶(-ℏ 2 𝜕 2 𝑥 ) 𝜃 + |𝑥| 𝑠 -1.
for some constant 𝐶 > 0 which may change from line to line. By taking 0 < 𝜃 < 1∕2, we get

ℏ𝐸 qu ℏ = ℏ qu ℏ [𝛾 ℏ ] = ℏTr[( 1,ℏ -1)𝛾 ℏ ] ≥ ℏTr[(𝐶(-ℏ 2 𝜕 2 𝑥 ) 𝜃 + |𝑥| 𝑠 -2)𝛾 ℏ ]. (2.57) 
uppe-boun-2d

The same argument as in the case 𝑑 ≥ 3 applies here. The only difference is the term

1 2𝜋 ∬ 𝑚 ℏ (𝑥, 𝑝)|𝑝| 2𝜃 𝑑𝑥𝑑𝑝
which can be treated as follows. We have

1 2𝜋 ∬ 𝑚 ℏ (𝑥, 𝑝)|𝑝| 2𝜃 𝑑𝑥𝑑𝑝 = ℏ ∫ 𝑡 ℏ (𝑞) ( ∫ |𝑝| 2𝜃 |𝑔 ℏ (𝑝 -𝑞)| 2 𝑑𝑝 ) 𝑑𝑞 = ℏ ∫ 𝑡 ℏ (𝑞) ( ∫ |𝑞 + √ ℏ𝑝| 2𝜃 | f (𝑝)| 2 𝑑𝑝 ) 𝑑𝑞 = ℏ ∫ 𝑡 ℏ (𝑞)|𝑞| 2𝜃 𝑑𝑞 + 𝑂(ℏ 1+𝜃 ) ∫ 𝑡 ℏ (𝑞)𝑑𝑞.
We now can repeat the same reasoning as in the case 𝑑 ≥ 3 (i.e., ( To see this, we define the classical energy

𝐸 cl ∶= inf {  cl [𝑚] ∶= 1 2𝜋 ∬ 𝑚(𝑥, 𝑝)(|𝑝| 2 + |𝑥| 𝑠 -1)𝑑𝑥𝑑𝑝 ∶ 𝑚 ∈ 𝐿 1 (ℝ × ℝ), 0 ≤ 𝑚 ≤ 1 } .
By the bathtub principle (see e.g. [43, Theorem 1.14]), the unique minimizer for 𝐸 cl is given by the function 𝑚 0 defined above. By (2.48) and letting 𝐾 → 0, we have

lim sup ℏ→0 ℏ𝐸 qu ℏ ≤ 1 2𝜋 ∬ (|𝑝| 2 + |𝑥| 𝑠 -1)𝑚 𝐾 (𝑥, 𝑝)𝑑𝑥𝑑𝑝 ≤ 1 2𝜋 ∬ (|𝑝| 2 + |𝑥| 𝑠 -1)𝑚 0 (𝑥, 𝑝)𝑑𝑥𝑑𝑝 = 𝐸 cl ,
where 𝑚 0 is as in (2.41). On the other hand, from (A.2), (2.54), and (2.56), we have

ℏ𝐸 qu ℏ = ℏ qu ℏ [𝛾 ℏ ] = 1 2𝜋 ∬ 𝑚 ℏ (𝑥, 𝑝)(|𝑝| 2 + |𝑥| 𝑠 -1)𝑑𝑥𝑑𝑝 + 𝑂(ℏ 1∕2 ) ≥ 𝐸 cl -𝐶ℏ 1∕2 .
Taking the liminf, we obtain

lim inf ℏ→0 ℏ𝐸 qu ℏ ≥ 𝐸 cl . This shows that lim ℏ ℏ𝐸 qu ℏ = 𝐸 cl and ∬ 𝑚 ℏ (𝑥, 𝑝)(|𝑝| 2 + |𝑥| 𝑠 )𝑑𝑥𝑑𝑝 ≤ 𝐶
for all ℏ → 0. In particular, 𝑚 ℏ is a tight minimizing sequence for 𝐸 cl . From this, we deduce that 𝑚 ℏ → 𝑚 0 strongly in 𝐿 1 (ℝ × ℝ) and (2.58) follows.

As a corollary, we deduce an estimate on the number of eigenvalues in some spectral windows.

LEM:CLR Corollary 2.5. There exist 𝐶 0 , 𝑐 0 > 0 and 𝑘 0 > 1 such that for all Λ ≥ 𝜆 2 0 ,

𝑐 0 Λ 1 2 + 1 𝑠 ≤ #{𝜆 2 𝑛 ∶ Λ < 𝜆 2 𝑛 ≤ 𝑘 0 Λ} ≤ 𝐶 0 Λ 1 2 + 1 𝑠 .
(2.59)

CLR2

Proof. From (2.33) or its' equivalent in 1D, there exist 𝐶, 𝑐 > 0 and Λ 0 > 0 large such that

𝑐Λ 1 2 + 1 𝑠 ≤ 𝑁(, Λ) ≤ 𝐶Λ 1 2 + 1 𝑠 (2.

60)

Weyl-rad-app for all Λ ≥ Λ 0 . The same estimate still holds for 𝜆 2 0 ≤ Λ ≤ Λ 0 by adjusting the constants 𝐶, 𝑐 accordingly. In fact, we have

𝑁(, Λ) ≥ 1 ≥ Λ -1 2 -1 𝑠 0 Λ 1 2 + 1 𝑠 and 𝑁(, Λ) ≤ 𝑁(, Λ 0 ) ≤ 𝐶Λ 1 2 + 1 𝑠 0 = 𝐶 ( Λ 0 Λ ) 1 2 + 1 𝑠 Λ 1 2 + 1 𝑠 ≤ 𝐶 ( Λ 0 𝜆 2 0 ) 1 2 + 1 𝑠 Λ 1 2 + 1 𝑠 .
To see (2.59), we use (2.60) to have

#{𝜆 2 𝑛 ∶ Λ < 𝜆 2 𝑛 ≤ 𝑘 0 Λ} ≤ 𝑁(, 𝑘 0 Λ) ≤ 𝐶𝑘 1 2 + 1 𝑠 0 Λ 1 2 + 1 𝑠 and #{𝜆 2 𝑛 ∶ Λ < 𝜆 2 𝑛 ≤ 𝑘 0 Λ} = 𝑁(, 𝑘 0 Λ) -𝑁(, Λ) ≥ 𝑐(𝑘 0 Λ) 1 2 + 1 𝑠 -𝐶Λ 1 2 -1 𝑠 = ( 𝑐𝑘 1 2 + 1 𝑠 0 -𝐶 ) Λ 1 2 -1 𝑠 = 𝑐 0 Λ 1 2 -1

𝑠

provided that 𝑘 0 > 1 is taken sufficiently large depending on 𝐶, 𝑐. □

Let  𝑁 = 𝐏 𝑁 , where 𝐏 𝑁 is given in (1.9). Then, we have

Tr[ -𝑝 𝑁 ] = 𝑁 ∑ 𝑛=0 𝜆 -2𝑝 𝑛 .
Similarly, we define  ⟂ 𝑁 =  -𝐏 𝑁  and thus

Tr[( ⟂ 𝑁 ) -𝑝 ] = ∞ ∑ 𝑛=𝑁+1 𝜆 -2𝑝 𝑛 .
The following corollaries are crucial in proving the non-normalizability.

COR:CLR

Corollary 2.6 (Behavior of truncated Schatten norms).

Let 𝑑 ≥ 1, 𝑠 > 0 and 𝑝 > 0. We have

Tr[ -𝑝 𝑁 ] = 𝑁 ∑ 𝑛=0 𝜆 -2𝑝 𝑛 ∼ ⎧ ⎪ ⎨ ⎪ ⎩ 1 if 𝑝 > 1 2 + 1 𝑠 , ( log 𝜆 𝑁 ) 2 if 𝑝 = 1 2 + 1 𝑠 , 𝜆 -2𝑝+1+ 2 𝑠 𝑁 if 𝑝 < 1 2 + 1 𝑠 .
( 

Tr[ -𝑝 𝑁 ] = 𝑁 ∑ 𝑛=0 𝜆 -2𝑝 𝑛 = 𝑐 log 𝜆 𝑁 ∑ 𝑙=1 ∑ 𝑘 -𝑙 0 𝜆 2 𝑁 <𝜆 2 𝑛 ≤𝑘 -𝑙+1 0 𝜆 2 𝑁 𝜆 -2𝑝 𝑛 ∼ 𝑐 log 𝜆 𝑁 ∑ 𝑙=1 (𝑘 -𝑙 0 𝜆 2 𝑁 ) -𝑝 ⋅ #{𝜆 2 𝑛 ∶ 𝑘 -𝑙 0 𝜆 2 𝑁 < 𝜆 2 𝑛 ≤ 𝑘 -𝑙+1 0 𝜆 2 𝑁 } ∼ 𝑐 log 𝜆 𝑁 ∑ 𝑙=1 (𝑘 -𝑙 0 𝜆 2 𝑁 ) -𝑝 (𝑘 -𝑙 0 𝜆 2 𝑁 ) 1 2 + 1 𝑠 ∼ ⎧ ⎪ ⎨ ⎪ ⎩ ( log 𝜆 𝑁 ) 2 if 𝑝 = 1 2 + 1 𝑠 , ( ∑ 𝑐 log 𝜆 𝑁 𝑙=1 𝑘 -𝑙( 1 2 + 1 𝑠 -𝑝) 0 ) ⋅ 𝜆 -2𝑝+1+ 2 𝑠 𝑁 if 𝑝 < 1 2 + 1 𝑠 ,
which gives the desired estimate. □

We also need the following:

COR:CLR1
Corollary 2.7 (Tail estimate).

Let 𝑑 ≥ 1, 𝑠 > 0 and 𝑝 > 1 2 + 1 𝑠 . Then, we have

Tr[( ⟂ 𝑁 ) -𝑝 ] = ∞ ∑ 𝑛=𝑁+1 𝜆 -2𝑝 𝑛 ∼ 𝜆 -2𝑝+1+ 2 𝑠 𝑁 .
(2.62) traceN1

Proof. We have from (2.59) that

Tr[( ⟂ 𝑁 ) -𝑝 ] = ∞ ∑ 𝑛=𝑁+1 𝜆 -2𝑝 𝑛 ∼ ∞ ∑ 𝑙=0 ∑ 𝑘 𝑙 0 𝜆 2 𝑁 <𝜆 2 𝑛 ≤𝑘 𝑙+1 0 𝜆 2 𝑁 𝜆 -2𝑝 𝑛 ∼ ∞ ∑ 𝑙=0 (𝑘 𝑙 0 𝜆 2 𝑁 ) -𝑝 ⋅ #{𝜆 2 𝑛 ∶ 𝑘 𝑙 0 𝜆 2 𝑁 < 𝜆 2 𝑛 ≤ 𝑘 𝑙+1 0 𝜆 2 𝑁 } ∼ ∞ ∑ 𝑙=0 (𝑘 𝑙 0 𝜆 2 𝑁 ) -𝑝 (𝑘 𝑙 0 𝜆 2 𝑁 ) 1 2 + 1 𝑠 ∼ 𝜆 -2𝑝+1+ 2 𝑠 𝑁 , (2.63) provided 𝑝 > 1 2 + 1 𝑠 . □
We finally state the following observation. Most of our arguments proceed from a variational formula for the partition function that we recall from [START_REF] Boué | A variational representation for certain functionals of Brownian motion[END_REF]. This relies on the Boué-Dupuis variational formula [START_REF] Boué | A variational representation for certain functionals of Brownian motion[END_REF]62,64,[START_REF] Borell | Diffusion equations and geometric inequalities[END_REF][START_REF] Lehec | Representation formula for the entropy and functional inequalities[END_REF], which has already been used extensively to define and characterize nonlinear Gibbs measures in related contexts, see e.g. [START_REF] Barashkov | A variational method for Φ 4 3[END_REF][START_REF] Oh | Focusing Φ 4 3 -model with a hartree-type nonlinearity[END_REF][START_REF] Oh | Stochastic quantization of the Φ 3 3 -model[END_REF].

We wish to determine whether the partition function

 𝐾 ∶= ∫ 𝟏 {|𝑀(𝑢)|≤𝐾} 𝑒 𝛼𝑅 𝑝 (𝑢) 𝑑𝜇(𝑢)
is finite or not, where 𝜇 is the Gaussian measure with covariance  -1 , restricted to radial functions when 𝑑 ≥ 2. Since (see e.g. [5, Proposition 2.5])

-log  𝐾 = inf { ∫ ( -𝛼𝑅 𝑝 (𝑢) + log(𝑓 (𝑢)) ) 𝑓 (𝑢)𝑑𝜇 𝐾 (𝑢) | 𝑓 ≥ 0, 𝑓 ∈ 𝐿 1 (𝑑𝜇 𝐾 ), ∫ 𝑓 (𝑢)𝑑𝜇 𝐾 (𝑢) = 1 } (3.1)
eq:freeener with 𝑑𝜇 𝐾 (𝑢) = 𝟏 {|𝑀(𝑢)|≤𝐾} 𝑑𝜇(𝑢), the finiteness of  𝐾 is related to some free energy being bounded from below. Namely, the question is whether the positive entropy term (relative to the Gaussian measure) in the above is sufficient to compensate the possibly very negative potential energy term. The Boué-Dupuis formula will help us decide that question by providing a more wieldy formulation of the entropy term in the variational principle above. This requires introducing an extra time variable and seeing the Gaussian measure 𝜇 as the law of a Brownian motion at time 1. Then, Girsanov's theorem provides a description of random processes whose laws are absolutely continuous with respect to that of the Brownian motion, and the Boué-Dupuis formula an expression of the latter's entropies relative to the Wiener measure. This turns (3.1) into a control problem. We set this up briefly in Section 3.1 below, sketching how this is of use for our problem. In Section 3.2, we collect some consequences of the bounds of Section 2 which legitimate the application of the formula to our context. 

𝑊 (𝑡) = ∑ 𝑛≥0 𝐵 𝑛 (𝑡)𝑒 𝑛 , ( 3.2) 
Bro where {𝑒 𝑛 } 𝑛≥0 is the sequence of normalized eigenfunctions of the operator  given in Lemma 2.1, and {𝐵 𝑛 } 𝑛≥0 is a sequence of mutually independent complex-valued Brownian 5 motions. We define a centered Gaussian process 𝑌 (𝑡) by

𝑌 (𝑡) =  -1 2 𝑊 (𝑡) = ∑ 𝑛≥0 𝐵 𝑛 (𝑡) 𝜆 𝑛 𝑒 𝑛 . (3.3) Yt Then, 𝑌 (𝑡) is well-defined in  -𝜎 (ℝ 𝑑 ) for any 𝜎 > 1 𝑠 -1 2 , see Corollary 3.4 below. But 𝑌 (𝑡) is not in 𝐿 2 (ℝ 𝑑 ) when 1 < 𝑠 ≤ 2, since we have 𝔼 [ ‖𝑌 (𝑡)‖ 2 𝐿 2 (ℝ) ] ∼ ∑ 𝑛≥0 𝔼[|𝐵 𝑛 (𝑡)| 2 ] 𝜆 2 𝑛 = 2𝑡 ∑ 𝑛≥0 𝜆 -2 𝑛 { < ∞ if 𝑠 > 2, = ∞ if 𝑠 ≤ 2 (unless 𝑡 = 0).
From (3.3), we see that

Law(𝑌 (1)) = 𝜇, ( 3.4 
)

law
where 𝜇 is the Gaussian free field given in (1.12). Let ℍ 𝑎 be the space of drifts, which consists of progressively measurable processes belonging to 𝐿 2 ( [0, 1]; 𝐿 2 (ℝ 𝑑 ) ) , ℙ-almost surely. One of the key tools in this paper is the following Boué-Dupuis variational formula [5, Theorem 5.1] (see also [62] and [64]).

LEM:var

Lemma 3.1 (Boué-Dupuis variational formula).

Let 𝑌 (𝑡) be as in (3.3). For 𝜎 > 1 𝑠 -1 2 , let 𝐹 ∶  -𝜎 (ℝ 𝑑 ) → ℝ be a Borel measurable function that is bounded from above. Then, we have

-log 𝔼 [ 𝑒 -𝐹 (𝑌 (1)) ] = inf 𝜃∈ℍ 𝑎 𝔼 [ 𝐹 ( 𝑌 (1) + 𝐼(𝜃)(1) ) + 1 2 ∫ ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] , (3.5) 
var where 𝐼(𝜃) is defined by

𝐼(𝜃)(𝑡) = ∫ 𝑡 0  -1 2 𝜃(𝜏)𝑑𝜏
and the expectation 𝔼 = 𝔼 ℙ is with respect to the underlying probability measure ℙ.

5 Essentially, we have 𝐵 𝑛 (𝑡) ∼  ℂ (0, 2𝑡), its' density is given by 

) , -𝐿 ) + 1 2 ∫ 1 0 ‖𝜃 𝑀 (𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] < -𝑀.
Therefore, we have that

-log 𝔼 [ 𝑒 -𝐹 (𝑌 (1)) ] ≤ -log 𝔼 [ 𝑒 -max(𝐹 (𝑌 (1)),𝐿) ] = inf 𝜃∈ℍ 𝑎 𝔼 [ max ( 𝐹 ( 𝑌 (1) + 𝐼(𝜃)(1) ) , -𝐿 ) + 1 2 ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] ≤ 𝔼 [ max ( 𝐹 ( 𝑌 (1) + 𝐼(𝜃 𝑀 )(1) ) , -𝐿 ) + 1 2 ∫ 1 0 ‖𝜃 𝑀 (𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] < -𝑀.
Since 𝑀 is arbitrary, we conclude that

-log 𝔼 [ 𝑒 -𝐹 (𝑌 (1)) ] = -∞ = inf 𝜃∈ℍ 𝑎 𝔼 [ 𝐹 ( 𝑌 (1) + 𝐼(𝜃)(1) ) + 1 2 ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡
] .

□

We shall use the above with 

𝐹 (𝑌 ( 
eq:YN This is a legitimate choice, as per the estimates provided in Section 3.2 below. A lower bound to the infimum in (3.5), uniform in 𝑁, will imply finiteness of  𝐾 and hence normalizability of the interacting Gibbs measure, while an upper bound diverging to -∞ when 𝑁 → ∞ will imply  𝐾 = +∞, hence non-normalizability.

Proving normalizability. To bound (3.5) from below, we must show that the second term is, for any drift, large enough to compensate the first one. Clearly, from Minkowski's inequality, we have that 𝐼(𝜃) [START_REF] Poiret | Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator[END_REF] enjoys the following pathwise regularity bound:

LEM:bounds

Lemma 3.2 (Pathwise regularity).

For any 𝜃 ∈ ℍ 𝑎 , we have

‖𝐼(𝜃)(1)‖ 2  1 (ℝ 𝑑 ) ≤ ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡.
(3.9)

I

Hence the general scheme is essentially to bound

𝐹 ( 𝑌 𝑁 (1) + 𝐏 𝑁 𝐼(𝜃)(1) ) ≥ - 1 2 ‖𝐼(𝜃)(1)‖ 2  1 (ℝ 𝑑 ) -𝐺(𝑌 𝑁 (1))
where 𝐺(𝑌 𝑁 [START_REF] Poiret | Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator[END_REF]) is an expression involving different quantities (e.g. Lebesgue or Sobolev norms) only related to the Gaussian process 𝑌 𝑁 [START_REF] Poiret | Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator[END_REF]. This uses a (case-dependent) suitable mix of functional inequalities and triangle inequalities. Inserting this and Lemma 3.2 in (3.5) will yield normalizability provided

𝔼 [ 𝐺(𝑌 𝑁 (1)) ] < ∞
uniformly in 𝑁, i.e. essentially

∫ 𝐺(𝑢)𝑑𝜇(𝑢) < ∞

with 𝜇 the original Gaussian measure. We obtain such conclusions with a suitable selection of estimates from Section 2.

Proving non-normalizability. To bound (3.5) from above, a suitable drift 𝜃(𝑡) is constructed, making the first term diverge to -∞, while keeping the second one under control. In practice both terms will diverge, so that one needs a construction making the first one diverge faster. Under our assumptions, there exists blow-up profiles 𝑓 𝑁 such that

𝐹 (𝑓 𝑁 ) → 𝑁→∞ -∞.
We pick one and construct a drift 𝜃 such that 𝑌 𝑁 (1) + 𝐏 𝑁 𝐼(𝜃)(1) ≃ 𝑓 𝑁 + lower order .

In particular, it is tempting to let

𝜃(𝑡) =  1∕2 ( -𝜕 𝑡 𝑌 𝑁 (𝑡) + 𝑓 𝑁 ) so that 𝐼(𝜃)(𝑡) = -𝑌 𝑁 (𝑡) + 𝑓 𝑁 .
Of course, the time-derivative of the Brownian motion in the above is problematic, leading to the second term in (3.5) being +∞ for such a choice. The idea is thus to approximate 𝑌 𝑁 (𝑡) by a smoother process 𝑍 𝑁 (𝑡) and let 𝜃(𝑡) ∶=  1∕2 ( -𝜕 𝑡 𝑍 𝑁 (𝑡) + 𝑓 𝑁 )

be our trial drift. With a suitable construction we ensure that, for this choice of 𝜃, the first term of (3.5) diverges to -∞ faster than the second term diverges to +∞. Namely we introduce, following ideas from [START_REF] Tolomeo | Phase transition for invariant measures of the focusing schrödinger equation[END_REF].

gaussapprox

Definition 3.3 (Approximate Brownian motion).

Given 𝑁 ≥ 𝑀 ≫ 1, we define the process 𝑍 𝑀 by its coefficients in the eigenfunction expansion (𝑒 𝑛 ) 𝑛≥0 of (the radial restriction of) .

For 𝑛 ≤ 𝑀 let Z𝑀 (𝑛, 𝑡) be a solution of the following differential equation:

{ 𝑑 Z𝑀 (𝑛, 𝑡) = 𝑐𝜆 -1 𝑛 𝜆 𝑀 ( Ỹ𝑁 (𝑛, 𝑡) -Z𝑀 (𝑛, 𝑡))𝑑𝑡 Z𝑀 | 𝑡=0 = 0, (3.10) 

ZZZ

where 𝑐 > 0 is a constant to be chosen later on and6 Ỹ𝑁 (𝑛, 𝑡) = ∫ ℝ 𝑑 𝑌 𝑁 (𝑡, 𝑥)𝑒 𝑛 (𝑥)𝑑𝑥.

We set Z𝑀 (𝑛, 𝑡) ≡ 0 for 𝑛 > 𝑀 and define

𝑍 𝑀 (𝑡, 𝑥) ∶= ∑ 𝑛≤𝑀 Z𝑀 (𝑛, 𝑡)𝑒 𝑛 (𝑥)
which is a centered Gaussian process in 𝐿 2 (ℝ 𝑑 ) and satisfies 𝐏 𝑁 𝑍 𝑀 = 𝑍 𝑀 .

Let us briefly explain why the above yields a suitable approximation to the Gaussian process 𝑌 (𝑡) defined in (3.3). For illustration, we only consider a one-dimensional Gaussian variable

𝑌 (𝑡) = 𝜎𝑊 (𝑡),
where 𝑊 (𝑡) is the standard Brownian motion. Thus 𝑌 = 𝑌 (1) ∼  (0, 2𝜎 2 ) is a Gaussian variable with variance 2𝜎 2 . Using a one-dimensional version of Lemma 3.1, we have

-log ( 𝔼[𝑒 -𝐹 (𝑌 ) ] ) = sup 𝑍∈ℍ 1 𝑎 𝔼 [ 𝐹 (𝑌 (1) -𝑍(1)) - 𝜎 2 2 ∫ 1 0 | Ż(𝑠)| 2 𝑑𝑠 ] ,
where ℍ 1 𝑎 is a set of stochastic processes defined as

ℍ 1 𝑎 = { 𝑍 ∶ 𝑍(0) = 0, Ż ∈ 𝐿 2 ([0, 1] × Ω),
and 𝑍 is progressively measurable } .

We want to construct a stochastic process 𝑍 ∈ ℍ 1 𝑎 such that 𝑌 (1) -𝑍( 1) is small, while keeping ∫ serves as inspiration for our choice in (3.10). The parameters 𝐴 and 𝜎 (or their variants) should be determined by our later analysis, to balance the competing effects of (3.12) and (3.13) when they are inserted in the variational principle.

sec:BouDup2

Preliminary estimates.

With the above notation, we have the following consequence of Lemmas 2.2 and 2.3. They will help us vindicating that the choice (3.7) can indeed be inserted in Lemma 3.1.

COR:intp

Corollary 3.4 (Regularity and integrability of the Gaussian process).

Let 𝑑 ≥ 1, 𝑠 > 0 and assume the radial condition when 𝑑 ≥ 2. The following statements hold:

(i) Let 1 ≤ 𝑞 < ∞ and max { 2, 4 𝑠 } < 𝑝 < { ∞ if 𝑑 = 1, 2, 2𝑑 𝑑-2 if 𝑑 ≥ 3.
Then, we have

𝔼 [ ‖𝑌 𝑁 (1)‖ 𝑞 𝐿 𝑝 (ℝ 𝑑 ) ] ≲ 𝑑,𝑝,𝑞 1,
where the constant depends only on 𝑑, 𝑝, 𝑞. In particular, 𝑌 𝑁 (1) is a Cauchy sequence in 𝐿 𝑞 (Ω, 𝐿 𝑝 (ℝ 𝑑 )) and

𝔼 [ ‖𝑌 (1) -𝑌 𝑁 (1)‖ 𝑞 𝐿 𝑝 (ℝ 𝑑 ) ] → 0 as 𝑁 → ∞.
(ii) Let 𝛿 > -1 2 + 1 𝑠 and 1 ≤ 𝑞 < ∞. Then, we have

𝔼 [ ‖𝑌 𝑁 (1)‖ 𝑞  -𝛿 (ℝ 𝑑 ) ] ≲ 𝑑,𝑞 1.
In addition, 𝑌 𝑁 (1) is a Cauchy sequence in 𝐿 𝑝 (Ω,  -𝛿 (ℝ 𝑑 )) and 

𝔼 [ ‖𝑌 (1) -𝑌 𝑁 (1)‖ 𝑞  -𝛿 (ℝ 𝑑 ) ] ≲ 𝑑,𝑞 𝜆 - ( 1 
] = ‖ ‖ ‖ ‖ ‖ ‖ 𝑁 ∑ 𝑛=0 𝐵 𝑛 (1) 𝜆 𝑛 𝑒 𝑛 ‖ ‖ ‖𝐿 𝑝 (ℝ 𝑑 ) ‖ ‖ ‖ 𝑞 𝐿 𝑞 (Ω) ≤ ‖ ‖ ‖ ‖ ‖ ‖ 𝑁 ∑ 𝑛=0 𝐵 𝑛 (1) 𝜆 𝑛 𝑒 𝑛 ‖ ‖ ‖𝐿 𝑞 (Ω) ‖ ‖ ‖ 𝑞 𝐿 𝑝 (ℝ 𝑑 ) ≤ ( 𝐶(𝑞) ‖ ‖ ‖ ‖ ‖ ‖ 𝑁 ∑ 𝑛=0 𝐵 𝑛 (1) 𝜆 𝑛 𝑒 𝑛 ‖ ‖ ‖𝐿 2 (Ω) ‖ ‖ ‖𝐿 𝑝 (ℝ 𝑑 ) ) 𝑞 = ( 𝐶(𝑞) ‖ ‖ ‖ ( 𝑁 ∑ 𝑛=0 𝑒 2 𝑛 𝜆 2 𝑛 ) 1∕2 ‖ ‖ ‖𝐿 𝑝 (ℝ 𝑑 ) ) 𝑞 = ( 𝐶(𝑞) ( ∫ ℝ 𝑑 ( 𝑁 ∑ 𝑛=0 𝑒 2 𝑛 (𝑥) 𝜆 2 𝑛 ) 𝑝∕2 𝑑𝑥 ) 1∕𝑝 ) 𝑞 ≤ ( 𝐶(𝑞) ( ∫ ℝ 𝑑 (  -1 (𝑥, 𝑥) ) 𝑝∕2 𝑑𝑥 ) 1∕𝑝 ) 𝑞 ≤ 𝐶(𝑑, 𝑝, 𝑞) provided max { 1, 2 𝑠 } < 𝑝 < { ∞ if 𝑑 = 1, 2, 𝑑 𝑑-2 if 𝑑 ≥ 3.
For 𝑀 > 𝑁, we have

𝔼 [ ‖𝑌 𝑀 (1) -𝑌 𝑁 (1)‖ 𝑞 𝐿 𝑝 (ℝ 𝑑 ) ] ≤ ( 𝐶(𝑞) ( ∫ ℝ 𝑑 ( 𝑀 ∑ 𝑛=𝑁+1 𝑒 2 𝑛 (𝑥) 𝜆 2 𝑛 ) 𝑝∕2 𝑑𝑥 ) 1∕𝑝 ) 𝑞 ≤ ( 𝐶(𝑞) ( ∫ ℝ 𝑑 ( ∞ ∑ 𝑛=𝑁+1 𝑒 2 𝑛 (𝑥) 𝜆 2 𝑛 ) 𝑝∕2 𝑑𝑥 ) 1∕𝑝 ) 𝑞
which converges to zero when 𝑁 → ∞ by the dominated convergence theorem.

(ii) It suffices to consider 𝑞 ≥ 2 since the one where 1 ≤ 𝑞 < 2 follows from Hölder's inequality and the case 𝑞 = 2. By the Minkowski inequality and the Khintchine inequality, we have from Lemma 2.2 that

𝔼 [ ‖𝑌 𝑁 (1)‖ 𝑞  -𝛿 (ℝ 𝑑 ) ] = 𝔼 [ ‖ ‖ ‖ 𝑁 ∑ 𝑛=0 𝐵 𝑛 (1) 𝜆 1+𝛿 𝑛 𝑒 𝑛 ‖ ‖ ‖ 𝑞 𝐿 2 (ℝ 𝑑 ) ] ≤ ‖ ‖ ‖ ‖ ‖ ‖ 𝑁 ∑ 𝑛=0 𝐵 𝑛 (1) 𝜆 1+𝛿 𝑛 𝑒 𝑛 ‖ ‖ ‖𝐿 𝑞 (Ω) ‖ ‖ ‖ 𝑞 𝐿 2 (ℝ 𝑑 ) ≤ 𝐶(𝑞) ‖ ‖ ‖ ( 𝑁 ∑ 𝑛=0 𝑒 2 𝑛 (𝑥) 𝜆 2+2𝛿 𝑛 ) 1∕2 ‖ ‖ ‖ 𝑞 𝐿 2 (ℝ 𝑑 ) = 𝐶(𝑞) ( 𝑁 ∑ 𝑛=0 𝜆 -2(1+𝛿) 𝑛 ) 𝑞∕2
≤ 𝐶(𝑑, 𝑞)

provided 1 + 𝛿 > 1 2 + 1 𝑠 or 𝛿 > -1 2 + 1 𝑠 .
In a similar manner, for 𝑀 > 𝑁, we have

𝔼 [ ‖𝑌 𝑀 (1) -𝑌 𝑁 (1)‖ 𝑞  -𝛿 (ℝ 𝑑 ) ] ≤ 𝐶(𝑞) ( 𝑀 ∑ 𝑛=𝑁+1 𝜆 -2(1+𝛿) 𝑛 ) 𝑞∕2 ≤ 𝐶(𝑞) ( ∞ ∑ 𝑛=𝑁+1 𝜆 -2(1+𝛿) 𝑛 ) 𝑞∕2 ≤ 𝐶(𝑞)𝜆 - ( 1 2 +𝛿-1 𝑠 ) 𝑞 𝑁 ,
where we have used Corollary 2.7 to get the last estimate. □ COR:WCE

Corollary 3.5 (Integrability of Wick renormalized mass).

Let 𝑑 ≥ 1, 𝑠 > 2 3 , 𝑝 ≥ 1 and assume the radial condition when 𝑑 ≥ 2. Then, we have

‖ ‖ ‖ ∫ ℝ 𝑑 ∶|𝑌 𝑁 (1)| 2 ∶𝑑𝑥 ‖ ‖ ‖𝐿 𝑝 (Ω) ≲ 𝑑,𝑝 1.
where the constant depends only on 𝑑, 𝑝. Moreover, the sequence 

∫ ℝ 𝑑 ∶|𝑌 𝑁 (1)| 2 ∶𝑑𝑥 is Cauchy in 𝐿 𝑝 (Ω) and ‖ ‖ ‖ ∫ ℝ 𝑑 ∶|𝑌 (1)| 2 ∶𝑑𝑥 -∫ ℝ 𝑑 ∶|𝑌 𝑁 (1)| 2 ∶𝑑𝑥 ‖ ‖ ‖𝐿 𝑝 (Ω) ≲ 𝑑,
‖ ‖ ‖ ∫ ℝ 𝑑 ∶|𝑌 𝑁 (1)| 2 ∶𝑑𝑥 ‖ ‖ ‖𝐿 𝑝 (Ω) ≲ 𝑝 ‖ ‖ ‖ ∫ ℝ 𝑑 ∶|𝑌 𝑁 (1)| 2 ∶𝑑𝑥 ‖ ‖ ‖𝐿 2 (Ω)
.

Then from the definition of Wick order (1.14) and (1.13), it follows that 

∫ ℝ 𝑑 ∶|𝑌 𝑁 (1)| 2 ∶𝑑𝑥 = ∫ ℝ 𝑑 |𝑌 𝑁 (1)| 2 𝑑𝑥 -∫ ℝ 𝑑 𝜎 𝑁 (𝑥)𝑑𝑥 = 𝑁 ∑ 𝑛=0 |𝐵 𝑛 (1)| 2 -2 𝜆 2 𝑛 . ( 3 
𝔼 [ | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 (1)| 2 ∶𝑑𝑥 | | | 2 ] = 𝑁 ∑ 𝑛=0 𝔼[(|𝐵 𝑛 (1)| 2 -2) 2 ] 𝜆 4 𝑛 = 𝑁 ∑ 𝑛=0 4 𝜆 4 𝑛 < ∞ provided 2 > 1 2 + 1 𝑠 or 𝑠 > 2 3
. We now move to the second part. Proceeding similarly, for 𝑀 > 𝑁, we have from Corollary 2.7 that

‖ ‖ ‖ ∫ ℝ 𝑑 ∶|𝑌 𝑀 (1)| 2 ∶𝑑𝑥 -∫ ℝ 𝑑 ∶|𝑌 𝑁 (1)| 2 ∶𝑑𝑥 ‖ ‖ ‖ 𝑝 𝐿 𝑝 (Ω) ≲ 𝑝 ( 𝑀 ∑ 𝑛=𝑁+1 𝜆 -4 𝑛 ) 𝑝 2 ≲ ( 𝜆 -3 2 + 1 𝑠 𝑁 ) 𝑝 , which shows that the sequence ∫ ℝ 𝑑 ∶|𝑌 𝑁 (1)| 2 ∶𝑑𝑥 is Cauchy in 𝐿 𝑝 (Ω) for 𝑠 > 2 3
. We conclude the proof by taking a limit as 𝑀 → ∞. □

SUBHARMONIC POTENTIAL subharmonic

This section concerns the normalizability and non-normalizability of the focusing Gibbs measure with subharmonic potential 𝑠 < 2. where the Wick-ordered renormalized mass is of any finite size 𝐾 > 0, and the nonlinearity is of any magnitude 𝛼 > 0. Note that the condition on 𝑝 coupled with 𝑠 < 2 implies

𝑑 -2 + √ 𝑑 2 + 8 𝑑 + 1 < 𝑠 < 2.
Proof of (4.2). By duality and Young's inequality, we have

| | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 + Θ 𝑁 | 2 ∶𝑑𝑥 | | | = | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶𝑑𝑥 + 2 ∫ ℝ 𝑑 Re(𝑌 𝑁 Θ 𝑁 )𝑑𝑥 + ∫ ℝ 𝑑 |Θ 𝑁 | 2 𝑑𝑥 | | | ≥ - | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶𝑑𝑥 | | | -2‖𝑌 𝑁 ‖  -𝛿 (ℝ 𝑑 ) ‖Θ 𝑁 ‖  𝛿 (ℝ 𝑑 ) + ∫ ℝ 𝑑 |Θ 𝑁 | 2 𝑑𝑥 ≥ - | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶𝑑𝑥 | | | -𝐶 𝜀 ‖𝑌 𝑁 ‖ 𝑝 1  -𝛿 (ℝ 𝑑 ) -𝜀‖Θ 𝑁 ‖ 𝑞 1  𝛿 (ℝ 𝑑 ) + ∫ ℝ 𝑑 |Θ 𝑁 | 2 𝑑𝑥. (4.7) cutoff0-d where 1 𝑠 -1 2 < 𝛿 < 1 and 𝑝 1 , 𝑞 1 > 1 are such that 1 𝑝 1 + 1 𝑞 1 = 1.
Furthermore, by interpolation, we have

‖Θ 𝑁 ‖  𝛿 (ℝ 𝑑 ) ≤ 𝐶‖Θ 𝑁 ‖ (1-𝛿)𝑝 2 𝐿 2 (ℝ 𝑑 ) + 𝐶‖Θ 𝑁 ‖ 𝛿𝑞 2  1 (ℝ 𝑑 ) ,
where 𝑝 2 , 𝑞 2 > 1 are such that

1 𝑝 2 + 1 𝑞 2 = 1.
We may then choose 𝛿 = 2-𝑠 2𝑠 +, 𝑞 1 = 1+ and 𝑝 2 = 4𝑠 3𝑠-2 + so that

𝑞 1 (1 -𝛿)𝑝 2 = 2. (4.8) choiexpo-d
It follows that

‖Θ 𝑁 ‖ 𝑞 1  𝛿 (ℝ 𝑑 ) ≤ 𝐶‖Θ 𝑁 ‖ 2 𝐿 2 (ℝ 𝑑 ) + 𝐶‖Θ 𝑁 ‖ 𝛿𝑞 1 𝑞 2  1 (ℝ 𝑑 ) . (4.9) Lqbound-d
Here the constant 𝐶 is independent of 𝑁 and may vary from line to line. By choosing 𝜀𝐶 < 1 2 , from (4.7) and (4.9), we conclude that

{ | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 + Θ 𝑁 | 2 ∶𝑑𝑥 | | | ≤ 𝐾 } ⊂ { ‖Θ 𝑁 ‖ 2 𝐿 2 (ℝ 𝑑 ) ≤ 𝐾 + | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶𝑑𝑥 | | | + 𝐶 𝜀 ‖𝑌 𝑁 ‖ 𝑝 1  -𝛿 (ℝ 𝑑 ) + 1 2 ‖Θ 𝑁 ‖ 2 𝐿 2 (ℝ 𝑑 ) + 𝜀𝐶‖Θ 𝑁 ‖ 𝛿𝑞 1 𝑞 2  1 (ℝ 𝑑 ) } = { ‖Θ 𝑁 ‖ 2 𝐿 2 (ℝ 𝑑 ) ≤ 2𝐾 + 2 | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶𝑑𝑥 | | | + 2𝐶 𝜀 ‖𝑌 𝑁 ‖ 𝑝 1  -𝛿 (ℝ 𝑑 ) + 2𝜀𝐶‖Θ 𝑁 ‖ 𝛿𝑞 1 𝑞 2  1 (ℝ 𝑑 ) } =∶ Ω 𝐾 . (4.10) cutoff1-d
We then recall an elementary inequality, which is a direct consequence of the mean value theorem and the Young's inequality. Given 𝑝 > 2 and 𝜀 > 0, there exists 𝐶 𝜀 such that

|𝑧 1 + 𝑧 2 | 𝑝 ≤ (1 + 𝜀)|𝑧 1 | 𝑝 + 𝐶 𝜀 |𝑧 2 | 𝑝 (4.

11)

Young-d holds uniformly in 𝑧 1 , 𝑧 2 ∈ ℂ. Here 𝐶 𝜀 , which may differ from line to line, denotes a constant depending only on 𝜀. We conclude from (1.4), (4.11) with 𝜀 = 1, (4.10), the sharp Gagliardo-Nirenberg-Sobolev inequality (1.25) and

‖∇𝑢‖ 2 𝐿 2 (ℝ 𝑑 ) ≤ ‖∇𝑢‖ 2 𝐿 2 (ℝ 𝑑 ) + ‖⟨𝑥⟩ 𝑠∕2 𝑢‖ 2 𝐿 2 (ℝ 𝑑 ) = ‖𝑢‖ 2  1 (ℝ 𝑑 ) that 𝛼𝑅 𝑝 ( 𝑌 𝑁 + Θ 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑌 𝑁 +Θ 𝑁 | 2 ∶𝑑𝑥|≤𝐾} ≤ 2𝛼𝑅 𝑝 ( Θ 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑌 𝑁 +Θ 𝑁 | 2 ∶𝑑𝑥|≤𝐾} + 𝐶𝛼𝑅 𝑝 (𝑌 𝑁 ) (4.12) var5-1-d ≤ 2𝛼𝑅 𝑝 ( Θ 𝑁 ) ⋅ 𝟏 Ω 𝐾 + 𝐶𝛼𝑅 𝑝 (𝑌 𝑁 ) ≤ 2𝛼 𝑝 𝐶 GNS ‖Θ 𝑁 ‖ 𝑑(𝑝-2) 2  1 (ℝ 𝑑 ) ‖Θ 𝑁 ‖ 4-(𝑑-2)(𝑝-2) 2 𝐿 2 (ℝ 𝑑 ) ⋅ 𝟏 Ω 𝐾 + 𝐶𝛼𝑅 𝑝 (𝑌 𝑁 )
where 𝐶 GNS is the implicit constant (depending on the dimension and 𝑝) and the set Ω 𝐾 is given in (4.10).

Noting that 𝑑(𝑝-2) 2 < 2 when 𝑝 < 2 + 4𝑠 (𝑑-1)𝑠+2 , we apply Young's inequality to continue with

≤ 𝐶‖Θ 𝑁 ‖ 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) 𝐿 2 (ℝ 𝑑 ) ⋅ 𝟏 Ω 𝐾 + 1 4 ‖Θ 𝑁 ‖ 2  1 (ℝ 𝑑 ) + 𝐶𝑅 𝑝 (𝑌 𝑁 ), (4.13) var5-d
where the constant 𝐶 depends only on 𝑑, 𝑝, 𝛼. Then from (4.10), interpolation and Young's inequality, we have

‖Θ 𝑁 ‖ 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) 𝐿 2 (ℝ 𝑑 ) ⋅ 𝟏 Ω 𝐾 ≲ 𝐾 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) + | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶𝑑𝑥 | | | 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) + 𝐶 𝜀 ‖𝑌 𝑁 ‖ 𝑝 1 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2)  -𝛿 (ℝ 𝑑 ) + ( 𝜀‖Θ 𝑁 ‖ 𝛿𝑞 1 𝑞 2  1 (ℝ 𝑑 ) ) 4-(𝑑-2)(𝑝-2)
4-𝑑(𝑝-2)

≤ 𝐶 𝐾 + 𝐶 | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶𝑑𝑥 | | | 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) + 𝐶 𝜀 ‖𝑌 𝑁 ‖ 𝑝 1 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2)  -𝛿 (ℝ 𝑑 ) + 𝜀𝐶‖Θ 𝑁 ‖ 2  1 (ℝ 𝑑 ) , (4.14) cutoff2-d provided 𝛿𝑞 1 𝑞 2 4 -(𝑑 -2)(𝑝 -2) 4 -𝑑(𝑝 -2) < 2.
Since 𝛿 = 

-log 𝔼 𝜇 [ exp ( 𝛼𝑅 𝑝 (𝑢 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 | 2 ∶𝑑𝑥|≤𝐾} )] ≥ inf 𝜃∈ℍ 𝑎 𝔼 [ -𝐶‖Θ 𝑁 ‖ 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) 𝐿 2 (ℝ 𝑑 ) ⋅ 𝟏 Ω 𝐾 -𝐶𝑅 𝑝 (𝑌 𝑁 ) - 1 4 ‖Θ 𝑁 ‖ 2  1 (ℝ 𝑑 ) + 1 2 ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] ≥ inf 𝜃∈ℍ 𝑎 𝔼 [ -𝐶‖Θ 𝑁 ‖ 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) 𝐿 2 (ℝ 𝑑 ) ⋅ 𝟏 Ω 𝐾 + 1 4 ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 -𝐶𝑅 𝑝 (𝑌 𝑁 ) ] ≥ inf 𝜃∈ℍ 𝑎 𝔼 [ -𝐶𝐶 𝐾 -𝐶 | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶𝑑𝑥 | | | 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) -𝐶𝐶 𝜀 ‖𝑌 𝑁 ‖ 𝑝 1 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2)  -𝛿 (ℝ 𝑑 ) + ( 1 4 -𝐶𝜀 ) ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 -𝐶𝑅 𝑝 (𝑌 𝑁 )
] .

(4.16)

var70-d
Then, by choosing 𝜀 > 0 sufficiently small such that 𝐶𝜀 < 1 4 , we obtain

-log 𝔼 𝜇 [ exp ( 𝛼𝑅 𝑝 (𝑢 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 | 2 ∶𝑑𝑥|≤𝐾} )] ≥ -𝐶𝐶 𝐾 -𝐶𝔼 [ 𝑅 𝑝 (𝑌 𝑁 ) ] -𝐶𝔼 [ | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶𝑑𝑥 | | | 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) ] -𝐶𝐶 𝜀 𝔼 [ ‖𝑌 𝑁 ‖ 𝑝 1 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2)  -𝛿 (ℝ 𝑑 )
] .

(4.17 

sup 𝑁 𝔼 [ 𝑅 𝑝 (𝑌 𝑁 ) ] + sup 𝑁 𝔼 [ | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶𝑑𝑥 | | | 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) ] + sup 𝑁 𝔼 [ ‖𝑌 𝑁 ‖ 𝑝 1 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2)  -𝛿 (ℝ 𝑑 ) ] < ∞.
This proves (4.4), hence (4.2) in the subcritical case. □ SUB:cri

Critical case.

This section focuses on the critical case

𝑝 = 2 + 4𝑠 (𝑑 -1)𝑠 + 2 .
We shall prove Theorem 1.3 (ii) -(a) as well as the case when 𝛼 ≪ 1. The argument here is inspired by [START_REF] Oh | Focusing Φ 4 3 -model with a hartree-type nonlinearity[END_REF][START_REF] Oh | Stochastic quantization of the Φ 3 3 -model[END_REF]. We first show the uniform exponential integrability

sup 𝑁∈ℕ ‖ ‖ ‖ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 𝛼 𝑝 ‖𝑢 𝑁 ‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) ‖ ‖ ‖𝐿 1 (𝜇) < ∞, (4.18) 
uniint_pc-d for all 0 < 𝛼 ≪ 1 uniformly in 𝐾 > 0. Then, given 𝐾 > 0, it follows that the set

𝐴(𝐾) = { 𝛼 > 0 ∶ sup 𝑁∈ℕ ‖ ‖ ‖ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 𝛼 𝑝 ‖𝑢 𝑁 ‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) ‖ ‖ ‖𝐿 1 (𝜇) < ∞ } ,
is non-empty. We define

𝛼 0 (𝐾) = sup 𝐴(𝐾). (4.19) threshold-d
Then, given 𝐾 > 0, it is easy to see that (4.18) holds for all 0 < 𝛼 < 𝛼 0 (𝐾). We will establish the convergence of the truncated Gibbs measure in the next subsection. Proceeding as in (4.13), we have

𝑅 𝑝 ( 𝑌 𝑁 + Θ 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑌 𝑁 +Θ 𝑁 | 2 ∶𝑑𝑥|≤𝐾} ≤ 2𝑅 𝑝 ( Θ 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑌 𝑁 +Θ 𝑁 | 2 ∶𝑑𝑥|≤𝐾} + 𝐶𝑅 𝑝 (𝑌 𝑁 ). (4.20) 
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By Gagliardo-Nirenberg-Sobolev inequality and Young's inequality, we have

𝑅 𝑝 (Θ 𝑁 ) = 1 𝑝 ∫ ℝ 𝑑 |Θ 𝑁 | 𝑝 𝑑𝑥 ≲ ‖Θ 𝑁 ‖ 4-(𝑑-2)(𝑝-2) 2 𝐿 2 (ℝ 𝑑 ) ‖Θ 𝑁 ‖ 𝑑(𝑝-2) 2  1 (ℝ 𝑑 ) ≲ ‖Θ 𝑁 ‖ 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) 𝐿 2 (ℝ 𝑑 ) + ‖Θ 𝑁 ‖ 2  1 (ℝ 𝑑 ) .
(4.21)

CN1_1-d

Also, we notice that | Case 2. Let us assume that

‖Θ 𝑁 ‖ 2 𝐿 2 (ℝ 𝑑 ) ≲ | | | | ∫ ℝ 𝑑 Re(𝑌 𝑁 Θ 𝑁 )𝑑𝑥 | | | | . (4.25) CN2-d
We write

𝑌 𝑁 = 𝑁 ∑ 𝑛=0 𝑌 𝑁,𝑛 𝑒 𝑛 , Θ 𝑁 = 𝑁 ∑ 𝑛=0 Θ 𝑁,𝑛 𝑒 𝑛 .
For each 𝑛, we decompose From the above definition, we have 

Θ 𝑁,
‖Θ 𝑁 ‖ 2 𝐿 2 (ℝ 𝑑 ) = 𝑁 ∑ 𝑛=0 ( 𝑎 2 𝑛 |𝑌 𝑁,𝑛 | 2 + |𝑤 𝑛 | 2 ) , ( 4 
| | | | 𝑁 ∑ 𝑛=𝑛 0 +1 𝑎 𝑛 |𝑌 𝑁,𝑛 | 2 | | | | ≤ ( 𝑁 ∑ 𝑛=0 𝑎 2 𝑛 𝜆 2 𝑛 |𝑌 𝑁,𝑛 | 2 ) 1 2 ( 𝑁 ∑ 𝑛=𝑛 0 +1 𝜆 -2 𝑛 |𝑌 𝑁,𝑛 | 2 ) 1 2 ≤ ( 𝑁 ∑ 𝑛=0 𝜆 2 𝑛 |Θ 𝑁,𝑛 | 2 ) 1 2 ( 𝑁 ∑ 𝑛=𝑛 0 +1 𝜆 -2 𝑛 |𝑌 𝑁,𝑛 | 2 ) 1 2 = ‖Θ 𝑁 ‖  1 (ℝ 𝑑 ) ‖𝐏 ⟂ 𝑛 0 𝑌 𝑁 ‖  -1 (ℝ 𝑑 ) .
(4.30)
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For 𝑛 ≤ 𝑛 0 , from (4.29) and then (4.28), we have

| | | | 𝑛 0 ∑ 𝑛=0 𝑎 𝑛 |𝑌 𝑁,𝑛 | 2 | | | | ≤ ( 𝑁 ∑ 𝑛=0 𝑎 2 𝑛 |𝑌 𝑁,𝑛 | 2 ) 1 2 ( 𝑛 0 ∑ 𝑛=0 |𝑌 𝑁,𝑛 | 2 ) 1 2 ≤ 𝐶 | | | | 𝑁 ∑ 𝑛=0 𝑎 𝑛 |𝑌 𝑁,𝑛 | 2 | | | | 1 2 ( 𝑛 0 ∑ 𝑛=0 |𝑌 𝑁,𝑛 | 2 ) 1 2 ≤ 1 2 | | | | 𝑁 ∑ 𝑛=0 𝑎 𝑛 |𝑌 𝑁,𝑛 | 2 | | | | + 𝐶 ′ ‖𝐏 𝑛 0 𝑌 ‖ 2 𝐿 2 (ℝ 𝑑 ) = 1 2 | | | | ∫ ℝ 𝑑 Re(𝑌 𝑁 Θ 𝑁 )𝑑𝑥 | | | | + 𝐶 ′ ‖𝐏 𝑛 0 𝑌 ‖ 2 𝐿 2 (ℝ 𝑑 ) .
(4.31)
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By collecting (4.28), (4.30) and (4.31), we arrive at

| | | | ∫ ℝ 𝑑 Re(𝑌 𝑁 Θ 𝑁 )𝑑𝑥 | | | | ≲ ‖Θ 𝑁 ‖  1 (ℝ 𝑑 ) ‖𝐏 ⟂ 𝑛 0 𝑌 𝑁 ‖  -1 (ℝ 𝑑 ) + ‖𝐏 𝑛 0 𝑌 ‖ 2 𝐿 2 (ℝ 𝑑 )
, which together with (4.25) yields

‖Θ 𝑁 ‖ 2 𝐿 2 (ℝ 𝑑 ) ≲ ‖Θ 𝑁 ‖  1 (ℝ 𝑑 ) ‖𝐏 ⟂ 𝑛 0 𝑌 𝑁 ‖  -1 (ℝ 𝑑 ) + ‖𝐏 𝑛 0 𝑌 ‖ 2 𝐿 2 (ℝ 𝑑 ) . (4.32) CN8-d By denoting 𝑍 𝑁,𝑛 0 =  -1∕2 𝐏 ⟂ 𝑛 0 𝑌 𝑁 , σ𝑁,𝑛 0 = 𝔼 [ ‖𝑍 𝑁,𝑛 0 ‖ 2 𝐿 2 (ℝ 𝑑 ) ] ,
we have

‖𝐏 ⟂ 𝑛 0 𝑌 𝑁 ‖ 2  -1 (ℝ 𝑑 ) = ‖ -1∕2 𝐏 ⟂ 𝑛 0 𝑌 𝑁 ‖ 2 𝐿 2 (ℝ 𝑑 ) = ∫ ℝ 𝑑 | -1∕2 𝐏 ⟂ 𝑛 0 𝑌 𝑁 | 2 -𝔼 [ | -1∕2 𝐏 ⟂ 𝑛 0 𝑌 𝑁 | 2 ] + 𝔼 [ | -1∕2 𝐏 ⟂ 𝑛 0 𝑌 𝑁 | 2 ] 𝑑𝑥 = ∫ ℝ 𝑑 |𝑍 𝑁,𝑛 0 | 2 -𝔼[|𝑍 𝑁,𝑛 0 | 2 ]𝑑𝑥 + σ𝑁,𝑛 0 . (4.33) B0e-d
Then by using Corollary 2.7 we obtain

σ𝑁,𝑛 0 = 𝑁 ∑ 𝑛=𝑛 0 +1 2 𝜆 4 𝑛 ≲ 𝜆 -3+ 2 𝑠 𝑛 0 , (4.34) B0-d and 𝔼 [ ( ∫ ℝ 𝑑 |𝑍 𝑁,𝑛 0 | 2 -𝔼[|𝑍 𝑁,𝑛 0 | 2 ]𝑑𝑥 ) 2 ] = 𝑁 ∑ 𝑛=𝑛 0 +1 4 𝜆 8 𝑛 ≲ 𝜆 -7+ 2 𝑠 𝑛 0 . (4.35) B01-d
Now we define a non-negative random variable 𝐵 1 (𝜔) by 

𝐵 1 (𝜔) = 𝜆 7 2 -1 𝑠 𝑛 0 | | | | ∫ ℝ 𝑑 |𝑍 𝑁,𝑛 0 | 2 -𝔼[|𝑍 𝑁,𝑛 0 | 2 ]𝑑𝑥 | | | | . ( 4 
𝔼[𝐵 𝑞 1 ] ≤ 𝐶(𝑞) ( 𝜆 7-2 𝑠 𝑛 0 𝔼 [( ∫ ℝ 𝑑 |𝑍 𝑁,𝑛 0 | 2 -𝔼[|𝑍 𝑁,𝑛 0 | 2 ]𝑑𝑥 ) 2 ]) 𝑞 2 < ∞ (4.
‖𝐏 ⟂ 𝑛 0 𝑌 𝑁 ‖ 2  -1 (ℝ 𝑑 ) ≲ 𝜆 -7 2 + 1 𝑠 𝑛 0 𝐵 1 (𝜔) + 𝜆 -3+ 2 𝑠 𝑛 0 . (4.38) B1e2-d Now we set 𝐵 2 (𝜔) = | | | | ∫ ℝ 𝑑 |𝑌 𝑁 | 2 -𝔼[|𝑌 𝑁 | 2 ]𝑑𝑥 | | | | . (4.39) B2-d
Then it follows that

‖𝐏 𝑛 0 𝑌 𝑁 ‖ 2 𝐿 2 (ℝ 𝑑 ) = ∫ ℝ 𝑑 |𝐏 𝑛 0 𝑌 𝑁 | 2 -𝔼[|𝐏 𝑛 0 𝑌 𝑁 | 2 ]𝑑𝑥 + 𝔼 [ ‖𝐏 𝑛 0 𝑌 𝑁 ‖ 2 𝐿 2 (ℝ 𝑑 ) ] ≤ 𝐵 2 (𝜔) + 𝑛 0 ∑ 𝑛=0 2 𝜆 2 𝑛 ≲ 𝐵 2 (𝜔) + 𝜆 -1+ 2 𝑠 𝑛 0 , (4.40) B2e-d
where we used Corollary 2.6. Furthermore, from computations similar to those in the proof of Corollary 3.5, and an application of Corollary 2.7, we obtain

𝔼[𝐵 𝑞 2 ] ≤ 𝐶(𝑞) ( 𝔼 [( ∫ ℝ 𝑑 |𝑌 𝑁 | 2 -𝔼[|𝑌 𝑁 | 2 ]𝑑𝑥 ) 2 ]) 𝑞∕2
≤ 𝐶(𝑞)

( 𝑁 ∑ 𝑛=0 4 𝜆 4 𝑛 ) 𝑞∕2 ≤ 𝐶(𝑞) ( 𝜆 -3+ 2 𝑠 𝑁 ) 𝑞∕2 < ∞, (4.41) 
B2ea-d uniformly, since -3 + 2 𝑠 < 0 and 𝜆 𝑁 ≥ 𝜆 0 . From (4.32), (4.38), and (4.40), we have

‖Θ 𝑁 ‖ 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) 𝐿 2 (ℝ 𝑑 ) ≲ ( ‖Θ 𝑁 ‖  1 (ℝ 𝑑 ) ‖𝐏 ⟂ 𝑛 0 𝑌 𝑁 ‖  -1 (ℝ 𝑑 ) + ‖𝐏 𝑛 0 𝑌 ‖ 2 𝐿 2 (ℝ 𝑑 ) ) 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) ≲ ( 𝜆 -7 2 + 1 𝑠 𝑛 0 𝐵 1 (𝜔) + 𝜆 -3+ 2 𝑠 𝑛 0 ) 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) ‖Θ 𝑁 ‖ 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2)  1 (ℝ 𝑑 ) + ( 𝐵 2 (𝜔) + 𝜆 2-𝑠 𝑠 𝑛 0 ) 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) ≲ ( 𝜆 -7 2 + 1 𝑠 𝑛 0 𝐵 1 (𝜔)‖Θ 𝑁 ‖  1 (ℝ 𝑑 ) ) 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) + ( 𝜆 -3+ 2 𝑠 𝑛 0 ‖Θ 𝑁 ‖  1 (ℝ 𝑑 ) ) 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) + 𝐵 2 (𝜔) 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) + 𝜆 2-𝑠 𝑠 ⋅ 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) 𝑛 0 , ( 4.42) 

CN9-d

We next choose 𝑛 0 such that 

𝜆 2(2-𝑠) 𝑠 ⋅ 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) 𝑛 0 ∼ ‖Θ 𝑁 ‖ 2  1 (ℝ 𝑑 ) . ( 4 
‖Θ 𝑁 ‖  1 (ℝ 𝑑 ) ) 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) = ‖Θ 𝑁 ‖ 2  1 (ℝ 𝑑 ) . (4.44) CN10-d
Then it follows that ( 𝜆

-7 2 + 1 𝑠 𝑛 0 𝐵 1 (𝜔)‖Θ 𝑁 ‖  1 (ℝ 𝑑 ) ) 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) = 𝜆 ( -7 2 + 1 𝑠 ) 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) 𝑛 0 𝐵 1 (𝜔) 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) ‖Θ 𝑁 ‖  1 (ℝ 𝑑 ) ≲ 𝜆 ( -7 2 + 1 𝑠 ) 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) 𝑛 0 𝐵 1 (𝜔) 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) + ‖Θ 𝑁 ‖ 2  1 (ℝ 𝑑 ) ≲ 𝐵 1 (𝜔) 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) + ‖Θ 𝑁 ‖ 2  1 (ℝ 𝑑 ) , (4.45) 
CN11-d

where we used the fact that - 

‖Θ 𝑁 ‖ 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) 𝐿 2 (ℝ 𝑑 ) ≲ ‖Θ 𝑁 ‖ 2  1 (ℝ 𝑑 ) + 𝐵 1 (𝜔) 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) + 𝐵 2 (𝜔) 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) + 𝐶 (4.46) CN12-d
for some constant 𝐶 > 0 independent of 𝑁.

Finally, we are ready to prove (4.18). By collecting (4.5), (4.20), (4.37) (4.41), (4.45) and (4.46), we arrive at

-log 𝔼 𝜇 [ exp ( 𝛼𝑅 𝑝 (𝑢 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} ) ] = inf 𝜃∈ℍ 𝑎 𝔼 [ -𝛼𝑅 𝑝 ( 𝑌 𝑁 + Θ 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑌 𝑁 +Θ 𝑁 | 2 ∶𝑑𝑥|≤𝐾} + 1 2 ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] ≥ inf 𝜃∈ℍ 𝑎 𝔼 [ -𝐶𝛼‖Θ 𝑁 ‖ 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) 𝐿 2 (ℝ 𝑑 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑌 𝑁 +Θ 𝑁 | 2 ∶𝑑𝑥|≤𝐾} + ( 1 2 -𝐶𝛼 ) ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 -𝐶𝛼𝑅 𝑝 (𝑌 𝑁 ) ] ≥ inf 𝜃∈ℍ 𝑎 𝔼 [ -𝐶𝛼‖Θ 𝑁 ‖ 2  1 (ℝ 𝑑 ) -𝐶𝐵 1 (𝜔) 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) -𝐶𝐵 2 (𝜔) 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) -𝐶 𝐾 - | | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶𝑑𝑥 | | | | 4-(𝑑-2)(𝑝-2) 4-𝑑(𝑝-2) + ( 1 2 -𝐶𝛼 ) ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 -𝐶𝛼𝑅 𝑝 (𝑌 𝑁 ) ] ≥ inf 𝜃∈ℍ 𝑎 𝔼 [ -𝐶 + ( 1 2 -2𝐶𝛼 ) ∫ 1 0 𝔼 [ ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) ] 𝑑𝑡 ] > -𝐶, (4.47) 
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provided 𝛼 ≪ 1. Here the constant 𝐶 may vary from line to line. Thus, we finish the proof of the uniform exponential integrability (4.18) uniformly in 𝐾 > 0. 

sup 𝑁 ∫ |𝑓 𝑁 |>𝑀 |𝑓 𝑁 |𝑑𝜇 ≤ 𝑀 -1 sup 𝑁 ∫ |𝑓 𝑁 | 2 𝑑𝜇 ≲ 𝑀 -1 , ( 4.49) 
uni_sub where in the last step we used (1.18) with 𝑟 = 2. This then implies that (𝑓 𝑁 ) is uniformly integrable. Now we turn to the critical case, i.e. 𝑝 = 2 + 4𝑠 (𝑑-1)𝑠+2 . Let 𝛼 0 be as in Subsection 4.1.2 such that (4.18) holds for all 0 < 𝛼 < 𝛼 0 . Given 𝛼 ∈ (0, 𝛼 0 ), there exists 𝜀 > 0 such that 𝛼(1 + 𝜀) < 𝛼 0 . In particular, we have

sup 𝑁∈ℕ ‖𝑓 𝑁 ‖ 𝐿 1+𝜀 (𝜇) = sup 𝑁∈ℕ ‖ ‖ ‖ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 𝛼(1+𝜀) 𝑝 ‖𝑢 𝑁 ‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) ‖ ‖ ‖𝐿 1 (𝜇) < ∞. (4.50) 
uniint_pc1

Then we have We follow the strategy of [START_REF] Robert | Focusing Gibbs measures with harmonic potential[END_REF] but with some necessary modifications. The main estimate is as follows:

sup 𝑁 ∫ |𝑓 𝑁 |>𝑀 |𝑓 𝑁 |𝑑𝜇 ≤ 𝑀 -𝜀 sup 𝑁 ∫ |𝑓 𝑁 | 1+𝜀 𝑑𝜇 ≲ 𝑀 -𝜀 , (4.51) 
lem:div

Lemma 4.3 (Divergence of the partition funcion).

Let 𝑠 < 2 and assume

either (i) 𝑝 ≥ 2 + 4𝑠 (𝑑 -1)𝑠 + 2
and 𝛼 ≫ 1 when 𝑝 = 2 + 4𝑠 (𝑑 -1)𝑠 + 2;

or (ii) 𝐾 > 0, 𝛼 > 𝛼 0 (𝐾) when 𝑝 = 2 + 4𝑠 (𝑑 -1)𝑠 + 2 , ( 4.52) 
condition2

where 𝛼 0 (𝐾) is given in (4.19). Then

lim sup 𝑁→∞ 𝔼 𝜇 [ exp(𝛼𝑅 𝑝 (𝑢 𝑁 )) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} ] = ∞. (4.53) 
pax First, we notice that Therefore, the divergence (4.53) follows once we prove

𝔼 𝜇 [ exp ( 𝛼𝑅 𝑝 (𝑢 𝑁 ) ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 | 2 ∶𝑑𝑥|≤𝐾} ] ≥ 𝔼 𝜇 [ exp ( 𝛼𝑅 𝑝 (𝑢 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 | 2 ∶𝑑𝑥|≤𝐾} )] -1. 
lim sup 𝑁→∞ 𝔼 𝜇 [ exp ( 𝛼𝑅 𝑝 (𝑢 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 | 2 ∶𝑑𝑥|≤𝐾} )] = ∞. (4.55) 
pa0

By the Boué-Dupuis variational formula Lemma 3.1, we have

-log𝔼 𝜇 [ exp ( 𝛼𝑅 𝑝 (𝑢 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 | 2 ∶𝑑𝑥|≤𝐾} )] = inf 𝜃∈ℍ 𝑎 𝔼 [ -𝛼𝑅 𝑝 (𝑌 𝑁 + Θ 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶+2 Re(𝑌 𝑁 Θ 𝑁 )+|Θ 𝑁 | 2 𝑑𝑥|≤𝐾} + 1 2 ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] , (4.56) 

DPf

where 𝑌 𝑁 and Θ 𝑁 are as in (4.6). Here, 𝔼 𝜇 and 𝔼 denote expectations with respect to the Gaussian field 𝜇 and the underlying probability measure ℙ, respectively. We prove that (4.56) diverges to -∞ for large 𝑁 by exhibiting a suitable trial state for the variational problem.

4.2.1. Construction of the drift. We follow the plan outlined in Section 3.1. We first construct a profile which stays bounded in 𝐿 2 (ℝ 𝑑 ) but grows in 𝐿 𝑝 (ℝ 𝑑 ) with 𝑝 > 2. Fix a large parameter 𝑀 ≫ 1. Let 𝑓 ∶ ℝ 𝑑 → ℝ be a real-valued radial Schwartz function with ‖𝑓 ‖ 𝐿 2 (ℝ 𝑑 ) = 1 such that the Fourier transform f is a smooth function supported on

{ 1 2 < |𝜉| ≤ 1 } . Define a function 𝑓 𝑀 on ℝ by 𝑓 𝑀 (𝑥) = 𝑀 -1 2 ∫ ℝ 𝑑 𝑒 2𝜋𝑖𝑥⋅𝜉 f ( 𝜉 𝑀 )𝑑𝜉 = 𝑀 1 2 𝑓 (𝑀𝑥), (4.57) 
fMdef where f denotes the Fourier transform on ℝ 𝑑 defined by

f (𝜉) = ∫ ℝ 𝑑 𝑓 (𝑥)𝑒 -2𝜋𝑖𝜉⋅𝑥 𝑑𝑥.
Then, a direct computation yields the following lemma (see e.g., [START_REF] Robert | Focusing Gibbs measures with harmonic potential[END_REF]Lemma 4.1]).

Lemma 4.4 (Blow-up profile).

LEM:soliton

Let 𝑠 ∈ ℝ. Then, we have

∫ ℝ 𝑑 𝑓 2 𝑀 𝑑𝑥 = 1, (4.58) 
fM0

∫ ℝ 𝑑 ( 𝑠 2 𝑓 𝑀 ) 2 𝑑𝑥 ≲ 𝑀 2𝑠 , (4.59) fm2 ∫ ℝ 𝑑 |𝑓 𝑀 | 𝑝 𝑑𝑥 ∼ 𝑀 𝑑𝑝 2 -𝑑 (4.60) 
fM1

for any 𝑝 > 0 and 𝑀 ≫ 1.

Next, for some 1 ≪ 𝑀 ≤ 𝑁 we construct an approximation 𝑍 𝑀 (𝑡) to 𝑌 𝑁 (𝑡) as in Definition 3.3. We also set For 𝑀 ≫ 1, we set 𝑓 𝜆 𝑀 , 𝑍 𝑀 , and 𝛼 𝑀,𝑁 as above and define a drift 𝜃 = 𝜃 0 by

𝛼 𝑀,𝑁 = 𝔼 [ 2 ∫ ℝ 𝑑 Re(𝑌 𝑁 𝑍 𝑀 )𝑑𝑥 -∫ ℝ 𝑑 |𝑍 𝑀 | 2 𝑑𝑥 ] ∫ ℝ 𝑑 |𝐏 𝑁 𝑓 𝜆 𝑀 | 2 𝑑𝑥 . ( 4 
𝜃 0 (𝑡) =  1 2 ( - 𝑑 𝑑𝑡 𝑍 𝑀 (𝑡) + √ 𝛼 𝑀,𝑁 𝑓 𝜆 𝑀 ) (4.62) drift and Θ 0 = 𝐼(𝜃 0 )(1) = ∫ 1 0  -1 2 𝜃 0 (𝑡) 𝑑𝑡 = -𝑍 𝑀 + √ 𝛼 𝑀,𝑁 𝑓 𝜆 𝑀 . (4.63) paa0
We remark that √ 𝛼 𝑀,𝑁 (𝐏 𝑁 𝑓 𝜆 𝑀 ) acts as a blow-up profile in our analysis, and 𝜃 0 ∈ ℍ 𝑎 is the stochastic drift such that 𝑌 𝑁 +Θ 0 𝑁 approximates √ 𝛼 𝑀,𝑁 (𝐏 𝑁 𝑓 𝜆 𝑀 ), which drives the potential energy 𝑅 𝑝 (𝑌 𝑁 +Θ 0 𝑁 ) to blow up. Remarkably, due to the construction, the Wick-ordered 𝐿 2 norm of this approximation 𝑌 𝑁 + Θ 0 𝑁 can be made as small as possible, i.e. the cutoff in the Wick-ordered 𝐿 2 norm does not exclude the blow-up profiles.

Before inserting this choice in the variational formula (4.56) to obtain an upper bound, we vindicate that Definition 3.3 indeed efficiently approximates the Brownian motion 𝑌 𝑁 (𝑡) in the case at hand: LEM:approx Lemma 4.6 (Approximating the Brownian motion, subharmonic case). Let 𝑑 ≥ 1, 1 < 𝑠 < 2 and restrict to radial functions when 𝑑 ≥ 2. Given 𝑁 ≥ 𝑀 ≫ 1, we define 𝑍 𝑀 by its coefficients in the eigenfunction expansion of  as in Definition 3.3.

If 𝑐 is chosen large enough in (3.10), we have the following estimates:

𝔼 [ ‖𝑍 𝑀 ‖ 2 𝐿 2 (ℝ 𝑑 ) ] ∼ 𝜆 2 𝑠 -1 𝑀 , (4.64) NRZ0 𝔼 [ 2 Re ∫ ℝ 𝑑 𝑌 𝑁 𝑍 𝑀 𝑑𝑥 -∫ ℝ 𝑑 |𝑍 𝑀 | 2 𝑑𝑥 ] ∼ 𝜆 2 𝑠 -1 𝑀 , (4.65) 
NRZ1 𝔼 [ | | | ∶‖𝑌 𝑁 -𝑍 𝑀 ‖ 2 𝐿 2 (ℝ 𝑑 ) ∶ | | | 2 ] ≲ 𝜆 -3+ 2 𝑠 𝑀 , (4.66) 
NRZ3 𝔼 [ | | | ∫ ℝ 𝑑 𝑌 𝑁 𝑓 𝜆 𝑀 𝑑𝑥 | | | 2 ] + 𝔼 [ | | | ∫ ℝ 𝑑 𝑍 𝑀 𝑓 𝜆 𝑀 𝑑𝑥 | | | 2 ] ≲ 𝜆 -2 𝑀 , (4.67) NRZ5 𝔼 [ ∫ 1 0 ‖ ‖ ‖ 𝑑 𝑑𝜏 𝑍 𝑀 (𝜏) ‖ ‖ ‖ 2  1 (ℝ 𝑑 ) 𝑑𝜏 ] ≲ 𝜆 2 𝑠 𝑀 (4.68) NRZ6
for any 𝑁 ≥ 𝑀 ≫ 1, where 𝑍 𝑀 = 𝑍 𝑀 [START_REF] Poiret | Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator[END_REF] and

∶‖𝑌 𝑁 -𝑍 𝑀 ‖ 2 𝐿 2 (ℝ 𝑑 ) ∶ def = ‖𝑌 𝑁 -𝑍 𝑀 ‖ 2 𝐿 2 (ℝ 𝑑 ) -𝔼 [ ‖𝑌 𝑁 -𝑍 𝑀 ‖ 2 𝐿 2 (ℝ 𝑑 ) ] . (4.69) ZZZ2 Proof. Let 𝑋 𝑛 (𝑡) = Ỹ𝑁 (𝑛, 𝑡) -Z𝑀 (𝑛, 𝑡), 0 ≤ 𝑛 ≤ 𝑀. (4.70) ZZ1
Then, from (3.10), we see that 𝑋 𝑛 (𝑡) satisfies the following stochastic differential equation:

{ 𝑑𝑋 𝑛 (𝑡) = -𝑐𝜆 -1 𝑛 𝜆 𝑀 𝑋 𝑛 (𝑡)𝑑𝑡 + 𝜆 -1 𝑛 𝑑𝐵 𝑛 (𝑡) 𝑋 𝑛 (0) = 0 for 0 ≤ 𝑛 ≤ 𝑀,
where 𝑐 ≫ 1 is a constant. By solving this stochastic differential equation, we have

𝑋 𝑛 (𝑡) = 𝜆 -1 𝑛 ∫ 𝑡 0 𝑒 -𝑐𝜆 -1 𝑛 𝜆 𝑀 (𝑡-𝜏) 𝑑𝐵 𝑛 (𝜏). (4.71) 

ZZ2

Then, from (4.70) and (4.71), we have

Z𝑀 (𝑛, 𝑡) = Ỹ𝑁 (𝑛, 𝑡) -𝜆 -1 𝑛 ∫ 𝑡 0 𝑒 -𝑐𝜆 -1 𝑛 𝜆 𝑀 (𝑡-𝜏) 𝑑𝐵 𝑛 (𝜏) (4.72) 

SDE1

for 𝑛 ≤ 𝑀. Hence, from (4.72), the independence of {𝐵 𝑛 } 𝑛∈ℕ , Ito's isometry (see [START_REF] Evans | An introduction to stochastic differential equations[END_REF]Section 4.2]) and Corollary 2.6 with 𝑝 = 1 and 𝑝 = 1 2 , we have

𝔼 [ ‖𝑍 𝑀 ‖ 2 𝐿 2 (ℝ 𝑑 ) ] = ∑ 𝑛≤𝑀 ( 𝔼 [ | Ỹ𝑁 (𝑛)| 2 ] -2𝜆 -2 𝑛 ∫ 1 0 𝑒 -𝑐𝜆 -1 𝑛 𝜆 𝑀 (1-𝜏) 𝑑𝜏 + 𝜆 -2 𝑛 ∫ 1 0 𝑒 -2𝑐𝜆 -1 𝑛 𝜆 𝑀 (1-𝜏) 𝑑𝜏 ) ∼ 𝑀 ∑ 𝑛=0 𝜆 -2 𝑛 + 𝑂 ( 𝑐 -1 ∑ 𝑛≤𝑀 𝜆 -1 𝑛 𝜆 -1 𝑀 ) ∼ 𝜆 2 𝑠 -1 𝑀 + 𝑂(𝑐 -1 𝜆 2 𝑠 -1 𝑀 ) ∼ 𝜆 2 𝑠 -1 𝑀 , (4.73) 

ZZ3

for any 𝑀 ≫ 1, 𝑐 ≫ 1 and 𝑠 ∈ (1, 2). This proves (4.64). By the 𝐿 2 orthogonality of {𝑒 𝑛 } 𝑛∈ℕ , (4.72), (4.64), and proceeding as in (4.73), we have

𝔼 [ 2 Re ∫ ℝ 𝑑 𝑌 𝑁 𝑍 𝑀 𝑑𝑥 -∫ ℝ 𝑑 |𝑍 𝑀 | 2 𝑑𝑥 ] = 𝔼 [ 2 Re ∑ 𝑛≤𝑀 Ỹ𝑁 (𝑛) Z𝑀 (𝑛) - ∑ 𝑛≤𝑀 | Z𝑀 (𝑛)| 2 ] = 𝔼 [ ∑ 𝑛≤𝑀 | Z𝑀 (𝑛)| 2 + ∑ 𝑛≤𝑀 Re ( 2𝜆 -1 𝑛 ∫ 1 0 𝑒 -𝑐𝜆 -1 𝑛 𝜆 𝑀 (1-𝜏) 𝑑𝐵 𝑛 (𝜏) ) Z𝑀 (𝑛) ] ∼ 𝜆 2 𝑠 -1 𝑀 + 𝑂 ( 𝑐 -1 ∑ 𝑛≤𝑀 𝜆 -1 𝑛 𝜆 -1 𝑀 ) ∼ 𝜆 2 𝑠 -1 𝑀
for any 𝑁 ≥ 𝑀 ≫ 1 and 𝑐 ≫ 1. Here we used Corollary 2.6 with 𝑝 = 1 2 and 𝑠 ∈ (1, 2). This proves (4.65).

Note that Ỹ𝑁 (𝑛) -Z𝑀 (𝑛) is a mean-zero Gaussian random variable. Then, from (4.72) and Ito's isometry, we have

𝔼 [ ( | Ỹ𝑁 (𝑛) -Z𝑀 (𝑛)| 2 -𝔼 [ | Ỹ𝑁 (𝑛) -Z𝑀 (𝑛)| 2 ] ) 2 ] = 7 ( 𝔼 [ | Ỹ𝑁 (𝑛) -Z𝑀 (𝑛)| 2 ] ) 2 = 7𝜆 -4 𝑛 ( ∫ 1 0 𝑒 -2𝑐𝜆 -1 𝑛 𝜆 𝑀 (1-𝜏) 𝑑𝜏 ) 2 ∼ 𝜆 -2 𝑛 𝜆 -2 𝑀 , (4.74) 

ZZ4

for 0 ≤ 𝑛 ≤ 𝑀, where in the second step we used that 𝔼[|𝑋| 4 ] = 8𝜎 4 for complex random variable 𝑋 ∼  (0, 2𝜎 2 ). Hence, from Plancherel's theorem, (4.69), the independence of {𝐵 𝑛 } 𝑛∈ℕ , the independence of

{ | Ỹ𝑁 (𝑛)| 2 -𝔼 [ | Ỹ𝑁 (𝑛)| 2 ]} 𝑀<𝑛≤𝑁 and { | Ỹ𝑁 (𝑛) -Z𝑀 (𝑛)| 2 -𝔼 [ | Ỹ𝑁 (𝑛) -Z𝑀 (𝑛)| 2 ]} 𝑛≤𝑀 ,
and (4.74), we have

𝔼 [ | | | ∶‖𝑌 𝑁 -𝑍 𝑀 ‖ 2 𝐿 2 (ℝ 𝑑 ) ∶ | | | 2 ] = ∑ 𝑀<𝑛≤𝑁 𝔼 [ ( | Ỹ𝑁 (𝑛)| 2 -𝔼 [ | Ỹ𝑁 (𝑛)| 2 ] ) 2 ] + ∑ 𝑛≤𝑀 𝔼 [ ( | Ỹ𝑁 (𝑛) -Z𝑀 (𝑛)| 2 -𝔼 [ | Ỹ𝑁 (𝑛) -Z𝑀 (𝑛)| 2 ] ) 2 ] ≲ ∑ 𝑀<𝑛≤𝑁 𝜆 -4 𝑛 + ∑ 𝑛≤𝑀 𝜆 -2 𝑛 𝜆 -2 𝑀 ≲ 𝜆 -3+ 2 𝑠 𝑀 ,
where we used Corollary 2.6 with 𝑝 = 2 or 𝑝 = 1 and 𝑠 ∈ (1, 2). This proves (4.66). From (4.59) and the definition of 𝑌 𝑁 , we have

𝔼 [ | | | ∫ ℝ 𝑑 𝑌 𝑁 𝑓 𝜆 𝑀 𝑑𝑥 | | | 2 ] = 𝔼 [ | | | ∑ 𝑛≤𝑁 Ỹ𝑁 (𝑛)⟨𝑓 𝜆 𝑀 , 𝑒 𝑛 ⟩ | | | 2 ] = ∑ 𝑛≤𝑁 𝜆 -2 𝑛 |⟨𝑓 𝜆 𝑀 , 𝑒 𝑛 ⟩| 2 ≤ ∫ ℝ 𝑑 | | |  -1 2 𝑓 𝜆 𝑀 (𝑥) | | | 2 𝑑𝑥 ≲ 𝜆 -2 𝑀 , (4.75) 
app4
where in the last step we used Lemma 4.4. From (4.71), Ito's isometry, and (4.59), we have 

𝔼 [ | | | ∑ 𝑛≤𝑀 𝑋 𝑛 (1)⟨𝑓 𝜆 𝑀 , 𝑒 𝑛 ⟩ | | | 2 ] = 𝔼 [ | | | | ∑ 𝑛≤𝑀 ( 𝜆 -1 𝑛 ∫ 1 0 𝑒 -𝑐𝜆 -1 𝑛 𝜆 𝑀 (1-𝜏) 𝑑𝐵 𝑛 (𝜏) ) ⟨𝑓 𝜆 𝑀 , 𝑒 𝑛 ⟩ | | | | 2 ] ≲ 𝜆 -1 𝑀 ∑ 𝑛≤𝑀 𝜆 -1 𝑛 |⟨𝑓 𝜆 𝑀 , 𝑒 𝑛 ⟩| 2 ≲ 𝜆 -1 𝑀 ‖ -1 4 𝑓 𝜆 𝑀 ‖ 2 𝐿 2 (ℝ 𝑑 ) ≲ 𝜆 -2 𝑀 . ( 4 
𝔼 [ ∫ 1 0 ‖ ‖ ‖ 𝑑 𝑑𝜏 𝑍 𝑀 (𝜏) ‖ ‖ ‖ 2  1 (ℝ 𝑑 ) 𝑑𝜏 ] = 𝜆 𝑀 𝔼 [ ∫ 1 0 ‖ ‖ ‖ 𝐏 𝑀 (𝑌 𝑁 (𝜏)) -𝑍 𝑀 (𝜏) ‖ ‖ ‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝜏 ] = 𝜆 𝑀 𝔼 [ ∫ 1 0 ∑ 𝑛≤𝑀 |𝑋 𝑛 (𝜏)| 2 𝑑𝜏 ] = 𝜆 𝑀 ∑ 𝑛≤𝑀 ∫ 1 0 𝔼 [ |𝑋 𝑛 (𝜏)| 2 ] 𝑑𝜏 = 𝜆 𝑀 ∑ 𝑛≤𝑀 𝜆 -2 𝑛 ∫ 1 0 ∫ 𝜏 0 𝑒 -2𝑐𝜆 -1 𝑛 𝜆 𝑀 (𝜏-𝜏 ′ ) 𝑑𝜏 ′ 𝑑𝜏 ≲ 𝜆 𝑀 ∑ 𝑛≤𝑀 𝜆 -1 𝑛 𝜆 -1 𝑀 ≲ 𝜆
𝔼 [ | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 (𝑥)| 2 ∶𝑑𝑥 + ∫ ℝ 𝑑 2 Re(𝑌 𝑁 Θ 0 𝑁 ) + |Θ 0 𝑁 | 2 𝑑𝑥 | | | 2 ] = 𝔼 [ | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 (𝑥)| 2 ∶𝑑𝑥 -2 ∫ ℝ 𝑑 Re(𝑌 𝑁 𝑍 𝑀 )𝑑𝑥 + ∫ ℝ 𝑑 |𝑍 𝑀 | 2 𝑑𝑥 + 𝛼 𝑀,𝑁 ∫ ℝ 𝑑 |𝐏 𝑁 𝑓 𝜆 𝑀 | 2 𝑑𝑥 + 2 √ 𝛼 𝑀,𝑁 ∫ ℝ 𝑑 Re((𝑌 𝑁 -𝑍 𝑀 )𝑓 𝜆 𝑀 )𝑑𝑥 | | | 2 ] . ( 4 
𝔼 [ | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 (𝑥)| 2 ∶𝑑𝑥 + ∫ ℝ 𝑑 2 Re(𝑌 𝑁 Θ 0 𝑁 ) + |Θ 0 𝑁 | 2 𝑑𝑥 | | | 2 ] ≲ 𝜆 -3+ 2 𝑠 𝑀 .
Therefore, by Chebyshev's inequality, given any 𝐾 > 0, there exists 𝑀 0 = 𝑀 0 (𝐾) ≥ 1 such that 

ℙ ( | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 (𝑥)| 2 ∶𝑑𝑥 + ∫ ℝ 𝑑 2 Re(𝑌 𝑁 Θ 0 𝑁 ) + |Θ 0 𝑁 | 2 𝑑𝑥 | | | > 𝐾 ) ≤ 𝐶 𝜆 -3+
+ Θ 0 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶+2 Re(𝑌 𝑁 Θ 𝑁 )+|Θ 𝑁 | 2 𝑑𝑥|≤𝐾} + 1 2 ∫ 1 0 ‖𝜃 0 (𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] ⟶ 𝑀→∞ -∞.
𝔼 [ 𝑅 𝑝 (𝑌 𝑁 -𝑍 𝑀 ) ] = 1 𝑝 ∫ ℝ 𝑑 𝔼 [ | | | ∑ 𝑀<𝑛≤𝑁 𝐵 𝑛 (1)𝑒 𝑛 𝜆 𝑛 + ∑ 𝑛≤𝑀 𝑋 𝑛 (1)𝑒 𝑛 | | | 𝑝 ] 𝑑𝑥 ≲ ∫ ℝ 𝑑 ( 𝔼 [ | | | ∑ 𝑀<𝑛≤𝑁 𝐵 𝑛 (1)𝑒 𝑛 𝜆 𝑛 + ∑ 𝑛≤𝑀 𝑋 𝑛 (1)𝑒 𝑛 | | | 2 ]) 𝑝 2 𝑑𝑥 ≲ ∫ ℝ 𝑑 ( ∑ 𝑀<𝑛≤𝑁 𝑒 2 𝑛 (𝑥) 𝜆 2 𝑛 + ∑ 𝑛≤𝑀 𝑒 2 𝑛 (𝑥) 𝜆 𝑛 𝜆 𝑀 ) 𝑝 2 𝑑𝑥 ≲ ∫ ℝ 𝑑 ( ∑ 𝑛≤𝑁 𝑒 2 𝑛 (𝑥) 𝜆 2 𝑛 ) 𝑝 2 𝑑𝑥 ≲ 1, (4.86) 
provided 𝑝 > 4 𝑠 , uniformly in 𝑀 and 𝑁. Here we use the fact that 𝑋 𝑛 (1) is a Gaussian random variable with variance ∼ (𝜆 𝑛 𝜆 𝑀 ) -1 .

We are now ready to put everything together. It follows from (4.56), (4.85), (4.86), and (4.78) that there exists 𝐶 > 0 such that ) , which diverges to infinity as 𝑀 → ∞ provided 𝑝 > 2 + 4𝑠 (𝑑-1)𝑠+2 and 𝐾, 𝛼 > 0. It remains to consider the critical case when 𝑝 = 2 + 4𝑠 (𝑑-1)𝑠+2 . From the above computation, we see that

-log𝔼 𝜇 [ exp ( 𝛼𝑅 𝑝 (𝑢 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 | 2 ∶𝑑𝑥|≤𝐾} )] ≤ 𝔼 [ -𝛼𝑅 𝑝 (𝑌 𝑁 + Θ 0 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶𝑑𝑥+∫ ℝ 𝑑 2 Re(𝑌 𝑁 Θ 0 𝑁 )+|Θ 0 𝑁 | 2 𝑑𝑥|≤𝐾} + 1 2 ∫ 1 0 ‖𝜃 0 (𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] ≤ 𝔼 [ - 1 2 𝑅 𝑝 ( √ 𝛼 𝑀,𝑁 𝑓 𝜆 𝑀 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶𝑑𝑥+∫ ℝ 𝑑 2 Re(𝑌 𝑁 Θ 0 𝑁 )+|Θ 0 𝑁 | 2 𝑑𝑥|≤𝐾} + 𝐶𝑅 𝑝 (𝑌 𝑁 -𝑍 𝑀 ) + 1 2 ∫ 1 0 ‖𝜃 0 (𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] ≤ - 1 2 𝑅 𝑝 ( √ 𝛼 𝑀,𝑁 𝑓 𝜆 𝑀 ) ⋅ ℙ ( | | | ∫ ℝ 𝑑 ∶|𝑌 𝑁 | 2 ∶𝑑𝑥 + ∫ ℝ 𝑑 2 Re(𝑌 𝑁 Θ 0 𝑁 ) + |Θ 0 𝑁 | 2 𝑑𝑥 | | | ≤ 𝐾 ) + 𝐶𝔼 [ 𝑅 𝑝 (𝑌 𝑁 -𝑍 𝑀 ) ] + 1 2 ∫ 1 0 𝔼 [ ‖𝜃 0 (𝑡)‖
sup 𝑁∈ℕ 𝔼 𝜇 [ exp ( 𝛼𝑅 𝑝 (𝑢 𝑁 ) ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 | 2 ∶𝑑𝑥|≤𝐾} ] = sup 𝑁∈ℕ ‖ ‖ ‖ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 𝛼 𝑝 ‖𝑢 𝑁 ‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) ‖ ‖ ‖𝐿 1 (𝜇) = ∞ (4.87) div_cri provided 𝛼 ≫ 1 such that 𝐶 𝑝 1 𝛼 > 𝐶 2 2 .
In particular, this shows when 𝑝 = 2 + 4𝑠 (𝑑-1)𝑠+2 the number 𝛼 0 (𝐾) defined in (4. [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF]) is bounded for given 𝐾 > 0. From the definition (4.19), given 𝐾 > 0, we see that (4.87) holds for all 𝛼 > 𝛼 0 (𝐾). Thus, we finish the proof of (4.53) for 𝑝 ≥ 2 + 4𝑠 (𝑑-1)𝑠+2 , and 𝛼 > 𝛼 0 (𝐾) for any given 𝐾 > 0 when 𝑝 = 2 + 4𝑠 (𝑑-1)𝑠+2 

Ω ⟂ 𝐾 = { 𝑢 ⟂ 𝑁 ∶ | | | ∫ ℝ 𝑑 ∶|𝑢 ⟂ 𝑁 | 2 ∶𝑑𝑥 | | | ≤ 𝐾 2 , 1 𝑝 ∫ ℝ 𝑑 |𝑢 ⟂ 𝑁 | 𝑝 𝑑𝑥 ≤ 1 } , ( 4.88) 
muperpdef where we defined

∫ ℝ 𝑑 ∶|𝑢 ⟂ 𝑁 | 2 ∶𝑑𝑥 = ∞ ∑ 𝑛=𝑁+1 |𝑔 𝑛 | 2 -2 𝜆 2 𝑛 ,
which is chosen so that

∫ ℝ 𝑑 ∶|𝑢 ⟂ 𝑁 | 2 ∶𝑑𝑥 = ∫ ℝ 𝑑 ∶|𝑢| 2 ∶𝑑𝑥 -∫ ℝ 𝑑 ∶|𝑢 𝑁 | 2 ∶𝑑𝑥.
The proof of Theorem 1.3 (ii) -(b) requires a delicate analysis of the cut-off function when it is slightly perturbed. To overcome the challenges that arise, we introduce a crucial lemma that allows us to preserve the cut-off size 𝐾 in the approximation process.

LEM:sameK Lemma 4.10. Consider the sets

Ω ⟂ + ∶= { 𝑢 ⟂ 𝑁 ∈ Ω ⟂ 𝐾 ∶ ∫ ℝ 𝑑 ∶|𝑢 ⟂ 𝑁 | 2 ∶𝑑𝑥 ≥ 0 } , Ω ⟂ -∶= { 𝑢 ⟂ 𝑁 ∈ Ω ⟂ 𝐾 ∶ ∫ ℝ 𝑑 ∶|𝑢 ⟂ 𝑁 | 2 ∶𝑑𝑥 ≤ 0 } .
Then there exists 𝜀 0 > 0 such that min(𝜇 

ℙ(𝑌 > 0) ≥ 𝑐 2 4 .
Proof. We first note that up to multiplying 𝑌 by a constant, we can assume that 𝔼[𝑌 2 ] = 1. For 𝑀 > 0, we have

𝔼[𝑌 𝟏 𝑌 >𝑀 ] ≤ 𝔼 [ 𝑌 2 𝑀 𝟏 𝑌 >𝑀 ] ≤ 1 𝑀 .
Therefore, by choosing 𝑀 = 2 𝑐 , we obtain that

𝑐 2 ≤ 𝔼[𝑌 ] -𝔼[𝑌 𝟏 𝑌 >𝑀 ] ≤ 𝔼[𝑌 𝟏 𝑌 ≤𝑀 ] ≤ 𝑀ℙ(𝑌 > 0).
Therefore,

ℙ(𝑌 > 0) ≥ 1 𝑀 ⋅ 𝑐 2 = 𝑐 2 4 .
We thus finish the proof. □

We are ready to prove Lemma 4.10.

Proof of Lemma 4.10. Define the random variables

𝑌 = ∫ ℝ 𝑑 ∶|𝑢 ⟂ 𝑁 | 2 ∶𝑑𝑥 and 𝑌 ± = ( ∫ ℝ 𝑑 ∶|𝑢 ⟂ 𝑁 | 2 ∶𝑑𝑥 ) ± ,
where 𝑢 ⟂ 𝑁 is distributed according to 𝜇 ⟂ 𝑁 , 𝑎 + = max(0, 𝑎), and 𝑎 -= | min(0, 𝑎)|. By Corollary 3.4 and Corollary 3.5, we have that 𝜇 ⟂ 𝑁 (Ω ⟂ 𝐾 ) → 1 as 𝑁 → ∞. As Ω ⟂ ± = Ω 𝐾 ∩ {𝜔 ∶ 𝑌 + > 0}, so for (4.89), it is enough to show that

min ( ℙ(𝑌 + > 0), ℙ(𝑌 -> 0) ) > 2𝜀 0 , (4.90) same_K2
for some 𝜀 0 independent of 𝑁. From Corollary 3.5 and the fact

𝔼 [ ∫ ℝ 𝑑 ∶|𝑢 ⟂ 𝑁 | 2 ∶𝑑𝑥 ] = 0,
we have that

𝔼[𝑌 + ] = 𝔼[𝑌 -] = 1 2 𝔼 [ |𝑌 | ] < ∞. (4.91) Ypm
Moreover, by a direct computation (as in the proof of Corollary 3.5 and (3.14)), we have

𝔼[𝑌 4 ] = 𝔼 [ ( ∞ ∑ 𝑛=𝑁+1 |𝐵 𝑛 | 2 -2 𝜆 2 𝑛 ) 4 ] = -2 ( ∞ ∑ 𝑛=𝑁+1 𝔼 [ (|𝐵 𝑛 | 2 -2) 4 ] 𝜆 8 𝑛 ) + 3 
( ∞ ∑ 𝑛=𝑁+1 𝔼 [ (|𝐵 𝑛 | 2 -2) 2 ] 𝜆 4 𝑛 ) 2 ≤ 𝐶 ( ∞ ∑ 𝑛=𝑁+1 𝔼 [ (|𝐵 𝑛 | 2 -2) 2 ] 𝜆 4 𝑛 ) 2 = 𝐶 ( 𝔼[𝑌 2 ] ) 2 (4.92) Y4
for some universal constant 𝐶 > 0. Therefore, by Hölder inequality and (4.92), we have

𝔼[𝑌 2 ] ≤ 𝔼[|𝑌 |] 2 3 𝔼[𝑌 4 ] 1 3 ≤ 𝐶 1 3 𝔼[|𝑌 |] 2 3 𝔼[𝑌 2 ] 2 3 .
The above also reads

𝔼[|𝑌 |] ≥ 𝐶 -1 2 𝔼[𝑌 2 ] 1 2 ,
which together with (4.91) implies 

𝔼[𝑌 ± ] ≥ 1 2 𝐶 -1 2 𝔼[𝑌 2 ] 1 2 ≥ 1 2 𝐶 -1 2 𝔼[𝑌 2 ± ] 1 2 . ( 4 
 𝐾 = ∫ exp ( 𝛼 𝑝 ∫ ℝ 𝑑 |𝑢| 𝑝 𝑑𝑥 ) 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢(𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑑𝜇(𝑢) ≥ ∫ exp ( - 𝐶 𝜀 𝑝 ∫ ℝ 𝑑 |𝑢 ⟂ 𝑁 | 𝑝 𝑑𝑥 ) exp ( 𝛼 -𝜀 𝑝 ∫ ℝ 𝑑 |𝑢 𝑁 | 𝑝 𝑑𝑥 ) × 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥+∫ ℝ 𝑑 ∶|𝑢 ⟂ 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝟏 Ω ⟂ sgn(∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥) (𝑢 ⟂ 𝑁 )𝑑𝜇 𝑁 (𝑢 𝑁 )𝑑𝜇 ⟂ 𝑁 (𝑢 ⟂ 𝑁 ) ≥ ∫ 𝑒 -𝐶 𝜀 exp ( 𝛼 -𝜀 𝑝 ∫ ℝ 𝑑 |𝑢 𝑁 | 𝑝 𝑑𝑥 ) 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝟏 Ω ⟂ sgn(∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥) (𝑢 ⟂ 𝑁 )𝑑𝜇 𝑁 (𝑢 𝑁 )𝑑𝜇 ⟂ 𝑁 (𝑢 ⟂ 𝑁 ) ≥ 𝑒 -𝐶 𝜀 𝜀 0 ∫ exp ( 𝛼 -𝜀 𝑝 ∫ ℝ 𝑑 |𝑢 𝑁 | 𝑝 𝑑𝑥 ) 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑑𝜇 𝑁 (𝑢 𝑁 ) ≥ 𝑒 -𝐶 𝜀 𝜀 0 ∫ exp ( 𝛼 -𝜀 𝑝 ∫ ℝ 𝑑 |𝑢 𝑁 | 𝑝 𝑑𝑥 ) 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (
 𝐾 ≥ lim sup 𝑁→∞ 𝑒 -𝐶 𝜀 𝜀 0 ∫ exp ( 𝛼 -𝜀 𝑝 ∫ ℝ 𝑑 |𝑢 𝑁 | 𝑝 𝑑𝑥 ) 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑑𝜇 𝑁 (𝑢 𝑁 ) = ∞
provided 𝜀 ≪ 1 such that 𝛼 -𝜀 > 𝛼 0 (𝐾) for given 𝐾 > 0. This concludes the proof of (1.23), and hence Theorem 1.3 (ii) -(b).

SUPERHARMONIC POTENTIAL perharmonic

In this section, we see how to extend the previous results for cases of 𝑠 ∈ (1, 2) to cases of 𝑠 > 2. The argument of this section is inspired by [START_REF] Liang | Gibbs measure for the focusing fractional nls on the torus[END_REF]. One of the key advantages of the superharmonic case is that ‖𝑢‖ 𝐿 2 (ℝ 𝑑 ) < ∞ almost surely with respect to 𝜇, i.e.

𝔼 𝜇 [‖𝑢‖ 2 𝐿 2 (ℝ 𝑑 ) ] = 𝔼[‖𝑌 (1)‖ 2 𝐿 2 (ℝ 𝑑 ) ] = ∞ ∑ 𝑛=0 2 𝜆 2 𝑛 < ∞, (5.1) 
sup_L2

where 𝑌 (1) is defined in (3.3), in view of Lemma 2.2. Furthermore, for 𝑞 ≥ 𝑝 we have

( 𝔼 𝜇 [‖𝑢‖ 𝑞 𝐿 𝑝 (ℝ 𝑑 ) ] ) 1 𝑞 ≤ ‖ ‖ ‖ ‖𝑌 (1)‖ 𝐿 𝑞 (Ω) ‖ ‖ ‖𝐿 𝑝 (ℝ 𝑑 ) ≤ 𝐶(𝑞) ‖ ‖ ‖ ‖𝑌 (1)‖ 𝐿 2 (Ω) ‖ ‖ ‖𝐿 𝑝 (ℝ 𝑑 ) = 𝐶(𝑞) ‖ ‖ ‖ ‖ ( ∑ 𝑛≥0 𝑒 2 𝑛 𝜆 2 𝑛 ) 1 2 ‖ ‖ ‖ ‖𝐿 𝑝 (ℝ 𝑑 ) = 𝐶(𝑞)‖ -1 (𝑥, 𝑥)‖ 1 2 𝐿 𝑝 2 (ℝ 𝑑 ) < ∞,
provided 𝑝 > 2 and 𝑝 < 2𝑑 𝑑-2 when 𝑑 ≥ 3, by using Lemma 2.3. The Hölder inequality then implies

𝔼 𝜇 [‖𝑢‖ 𝑞 𝐿 𝑝 (ℝ 𝑑 ) ] = 𝔼[‖𝑌 (1)‖ 𝑞 𝐿 𝑝 (ℝ 𝑑 ) ] < ∞ (5.2)
sup_Lp provided 1 ≤ 𝑞 < ∞, 𝑝 > 2 and 𝑝 < 2𝑑 𝑑-2 when 𝑑 ≥ 3. We also need the following consequence of Fernique's theorem [START_REF] Fernique | Regularite des trajectoires des fonctions aleatoires gaussiennes[END_REF]. See also Theorem 2.7 in [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF] and Lemma 3.3 in [START_REF] Robert | Focusing Gibbs measures with harmonic potential[END_REF].

LEM:Fer

Lemma 5.1 (Fernique-type bounds).

There exists a constant 𝑐 > 0 such that if 𝑋 is a mean-zero Gaussian process with values in a separable Banach space 𝐵 with 𝔼

[ ‖𝑋‖ 𝐵 ] < ∞, then ∫ 𝑒 𝑐 ‖𝑋‖ 2 𝐵 (𝔼[‖𝑋‖ 𝐵 ]) 2 𝑑ℙ < ∞.
In particular, we have

ℙ ( ‖𝑋‖ 𝐵 ≥ 𝑡 ) ≲ exp [ - 𝑐𝑡 2 ( 𝔼 [ ‖𝑋‖ 𝐵 ]) 2 ]
for any 𝑡 > 1.

SEC:nor1 

≤𝐾}

) ] ,

the bound (5.4) follows once we have 

𝔼 𝜇 [ exp ( 𝛼𝑅 𝑝 (𝑢) ⋅ 𝟏 {‖𝑢‖ 2 𝐿 2 (ℝ 𝑑 ) ≤𝐾} ) ] < ∞. ( 5 
≤𝐾} ) ] = -log 𝔼 [ 𝑒 -𝐹 (𝑌 (1)) ] = inf 𝜃∈ℍ 𝑎 𝔼 [ -𝛼𝑅 𝑝 ( 𝑌 (1) + 𝐼(𝜃)(1) ) ⋅ 𝟏 {‖𝑌 (1)+𝐼(𝜃)(1)‖ 2 𝐿 2 (ℝ 𝑑 ) ≤𝐾} + 1 2 ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] ,
(5.6)

var4_1
where 𝑌 (1) is given in (3.3). Here, 𝔼 𝜇 and 𝔼 denote expectations with respect to the Gaussian field 𝜇 and the underlying probability measure ℙ respectively. In the following, we show that the right hand side of (5.6) has a finite lower bound.

Step 2. Subcritical case. In the case

2 < 𝑝 < 2 + 4 𝑑 ,
we prove (5.5) with a mass cut-off of any finite size 𝐾. Then, by using (4.11) with 𝜀 = 1 and the sharp Gagliardo-Nirenberg-Sobolev inequality, we obtain

𝛼𝑅 𝑝 ( 𝑌 (1) + 𝐼(𝜃)(1) ) ⋅ 𝟏 {‖𝑌 (1)+𝐼(𝜃)(1)‖ 2 𝐿 2 (ℝ 𝑑 ) ≤𝐾} ≤ 2𝛼𝑅 𝑝 ( 𝐼(𝜃)(1) ) ⋅ 𝟏 {‖𝐼(𝜃)(1)‖ 𝐿 2 (ℝ 𝑑 ) ≤ √ 𝐾+‖𝑌 (1)‖ 𝐿 2 (ℝ 𝑑 ) } + 𝐶𝛼𝑅 𝑝 (𝑌 (1)) ≤ 2𝛼 𝑝 𝐶 GNS ( √ 𝐾 + ‖𝑌 (1)‖ 𝐿 2 (ℝ 𝑑 ) ) 4-(𝑑-2)(𝑝-2) 2 ‖𝐼(𝜃)(1)‖ 𝑑(𝑝-2) 2  1 (ℝ 𝑑 ) + 𝐶𝛼𝑅 𝑝 (𝑌 (1)). ≤ 𝐶 + 𝐶‖𝑌 (1)‖ 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) 𝐿 2 (ℝ 𝑑 ) + 1 4 ‖𝐼(𝜃)(1)‖ 2  1 (ℝ 𝑑 ) + 𝐶𝑅 𝑝 (𝑌 (1)), (5.7) 
var5_1

where 𝐶 GNS is the sharp Gagliardo-Nirenberg-Sobolev constant and the constant 𝐶 depends only on 𝑑, 𝑝, 𝛼. By collecting (5.6), (5.7) and Lemma 3.2, we arrive at

-log 𝔼 𝜇 [ exp ( 𝛼𝑅 𝑝 (𝑢) ⋅ 𝟏 {‖𝑢‖ 2 𝐿 2 (ℝ 𝑑 ) ≤𝐾} ) ] ≥ inf 𝜃∈ℍ 𝑎 𝔼 [ -𝐶 -𝐶‖𝑌 (1)‖ 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) 𝐿 2 (ℝ 𝑑 ) -𝐶𝑅 𝑝 (𝑌 (1)) - 1 4 ‖𝐼(𝜃)(1)‖ 2  1 (ℝ 𝑑 ) + 1 2 ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] ≥ inf 𝜃∈ℍ 𝑎 𝔼 [ -𝐶 -𝐶‖𝑌 (1)‖ 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) 𝐿 2 (ℝ 𝑑 ) -𝐶‖𝑌 (1)‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) + 1 4 ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] ≥ 𝔼 [ -𝐶 -𝐶‖𝑌 (1)‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) -𝐶‖𝑌 (1)‖ 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) 𝐿 2 (ℝ 𝑑 ) ] > -∞,
where we used (5.1) and (5.2) in the second to last step, i.e.

𝔼 [ ‖𝑌 (1)‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) + ‖𝑌 (1)‖ 2(4-(𝑑-2)(𝑝-2)) 4-𝑑(𝑝-2) 𝐿 2 (ℝ 𝑑 ) ] < ∞.
Here 𝐶 is a constant that may vary from line to line. Thus we finish the proof of (5.5) in the subcritical case.

Step 

≤𝐾}

(5.9)

var5a ≤ 𝛼(1 + 𝜀)𝑅 𝑝 ( 𝐏 𝑁 𝜀 𝑌 (1) + 𝐼(𝜃)(1) ) ⋅ 𝟏 {‖𝐏 𝑁 𝜀 𝑌 (1)+𝐼(𝜃)(1)‖ 𝐿 2 (ℝ) ≤ √ 𝐾+𝜀} + 𝐶 𝜀 𝛼𝑅 𝑝 (𝑃 ⟂ 𝑁 𝜀 𝑌 (1)) ≤ 𝛼 1 + 𝜀 𝑝 𝐶 GNS ( √ 𝐾 + 𝜀) 𝑝-2 ( ‖𝐏 𝑁 𝜀 𝑌 (1)‖  1 (ℝ 𝑑 ) + ‖𝐼(𝜃)(1)‖  1 (ℝ 𝑑 ) ) 2 + 𝐶 𝜀 𝛼𝑅 𝑝 (𝑃 ⟂ 𝑁 𝜀 𝑌 (1)) ≤ 𝛼 (1 + 𝜀) 2 𝑝 𝐶 GNS ( √ 𝐾 + 𝜀) 𝑝-2 ‖𝐼(𝜃)(1)‖ 2  1 (ℝ 𝑑 ) + 𝐶 𝜀 ‖𝐏 𝑁 𝜀 𝑌 (1)‖ 2  1 (ℝ 𝑑 ) + 𝐶 𝜀 𝛼𝑅 𝑝 (𝑃 ⟂ 𝑁 𝜀 𝑌 (1)). Since 𝑝 = 2 + 4 𝑑 , 𝐶 GNS = 𝑝 2 ‖𝑄‖ 2-𝑝 𝐿 2 (ℝ 𝑑 ) and 𝛼 𝑑 2 𝐾 < ‖𝑄‖ 2 𝐿 2 (ℝ 𝑑 ) , there exist 𝜂, 𝜀 > 0 such that 𝛼 (1 + 𝜀) 2 𝑝 𝐶 GNS ( √ 𝐾 + 𝜀) 𝑝-2 < 1 -𝜂 2 .
(5.10) eta By collecting (5.6), (5.9), (5.10) and Lemma 3.2, we get

-log 𝔼 𝜇 [ exp ( 𝛼𝑅 𝑝 (𝑢) ⋅ 𝟏 {‖𝑢‖ 2 𝐿 2 (ℝ 𝑑 ) ≤𝐾} ) ] ≥ inf 𝜃∈ℍ 𝑎 𝔼 [ - 1 -𝜂 2 ‖𝐼(𝜃)(1)‖ 2  1 (ℝ 𝑑 ) -𝐶 𝜀 ‖𝐏 𝑁 𝜀 𝑌 (1)‖ 2  1 (ℝ 𝑑 ) -𝐶 𝜀 𝑅 𝑝 (𝑌 (1)) + 1 2 ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] ≥ inf 𝜃∈ℍ 𝑎 𝔼 [ -𝐶 𝜀 𝑅 𝑝 (𝑃 ⟂ 𝑁 𝜀 𝑌 (1)) -𝐶 𝜀 ‖𝐏 𝑁 𝜀 𝑌 (1)‖ 2  1 (ℝ 𝑑 ) + 𝜂 2 ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡 ] ≥ 𝔼 [ -𝐶 𝜀 𝑅 𝑝 (𝑃 ⟂ 𝑁 𝜀 𝑌 (1)) -𝐶 𝜀 ‖𝐏 𝑁 𝜀 𝑌 (1)‖ 2  1 (ℝ 𝑑 ) ] ≥ -𝐶 𝜀 -𝐶 𝜀 𝔼 [ ‖𝐏 𝑁 𝜀 𝑌 (1)‖ 2  1 (ℝ 𝑑 )
] .

We remark that 𝑌 (1) ∉  1 (ℝ) almost surely. Therefore, to prove (5.5), there remains to show that

𝔼 [ ‖𝐏 𝑁 𝜀 𝑌 (1)‖ 2  1 (ℝ 𝑑 ) ] < ∞, (5.11) 

Hsbound

where 𝑁 𝜀 is a random variable given by (5.8).

Noting that 𝑌 (1) is a mean-zero random variable, we may decompose Ω (by ignoring a zero-measure set) as

Ω = ⋃ 𝑁≥1 Ω 𝑁 , ( 5.12) 
decom where

Ω 𝑁 = { 𝜔 ∈ Ω ∶ 𝑁 𝜀 (𝜔) = 𝑁 } .
(5.13)

ON By (5.12) and Hölder's inequality, we have

𝔼 [ ‖𝐏 𝑁 𝜀 𝑌 (1)‖ 2  1 (ℝ 𝑑 ) ] ≤ ∑ 𝑁≥1 𝔼 [ ‖𝐏 𝑁 𝑌 (1)‖ 2  1 (ℝ 𝑑 ) ⋅ 𝟏 Ω 𝑁 ] ≤ ∑ 𝑁≥1 𝜆 2 𝑁 𝔼 [ ‖𝐏 𝑁 𝑌 (1)‖ 2 𝐿 2 (ℝ 𝑑 ) ⋅ 𝟏 Ω 𝑁 ] ≤ ∑ 𝑁≥1 𝜆 2 𝑁 ( 𝔼 [ ‖𝑌 (1)‖ 4 𝐿 2 (ℝ 𝑑 ) ] ) 1 2 ⋅ ℙ(Ω 𝑁 ) 1 2 ≤ 𝐶 ∑ 𝑁≥1 𝜆 2 𝑁 ℙ(Ω 𝑁 ) 1 2 .
(5.14)

Hsbound1

By using Corollary 2.7, we also have

𝔼 [ ‖𝐏 ⟂ 𝑁 4 𝑌 (1)‖ 2 𝐿 2 (ℝ 𝑑 ) ] = ∞ ∑ 𝑛= [ 𝑁 4 ] +1 𝜆 -2 𝑛 ≲ 𝜆 -1+ 2 𝑠 [ 𝑁 4 
] .

(5.15)

L2bound

It then follows from (5.8), (5.13), Hölder's inequality, Lemma 5.1 and (5.15), that

ℙ(Ω 𝑁 ) ≤ ℙ ({ ‖𝐏 ⟂ 𝑁 4 𝑌 (1)‖ 𝐿 2 (ℝ 𝑑 ) > 𝜀 }) ≲ exp { -𝑐 ( 𝜀 𝔼 ( ‖𝐏 ⟂ 𝑁 4 𝑌 (1)‖ 𝐿 2 (ℝ 𝑑 ) ) ) 2 } ≲ exp { - 𝑐𝜀 2 𝔼 [ ‖𝐏 ⟂ 𝑁 4 𝑌 (1)‖ 2 𝐿 2 (ℝ 𝑑 ) ] } ≲ 𝑒 -c𝜀 2 𝜆 -2 𝑠 +1 [ 𝑁 4 ] ,
(5.16)

Hsbound2

where 𝑐 and c are constants. By collecting (5.14), (5.16) and Lemma 2.8, we conclude that

𝔼 [ ‖𝐏 𝑁 𝜀 𝑌 (1)‖ 2  1 (ℝ 𝑑 ) ] ≤ ∑ 𝑁≥1 𝜆 2 𝑁 𝑒 -c 2 𝜀 2 𝜆 -2 𝑠 +1 [ 𝑁 4 ] < ∞,
where we used 𝑠 > 2, which finishes the proof of (5.11), and thus (5.5) in the critical case. □ SEC:non2 Then, in the limit 𝜌 → 0 we have

(i) 𝐻(𝑊 𝜌 ) ≤ -𝐴 1 𝜌 -𝑑𝑝 2 +𝑑 , (ii) ‖𝑊 𝜌 ‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) ≤ 𝐴 2 𝜌 -𝑑𝑝 2 +𝑑 , (iii) ‖𝑊 𝜌 ‖ 2 𝐿 2 (ℝ 𝑑 ) ≤ 𝐾 -𝜂, ( 5.20 
)

soliton
where 𝐻 is the Hamiltonian functional given in (1.5), and 𝐴 1 , 𝐴 2 , 𝜂 > 0 are constants independent of 𝜌 > 0.

Proof. There exists 𝛽 > 0 such that

𝐾 > ‖𝑊 𝜌 ‖ 2 𝐿 2 (ℝ 𝑑 ) = 𝛽 2 ‖𝑄‖ 2 𝐿 2 (ℝ 𝑑 ) .
In . For this, we build a sequence of scalings of ground state 𝑄, namely {𝑊 𝜌 }, which are new blow-up profiles that accurately capture the critical mass.

We construct a series of drift terms as follows. Let 𝜌 > 0, 𝑀 = 𝜌 -1 , 𝑊 𝜌 be as in Lemma 5. (5.24)

Itheta

We need the following properties of the approximate Brownian motion.

LEM:appro2

Lemma 5.5 (Approximating the Brownian motion, superharmonic case).

Given 𝑠 > 2 and a dyadic number 𝑀 ∼ 𝜌 -1 ≫ 1, let 𝑍 𝑀 (𝑡) be as in Definition 3.3. The following holds:

𝔼 [ ‖𝑌 (1) -𝑍 𝑀 ‖ 2 𝐿 2 (ℝ 𝑑 ) ] ∼ 𝜆 2 𝑠 -1 𝑀 , (5.25) L2_1 𝔼 [ ‖𝑍 𝑀 (1) -𝑌 (1)‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) ] ≲ ( 𝜆 2 𝑠 -1 𝑀 ) 𝑝 2 for 𝑝 ≥ 1, (5.26) 
Lp 𝔼 [ ∫ 1 0 ‖ ‖ ‖ 𝑑 𝑑𝜏 𝑍 𝑀 (𝜏) ‖ ‖ ‖ 2  1 (ℝ 𝑑 ) 𝑑𝜏 ] ≲ 𝜆 2 𝑠 𝑀 , (5.27) 
dZL2 for any 𝑀 ≫ 1.

Proof. Let

𝑋 𝑛 (𝑡) = Ỹ (𝑛, 𝑡) -Z𝑀 (𝑛, 𝑡), 0 < 𝑛 ≤ 𝑀.

(5.28)

ZZ1_1

Then, from (3.10), we see that 𝑋 𝑛 (𝑡) satisfies the following stochastic differential equation:

{ 𝑑𝑋 𝑛 (𝑡) = -𝑐𝜆 -1
𝑛 𝜆 𝑀 𝑋 𝑛 (𝑡)𝑑𝑡 + 𝜆 -1 𝑛 𝑑𝐵 𝑛 (𝑡) 𝑋 𝑛 (0) = 0 for 0 < 𝑛 ≤ 𝑀, where 𝑐 ≫ 1 is a constant. By solving this stochastic differential equation, we have

𝑋 𝑛 (𝑡) = 𝜆 -1 𝑛 ∫ 𝑡 0 𝑒 -𝑐𝜆 -1 𝑛 𝜆 𝑀 (𝑡-𝜏) 𝑑𝐵 𝑛 (𝜏). (5.29) 

ZZ2_1

Then, from (5.28) and (5.29), we have

Z𝑀 (𝑛, 𝑡) = Ỹ (𝑛, 𝑡) -𝜆 -1 𝑛 ∫ 𝑡 0 𝑒 -𝑐𝜆 -1 𝑛 𝜆 𝑀 (𝑡-𝜏) 𝑑𝐵 𝑛 (𝜏) (5.30) 

SDE12

for 𝑛 ≤ 𝑀. Hence, from (5.30), the independence of {𝐵 𝑛 } 𝑛∈ℕ , Ito's isometry and Corollary 2.6 with 𝑝 = 1 and 𝑝 = 1 2 , we have Proof of Theorem 1.4 -the second half of (ii) 𝑎𝑛𝑑 (iii). We shall prove (5.18) under conditions (5.17 In this appendix, we prove some estimates for the fractional Schrödinger operator, which enable us to prove normalizability of Gibbs measure associated with fractional Schrödinger operators.

𝔼 [ ‖𝑍 𝑀 ‖ 2 𝐿 2 (ℝ 𝑑 ) ] = ∑ 𝑛≤𝑀 ( 𝔼 [ | Ỹ (𝑛)| 2 ] -2𝜆 -2 𝑛 ∫ 1 0 𝑒 -𝑐𝜆 -1 𝑛 𝜆 𝑀 (1-𝜏) 𝑑𝜏 + 𝜆 -2 𝑛 ∫ 1 0 𝑒 -2𝑐𝜆 -1 𝑛 𝜆 𝑀 (1-𝜏) 𝑑𝜏 ) ∼ 1 + 𝑂 ( 𝑐 -1 ∑ 𝑛≤𝑀 𝜆 -1 𝑛 𝜆 -1 𝑀 ) ∼ 1, (5.31 
Let 𝐻 𝛼 be the fractional Schrödinger operator 𝐻 𝛼 = (-Δ) 𝛼 + 𝑉 (𝑥) defined on ℝ 𝑑 , where 𝑉 ∶ ℝ 𝑑 → ℝ + is a trapping potential, i.e., 𝑉 (𝑥) → +∞ as |𝑥| → ∞. In particular, we are interested in the anharmonic potential 𝑉 (𝑥) = |𝑥| 𝑠 with 𝑠 > 0. The operator 𝐻 𝛼 has a sequence of eigenvalues 𝜆 2 𝑛 with 0 < 𝜆 0 ≤ 𝜆 1 ≤ ⋯ ≤ 𝜆 𝑛 → ∞ and the corresponding eigenfunctions (𝑒 𝑛 ) 𝑛≥0 form an orthonormal basis of 𝐿 2 (ℝ 𝑑 ). We emphasis that we do not assume the radial condition here. Let us start with the following result. In particular, we have Then by using (B.3) and a similar argument as in [START_REF] Dolbeault | Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems[END_REF], we get Proof. The following proof is similar to that of [START_REF] Dinh | Invariant Gibbs measures for 1D NLS in a trap[END_REF]. It suffices to show 

𝐺(𝑡, 𝑥) = 𝑡

∫ ℝ 𝑑 𝐻 -

G4

provided 𝑝 -2𝜎𝑝 > 𝑑 2𝛼 + 𝑑 𝑠 . We turn to the second factor in (B.7). Since 𝐻 𝛼 ≥ (-Δ) 𝛼 + 𝜆 0 with 𝜆 0 > 0 being the lowest eigenvalue of 𝐻 𝛼 , we obtain that  ≥ 𝐶(1 + (-Δ) 𝛼 ) for some 𝐶 > 0. We also note the operator monotonicity of 𝑥 ↦ 𝑥 2𝜎 for 𝜎 < 1 2 gives 𝐻 2𝜎 𝛼 ≳ (1 + (-Δ) 𝛼 ) 2𝜎 or 𝐻 -𝜎 𝛼 (1 + (-Δ) 𝛼 ) 2𝜎 𝐻 -𝜎 𝛼 ≲ 1. Therefore, we conclude that the operator  -𝜎 (1 + (-Δ) 𝛼 ) 2𝜎  -𝜎 is bounded for 0 < 𝜎 < .

LEM:asym Lemma 2 . 8 ( 2 𝑠

 282 Polynomial growth of eigenvalues). Let 𝑑 ≥ 1, 𝑠 > 0 and 𝑘 ∈ ℕ. Then, there exists 𝑐(𝑠) > 0 such that lim It comes from the fact that 𝑁 = 𝑁(, 𝜆 2 𝑁 ) ∼ 𝜆 1+ 𝑁 or 𝜆 𝑁 ∼ 𝑁 𝑠 2+𝑠 as 𝑁 → ∞. □ 3. VARIATIONAL FORMULATION variational

sec:BouDup1 3 . 1 .

 31 The Boué-Dupuis formula and its' use. Let 𝑊 (𝑡) denote a cylindrical Brownian motion in 𝐿 2 (ℝ 𝑑 ) defined by

  1)) = -𝛼𝑅 𝑝 (𝑌 𝑁 (1))𝟏 {|𝑀(𝑌 𝑁 (1))|≤𝐾} (3.7) eq:usevar or a close variant, where we set (see (1.9) for the definition of 𝐏 𝑁 ) 𝑌 𝑁 (1) = 𝐏 𝑁 𝑌 (1).

1 0

 1 | Ż(𝑠)| 2 𝑑𝑠 under control. For this purpose, we postulate an ansatz for the difference 𝑋(𝑡) = 𝑌 (𝑡) -𝑍(𝑡) = 𝜎𝑊 (𝑡) -𝑍(𝑡) being the Itô process 𝑑𝑋 = -𝐴𝑋𝑑𝑡 + 𝜎𝑑𝑊 , (𝑡-𝑠) 𝜎𝑑𝑊 (𝑠)with 𝐴 ≫ 1. Then 𝑋 is "small" in the sense that 𝑑𝑍 = -𝐴(𝑌 -𝑍)𝑑𝑡.

)

  

uni_crinon 4 . 2 .

 42 which implies that (𝑓 𝑁 ) is uniformly integrable. □ SEC:Non-normalizability. In this section, we prove the second part of Theorem 1.3, i.e. (ii)-(b) and (iii).

. 61 )def:trial 1 Definition 4 . 5 (

 61145 fmb1for 𝑁 ≥ 𝑀 ≫ 1. Our trial drift is now: Trial drift in the subharmonic case).

1 2From=

 1 4 and 𝑍 𝑀 (𝑡) as in Definition 3.3. We set 𝜃 𝜌 (𝑡) ∶= - 1 2 𝑑 𝑑𝑡 𝑍 𝑀 (𝑡) +  𝑊 𝜌 , (5.23) theta where 𝜌 ≪ 1 and 𝜆 𝑀 ∼ 𝜌 -1 . 𝑊 𝜌 -𝑍 𝑀 (1).

1 0 2 𝑠 - 1 𝐏

 121 𝑒 -𝑐𝜆 -1 𝑛 𝜆 𝑀 (1-𝜏) 𝑑𝐵 𝑛 (𝜏) 𝑀 for any 𝑁 ≥ 𝑀 ≫ 1 and 𝑐 ≫ 1. Similarly, from (3.10), (5.28), (5.29), and Ito's isometry, we have 𝔼 [ 𝑀 (𝑌 𝑁 (𝜏)) -𝑍 𝑀 (𝜏) 27). This completes the proof of Lemma 5.5. □ Now we are ready to prove the rest of Theorem 1.3.

1 (𝑛≤

 1 Schatten-norm bounds for the resolvent).Let 𝑑 ≥ 1, 𝛼 > 0, 𝑠 > 0 and 𝛾 > 𝑑 2𝛼 . Then we haveTr[𝐻 -𝛾 𝛼 ] 𝐶 ∫ ℝ 𝑑 (𝑉 (𝑥)) 𝑑 2𝛼 -𝛾 𝑑𝑥. (B.1) LT In particular, if 𝑉 (𝑥) = |𝑥| 𝑠 , then Tr[𝐻 -𝛾 𝛼 ] < ∞ provided 𝛾 > 𝑑 2𝛼 + 𝑑 𝑠 . Proof. Let 𝐺(𝑡,𝑥) be the fundamental solution to the fractional heat equation 𝜕 𝑡 𝑢 + (-Δ) 𝛼 𝑢 = 0 such that the solution to the above equation with initial data 𝑢(0) = 𝑓 can be written as 𝑢(𝑡, 𝑥) = [𝑒 -𝑡(-Δ) 𝛼 𝑓 ](𝑥) ∶= [𝐺(𝑡, ⋅) * 𝑓 ](𝑥).

  ((-Δ) 𝛼 +𝑉 ) ] 𝑡 𝛾-1 𝑑𝑡 ≤ 𝐶 𝛼 1 Γ(𝛾) ∫ ∞ 0 ∫ ℝ 𝑑 𝑡 -𝑑 2𝛼 𝑒 𝑡𝑉 (𝑥) 𝑡 𝛾-1 𝑑𝑡 = 𝐶 𝛼 Γ(𝛾 -𝑑 2𝛼 ) Γ(𝛾) ∫ ℝ 𝑑 (𝑉 (𝑥)) 𝑑 2𝛼 -𝛾 𝑑𝑥. (B.4)Since 𝐻 𝛼 ≥ 𝜆 0 , we haveTr[𝐻 -𝛾 𝛼 ] ≤ 2 𝛾 Tr[(𝐻 𝛼 + 𝜆 0 ) -𝛾 ],where 𝜆 0 > 0 is the first eigenvalue of 𝐻 𝛼 . It follows thatTr[𝐻 -𝛾 𝛼 ] ≤ 𝐶 ∫ ℝ 𝑑 (|𝑥| 𝑠 + 𝜆 0 ) 𝑑 2𝛼 -𝛾 𝑑𝑥 < ∞ provided 𝛾 > 𝑑 2𝛼 + 𝑑 𝑠 .Thus we finish the proof. □ ROP:GreenLp Proposition B.2 (𝐿 𝑝 bounds for the resolvent's integral kernel). Let 𝑑 ≥ 1, 𝛼 > 𝑑 2 , 𝑠 > 0 and 𝑉 (𝑥) = |𝑥| 𝑠 . Then we have ‖𝐻 -1 𝛼 (𝑥, 𝑥)‖ 𝐿 𝑝 (ℝ 𝑑 ) =

(B. 7 )

 7 G3We shall estimate the three factors on the right-hand side of (B.7) one by one.For the first factor in (B.7), we have

Remark 1.2.

  

	(i) The 𝐿 𝑝 -bound for the diagonal of the Green function, as established in Lemma 2.3, allows us to
	define the defocusing measure for all 𝑝 > max	{	4 𝑠 , 2 }	and 𝑝 < 2𝑑 𝑑-2 if 𝑑 ≥ 3. However, when
	𝑝 ≥ 2𝑑 𝑑-2 , the potential energy 𝑅 𝑝 (𝑢) (see (1.4)) becomes infinite almost surely on the support of the Gaussian measure 𝜇, necessitating a renormalization. The question of constructing the
	defocusing Gibbs measure in this case remains an interesting open problem.

  2.55) with |𝑝| 2𝜃 in place of |𝑝| 2 and -2 instead of -1) to get the upper bound (2.49) when 𝑑 = 2. Finally, by the lower bound (2.40) and the upper bound (2.49), we show (2.39). This completes the proof of Theorem 2.4. □

	-rad-d-geq3	Remark 2.1 (Precise Weyl asymptotics when 𝑑 ≥ 3).	
		When 𝑑 ≥ 3, the above proof actually gives the asymptotic behavior
		lim ℏ→0	ℏTr[𝛾 ℏ ] =	1 2𝜋 ∬	𝑚 0 (𝑥, 𝑝)𝑑𝑥𝑑𝑝,	(2.58)

preci-limi-t where 𝑚 0 (𝑥, 𝑝) = 𝟏 {|𝑝| 2 +|𝑥| 𝑠 -1≤0} .

  .61) 

	traceN
	Proof. When 𝑝 > 1 2 + 1 𝑠 , (2.61) follows from Lemma 2.2 and (2.8). In the following, we assume that 𝑝 ≤ 1 2 + 1

𝑠 . We first decompose the interval [𝜆 0 , 𝜆 𝑁 ] dyadically and then apply the Weyl bound (2.59) to get

  proof as[START_REF] Tolomeo | Phase transition for invariant measures of the focusing schrödinger equation[END_REF] Proposition A.2]. Therefore, we only need to show equality when (3.6) = -∞ instead. Let 𝑀 > 0. By monotone convergence, there exists 𝜃 𝑀 ∈ ℍ 𝑎 and 𝐿 > 0 such that

	Proof. The fact that (3.5) holds when				
			inf 𝜃∈ℍ 𝑎	𝔼	[ 𝐹	(	𝑌 (1) + 𝐼(𝜃)(1)	)	+	1 2 ∫	0	1	‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡	]	> -∞	(3.6)
	𝔼	[	max	(	𝐹	(	𝑌 (1) + 𝐼(𝜃 𝑀 )(1)				
													1 2𝜋𝑡 𝑒 -|𝑧| 2 2𝑡 .

varRHS

follows with same

  We only consider the case 𝑞 ≥ 𝑝 since the one where 1 ≤ 𝑞 < 𝑝 follows from Hölder's inequality.

	𝑁	2 +𝛿-1 𝑠	)	𝑞	.
	Proof. (i)				

By the Minkowski with 𝑞 ≥ 𝑝 and the Khintchine inequality (see e.g., [11, Lemma 4.2]) and Lemma 2.3, we have 𝔼 [ ‖𝑌 𝑁 (1)‖ 𝑞 𝐿 𝑝 (ℝ 𝑑 )

  𝑝 𝜆

	-3 2 + 1

𝑠 𝑁 . Proof. By the Hölder inequality, it suffices to consider the case 𝑝 ≥ 2. Using the Wiener chaos estimate for 𝑝 ≥ 2 (see e.g., [57, Theorem I.22] or [59, Proposition 2.4]), we have

  Since the random variable {𝐵 𝑛 (1)} are normalized and independent, we have𝔼[(|𝐵 𝑛 (1)| 2 -2) 2 ] = 𝔼[|𝐵 𝑛 (1)| 4 ] -4[|𝐵 𝑛 (1)| 2 ] + 4 = 4

	and
	𝔼[(|𝐵 𝑛 1 (1)| 2 -2)(|𝐵 𝑛 2 (1)| 2 -2)] = 0
	for all 𝑛 1 ≠ 𝑛 2 . Therefore, using Corollary 2.6, we have

.14) 

wickY

exp int Lemma 4.1 (Exponential Integrability).

  In this subsection, we show the integrability part of Theorem 1.3. The conclusion will be obtained in Section 4.1.3 below from the main estimate we now state, in the form of a bound on  𝐾,𝑁 :

	the bound (4.2) follows once we have
			sup 𝑁	𝔼 𝜇	[	exp	( 𝛼𝑅 𝑝 (𝑢 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾}	) ]	< ∞.	(4.4)	var3
	To prove (4.4), we apply the Boué-Dupuis variational formula Lemma 3.1 with 𝐹 (𝑌 (1)) as in (3.7) and
	use the fact that								
										Law(𝑌 𝑁 (1)) = (𝐏 𝑁 ) * 𝜇
	to get								
	-log 𝔼 𝜇	[	exp	(	𝛼𝑅 𝑝 (𝑢 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 | 2 ∶𝑑𝑥|≤𝐾}	)]
	= inf 𝜃∈ℍ 𝑎	𝔼 [	-𝛼𝑅 𝑝	( 𝑌 𝑁 (1) + 𝐏 𝑁 𝐼(𝜃)(1)	)	⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑌 𝑁 (1)+𝐏 𝑁 𝐼(𝜃)(1)| 2 ∶𝑑𝑥|≤𝐾}	(4.5)
						+		1 2 ∫	0	1	‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑑𝑡	] .
										4 𝑠	< 𝑝 < 2 +	4𝑠 (𝑑 -1)𝑠 + 2	,
	Let 𝑠 < 2 and assume								
	either (i) or (ii) 𝑝 = 2 + 4 𝑠 < 𝑝 < 2 + (𝑑 -1)𝑠 + 2 4𝑠 (𝑑 -1)𝑠 + 2 in the weakly nonlinear regime. ; 4𝑠	(4.1)	condition1
	Then								
				sup 𝑁	𝔼 𝜇	[	exp(𝛼𝑅 𝑝 (𝑢 𝑁 )) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾}	]	< ∞,	(4.2)
										𝑅 𝑝 (𝑢 𝑁 ) ∶=	1 𝑝 ∫ ℝ 𝑑	|𝑢 𝑁 (𝑥)| 𝑝 𝑑𝑥.	(4.3)
										2 ∶𝑑𝑥|≤𝐾}	) ]	,

SEC:nor 4.1. Normalizability. lem:var1d where 𝑢 𝑁 = 𝐏 𝑁 𝑢 and 𝑅 𝑝 (𝑢 𝑁 ) is the potential energy denoted by RpN Observing that

𝔼 𝜇 [ exp(𝛼𝑅 𝑝 (𝑢 𝑁 )) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} ] ≤ 𝔼 𝜇 [ exp ( 𝛼𝑅 𝑝 (𝑢 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| var4

Here, 𝔼 𝜇 and 𝔼 denote expectations with respect to the Gaussian field 𝜇 and the underlying probability measure ℙ respectively. In what follows, we will denote

𝑌 𝑁 = 𝑌 𝑁 (1) = 𝐏 𝑁 𝑌 (1), Θ 𝑁 = 𝐏 𝑁 𝐼(𝜃)(1)

(4.6)

nots for simplicity. In the rest of this subsection, we show that the right hand side of (4.5) has a finite lower bound under (4.1), separating cases (i) and (ii).

4.1.1. Subcritical cases. We first consider the easier subcritical case

  𝑛 = 𝑎 𝑛 𝑌 𝑁,𝑛 + 𝑤 𝑛 ,(4.26) 

					Tdecom-d
	where				
	𝑎 𝑛 ∶=	{	0 Re(Θ 𝑁,𝑛 𝑌 𝑁,𝑛 ) |𝑌 𝑁,𝑛 | 2	otherwise if 𝑛 ≤ 𝑁	and 𝑤

𝑛 = Θ 𝑁,𝑛 -𝑎 𝑛 𝑌 𝑁,𝑛 .

  .27)We fix 𝑛 0 < 𝑁 to be chosen later. Then, by the orthogonal decomposition (4.26), we see that 𝑎 2 𝑛 |𝑌 𝑁,𝑛 | 2 ≤ |Θ 𝑁,𝑛 | 2 , and thus

									CN3-d
				𝑁			
	∫ ℝ 𝑑	Re(𝑌 𝑁 Θ 𝑁 )𝑑𝑥 =	𝑛=0 ∑	𝑎 𝑛 |𝑌 𝑁,𝑛 | 2 .	(4.28)	CN4-d
	By collecting (4.25), (4.27) and (4.28), we have					
		𝑁					𝑁	
		∑ 𝑛=0	𝑎 2 𝑛 |𝑌 𝑁,𝑛 | 2 ≲	| | | |	∑ 𝑛=0	𝑎 𝑛 |𝑌 𝑁,𝑛 | 2 | | | |	.	(4.29)	CN5-d

  .36) 

	B1-d
	By the Wiener chaos estimate (see e.g., [57, Theorem I.22] or [59, Proposition 2.4]), we have

  [START_REF] Lebowitz | Statistical mechanics of the nonlinear Schrödinger equation[END_REF] 

	B1e-d

for any finite 𝑞 ≥ 2. The same bound holds for 1 ≤ 𝑞 < 2 by Hölder's inequality. From (4.33), (4.34), (4.35), (4.36) and (4.37), we have

  .43) 

					sizeM-d
	Recall that in the critical case 𝑝 = 2 + 4𝑠 (𝑑-1)𝑠+2 and thus		
		4 -(𝑑 -2)(𝑝 -2) 4 -𝑑(𝑝 -2)	=	2 + 𝑠 2 -𝑠	,
	which together with (4.43) gives		
	( 𝜆	-3+ 2 𝑠 𝑛 0		

  In this subsection, we complete the proof of Theorem 1.3 (i) and (ii)-(a), i.e. the convergence (1.19) provided(4.18). Before proceeding with the proof, we recall a useful lemma.A set of functions {𝑓 𝑛 } 𝑛≥1 ⊂ 𝐿 1 (𝜇) is called uniformly integrable if Proof of Theorem 1.3 (i) and (ii)-(a). According to Lemma 4.2, we need to show that the density 𝑓 𝑁 = 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑒 The 𝜇-measure convergence of 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 (𝑥)| 2 ∶𝑑𝑥|≤𝐾} follows from a similar argument as in [54, Lemma 2.7]. It remains to show that 𝑓 𝑁 given in (4.48) is uniformly integrable. To see this, we distinguish two cases. For the subcritical case, i.e.

					𝛼 𝑝 ‖𝑢 𝑁 ‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 )	(4.48)	density
		is convergent in 𝜇-measure and is uniformly integrable.
		We first note that from Corollary 3.4 we have
		lim 𝑁	𝑒	𝛼 𝑝 ‖𝑢 𝑁 ‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) = 𝑒	𝛼 𝑝 ‖𝑢‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 )
		in 𝜇-measure. 4 𝑠 < 𝑝 < 2 + 4𝑠 (𝑑-1)𝑠+2 , we have
		lim 𝑀→∞	sup 𝑛 ∫ {|𝑓 𝑛 |>𝑀}	|𝑓 𝑛 |𝑑𝜇 = 0.
		Then we have the following lemma		
	LEM:vitali	Lemma 4.2 (Vitali).		

SUB:nor 4.1.3. Normalizability. The sequence (𝑓 𝑛 ) converges in 𝐿 1 (𝜇) if and only if (𝑓 𝑛 ) converges in 𝜇-measure and (|𝑓 𝑛 |) is uniformly integrable. Now we are ready to prove Theorem 1.3.

  .76)

	app5
	Hence, (4.67) follows from (4.75) and (4.76) with (4.72).
	Lastly, from (3.10), (4.70), (4.71), and Ito's isometry, we have

  As a consequence of Lemma 4.6, we have a control on the second term of (4.56). Now we vindicate our claim about the Wick-ordered 𝐿 2 mass of our trial state.

	LEM:bddrift	Lemma 4.7 (Entropy of a the test drift).		
		Let 𝜃 0 be as in (4.62), then we have							
				∫	0	1	𝔼	[ ‖𝜃 0 (𝑡)‖ 2 𝐿 2 (ℝ 𝑑 )	] 𝑑𝑡 ≲ 𝜆 𝑀 , 2 𝑠 +1
		uniformly in 𝑁 ≥ 𝑁 0 (𝑀) ≫ 𝑀 ≥ 1.						
		Proof. From (4.68) and (4.62), it suffices to show that
							𝛼 𝑀,𝑁 ‖𝑓 𝜆 𝑀 ‖ 2  1 (ℝ 𝑑 ) ≲ 𝜆 𝑀 . 2 𝑠 +1
		However, from (4.58) and (4.65), we have			
										𝛼 𝑀,𝑁 ∼ 𝜆 𝑀 2 𝑠 -1	(4.77)	logM
		provided 𝑁 ≫ 𝑀 and 𝑁 is sufficiently large. The conclusion follows from (4.59) and (4.77) provided
		𝑁 ≫ 𝑀.										□
		In what follows, we abuse notation by denoting
				Θ 0 𝑁 = 𝐏 𝑁 Θ 0 = -𝑍 𝑀 +	√	𝛼 𝑀,𝑁 (𝐏 𝑁 𝑓 𝜆 𝑀 )	(4.78)
	LEM:key	Lemma 4.8 (Mass of the test drift).						
		For any 𝐾 > 0, there exists 𝑀 0 = 𝑀 0 (𝐾) ≥ 1 such that
		ℙ (	| | | ∫ ℝ 𝑑	∶|𝑌 𝑁 (𝑥)| 2 ∶𝑑𝑥 + ∫ ℝ 𝑑	2 Re(𝑌 𝑁 Θ 0 𝑁 ) + |Θ 0 𝑁 | 2 𝑑𝑥 | | |	≤ 𝐾	)	≥	1 2	,	(4.79)	pa5
		uniformly in 𝑁 ≥ 𝑁 0 (𝑀) ≫ 𝑀 ≥ 𝑀 0 .				
		Proof. First, from (4.58), we note that the condition 𝑁 ≥ 𝑁 0 (𝑀) ≫ 𝑀 guarantees that
								∫ ℝ 𝑑	|𝐏 𝑁 𝑓 𝜆 𝑀 | 2 𝑑𝑥 ≳ 1,	(4.80)	N_0(M)
		which further implies that 𝛼 𝑀,𝑁 ∼ 𝜆	2 𝑠 -1 𝑀 . From (4.63), we have
											2
											𝑠 𝑀 ,
		yielding (4.68). This completes the proof of Lemma 4.6.	□

YY0a

for 𝑁 ≥ 𝑀 ≥ 1.

  .81) 𝑑 ∶|𝑌 𝑁 (𝑥)| 2 ∶𝑑𝑥 -2 ∫ ℝ 𝑑 Re(𝑌 𝑁 𝑍 𝑀 )𝑑𝑥 + ∫ ℝ 𝑑 |𝑍 𝑀 | 2 𝑑𝑥 + 𝛼 𝑀,𝑁 ∫ ℝ 𝑑 |𝐏 𝑁 𝑓 𝜆 𝑀 | 2 𝑑𝑥 = ∫ ℝ 𝑑 |𝑌 𝑁 -𝑍 𝑀 | 2 -𝔼 [ |𝑌 𝑁 -𝑍 𝑀 | 2 ] 𝑑𝑥 = ∶‖𝑌 𝑁 -𝑍 𝑀 ‖ 2 𝐿 2 (ℝ 𝑑 ) ∶.

	On the other hand, from (4.61) and (4.69), we have					
	∫ ℝ (4.83)	Pr2
	Hence, from (4.81), (4.82), and (4.83) with (4.66) in Lemma 4.6, we obtain		
										Pr1
	From (4.77) and (4.67) in Lemma 4.6, we have					
	𝔼	[ | | |	√	𝛼 𝑀,𝑁 ∫ ℝ 𝑑	(𝑌 𝑁 -𝑍 𝑀 )𝑓 𝜆 𝑀 𝑑𝑥 | | |	2	]	≲ 𝜆 𝑀 . 2 𝑠 -3	(4.82)	Pr4

  Given 𝐾 > 0, let 𝑀 and 𝑁 as in Lemma 4.8. Recall the choice Θ 0 = -𝑍 𝑀 + √ 𝛼 𝑀,𝑁 𝑓 𝜆 𝑀 from Definition 4.5. Then

			2	
			𝑠 𝐾 2 < 𝑀	1 2	(4.84)	M_0(K)
		for any 𝑀 ≥ 𝑀 0 (𝐾) and 𝑠 ∈ (1, 2). This proves (4.79).		□
		4.2.2. Divergence of the partition function. We are now ready to prove:	
	est subharm	Lemma 4.9 (The test drift leads to divergences).	
		[		
		𝔼	-𝛼𝑅 𝑝 (𝑌 𝑁	

  Remark 4.1. Here 𝑀 ≤ 𝑁 are chosen such that Lemma 4.7 and Lemma 4.8 hold. In particular, given 𝐾 > 0, there exists 𝑀 0 (𝐾) ≫ 1 such that (4.84) holds for all 𝑀 ≥ 𝑀 0 (𝐾). With 𝑀 ≥ 𝑀 0 (𝐾) chosen, there exists 𝑁 0 (𝑀) ≥ 𝑀 such that (4.80) (or equivalently (4.77)) holds for all 𝑁 ≥ 𝑁 0 (𝑀). 𝑁 𝑓 𝜆 𝑀 ) + 𝐶 𝜀 𝑅 𝑝 (𝑌 𝑁 -𝑍 𝑀 ).

	Proof. Using the mean value theorem and Young's inequality, we have for any 𝜀 > 0,
	| | |	𝑅 𝑝 (𝑌 𝑁 + Θ 0 ) -𝑅 𝑝 ( √	𝛼 𝑀,𝑁 𝑓 𝜆 𝑀 )	| | |
		≤ 𝐶 ∫ ℝ 𝑑 ≤ 𝜀𝑅 𝑝 ( √ |𝑌 𝑁 -𝑍 𝑀 | 𝛼 𝑀,(4.85) ( |𝑌 𝑁 -𝑍 𝑀 | + | √ 𝛼 𝑀,𝑁 𝑓 𝜆 𝑀 | ) 𝑝-1 𝑑𝑥

paa Moreover, we have

2

  𝐿 2 (ℝ 𝑑 ) 𝑀 𝛼 𝑀,𝑁 + 𝐶 3 for some constants 𝐶 1 , 𝐶 2 , 𝐶 3 > 0, provided 𝑁 ≥ 𝑁 0 (𝑀) ≫ 𝑀 ≥ 𝑀 0 (𝐾). Therefore, when 𝑝 >

							] 𝑑𝑡
	then from Lemma 4.8, (4.86), and Lemma 4.7, we may continue with
	≤ -𝐶 𝑝 1 𝛼𝜆 𝑀 (𝛼 𝑀,𝑁 ) 𝑑𝑝 2 -𝑑	𝑝 2 + 𝐶 2 2 𝜆 2
	2 + 4𝑠 (𝑑-1)𝑠+2 , it follows that					
	lim inf 𝑁→∞	𝔼 𝜇	[	exp	( 𝑅 𝑝 (𝑢 𝑁 ) ⋅ 𝟏 {| ∫ ℝ 𝑑 ∶|𝑢 𝑁 | 2 ∶𝑑𝑥|≤𝐾}	)]
			≥ exp	( 𝐶 𝑝 1 𝛼𝜆 𝑀 (𝜆 𝑑𝑝 2 -𝑑	2 𝑠 -1 𝑀 )	𝑝 2 -𝐶 2 2 𝜆 2 𝑀 𝜆	2 𝑠 -1 𝑀 -𝐶 3

  . □ 4.2.3. Intermediate cases. This subsection considers the proof of Theorem 1.3 (ii) -(b). From the previous subsection, we have (4.53). Recall the decomposition (1.12)𝑑𝜇(𝑢) = 𝑑𝜇 𝑁 (𝑢 𝑁 ) ⊗ 𝑑𝜇 ⟂ 𝑁 (𝑢 ⟂ 𝑁 ),where 𝑢 𝑁 = 𝐏 𝑁 𝑢 and 𝑢 ⟂ 𝑁 = 𝑢 -𝐏 𝑁 𝑢. Moreover, by(3.4), we have that Law(𝑌 𝑁[START_REF] Poiret | Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator[END_REF], 𝑌 (1) -𝑌 𝑁 (1)) = 𝜇 𝑁 ⊗ 𝜇 ⟂ 𝑁 .

	Define the set

  Before we prove Lemma 4.10, we prepare a technical lemma.

		⟂ 𝑁 (Ω ⟂ + ), 𝜇 ⟂ 𝑁 (Ω ⟂ -)) ≥ 𝜀 0	(4.89)
	LEM:tech	Lemma 4.11. Let 𝑌 ≥ 0 be a random variable such that 0 < 𝑐(𝔼[𝑌 2 ])	1 2 ≤ 𝔼[𝑌 ] < ∞ for some positive
		constant 𝑐. Then, we have	

sameK_1

for every 𝑁 ≫ 1 large enough.

  .93) 𝑏| 𝑝 ≥ (1 -𝜀)|𝑎| 𝑝 -𝐶 𝜀 |𝑏| 𝑝 for some constant 𝐶 𝜀 > 0, we obtain that

	Therefore, by (4.88), (4.94), Lemma 4.10, and (4.53) with 𝑟 = 1, we obtain				
											Ypm2
	Then (4.89) follows from (4.93) and Lemma 4.11 by taking 𝜀 0 = 1 32𝐶 .			□	
	From the elementary inequality										
	|𝑎 + exp ( 𝛼 𝑝 ∫ ℝ 𝑑 |𝑢| 𝑝 𝑑𝑥 ) ≥ exp	(	-	𝐶 𝜀 𝑝 ∫ ℝ 𝑑	|𝑢 ⟂ 𝑁 | 𝑝 𝑑𝑥 )	exp	( 𝛼 -𝜀 𝑝 ∫ ℝ 𝑑	|𝑢 𝑁 | 𝑝 𝑑𝑥 )	.	(4.94)	elementary

  𝑥)| 2 ∶𝑑𝑥|≤𝐾} 𝑑𝜇 𝑁 (𝑢 𝑁 ),

	provided 𝑁 ≫ 1, which together with (4.19) (or (4.53)) implies that

  5.1. Normalizability. In this subsection, we provide the proof of the integrability part of Theorem 1.4. Namely, we prove:

	Lemma 5.2 (Integrability for superharmonic potentials).
	Let 𝑠 > 2. Assume either one of the following conditions:
			(i) subcritical nonlinearity: 2 < 𝑝 < 2 + (ii) critical nonlinearity: 𝑝 = 2 + 𝑑 and 𝐾 < ‖𝑄‖ 2 4 and 𝐾 > 0; 𝑑 𝐿 2 (ℝ 𝑑 ) . 4	(5.3)	cond_int
	Then								
			 𝐾 = 𝔼 𝜇	[	exp(𝛼𝑅 𝑝 (𝑢)) ⋅ 𝟏 {‖𝑢‖ 2 𝐿 2 (ℝ 𝑑 )	≤𝐾}	]	< ∞,	(5.4)
	Proof. Step 1. Preliminaries. Observing that			
	𝔼 𝜇	[	exp(𝛼𝑅 𝑝 (𝑢)) ⋅ 𝟏 {‖𝑢‖ 2 𝐿 2 (ℝ 𝑑 )	≤𝐾}	]	≤ 𝔼 𝜇	[	exp	( 𝛼𝑅 𝑝 (𝑢) ⋅ 𝟏 {‖𝑢‖ 2 𝐿 2 (ℝ 𝑑 )

var1

where 𝑅 𝑝 (𝑢) is given in

(1.4)

.

  One can observe that the equation (5.5) does not require any frequency truncation 𝐏 𝑁 unlike the subharmonic case (4.2). The main reason is that the 𝐿 2 mass does not involve the Wick renormalization. On the other hand, the equation (4.2) needs the frequency truncation 𝐏 𝑁 to deal with the Wick power ∶ |𝑢 𝑁 | 2 ∶ defined by(1.14) and(1.15).

	and get				
	-log 𝔼 𝜇	[	exp	(	𝛼𝑅 𝑝 (𝑢) ⋅ 𝟏 {‖𝑢‖ 2 𝐿 2 (ℝ 𝑑 )
	Using Law(𝑌 (1)) = 𝜇, we apply the Boué-Dupuis variational formula 7 , Lemma 3.1 to
		𝐹 (𝑌 (1)) = -𝛼𝑅 𝑝 (𝑌 (1)) ⋅ 𝟏 {‖𝑌 (1)‖ 2 𝐿 2 (ℝ 𝑑 )

.5) var3_1 ≤𝐾} 7 See [64, Theorem 3.2] for a version of the non-singular case, where the frequency cut-off is not needed. Also, see [60, Proposition A.1] or [42, Lemma 3.1] for similar results.

  𝐿 2 (ℝ 𝑑 ) = 0, almost surely. Therefore, given small 𝜀 > 0, for 𝜔 ∈ Ω almost sure, there exists a unique 𝑁 𝜀 ∶= 𝑁 𝜀 (𝜔)such that 𝑁 𝜀 = 1 for 𝜔 ∈ {𝜔 ∶ ‖𝐏 ⟂ 1 𝑌 (1)‖ 𝐿 2 (ℝ 𝑑 ) ≤ 𝜀}; otherwise 𝑁 𝜀 = inf { 𝑁 is dyadic ∶ 𝑁 ≥ 2 such that ‖𝐏 ⟂ 𝐿 2 (ℝ 𝑑 ) > 𝜀 and ‖𝐏 ⟂ 𝑁 𝑌 (1)‖ 𝐿 2 (ℝ 𝑑 ) ≤ 𝜀

	3. Critical case. Let now	
						𝑝 = 2 +	4 𝑑	.
	We shall prove (5.5) under the assumption 𝛼	𝑑 2 𝐾 < ‖𝑄‖ 2 𝐿 2 (ℝ 𝑑 ) .
	Since 𝑠 > 2, from (5.1), it follows that	
				lim 𝑁→∞	‖𝐏 ⟂ 𝑁 𝑌 (1)‖ 𝑁 𝑌 (1)‖ }	.	(5.8)	Neps
						2
	Similar argument as before combined with (4.11) and (5.8) yield that
	𝛼𝑅 𝑝	( 𝑌 (1) + 𝐼(𝜃)(1)	)	⋅ 𝟏 {‖𝑌 (1)+𝐼(𝜃)(1)‖ 2 𝐿 2 (ℝ)

  We construct a test drift giving a -∞ upper bound in the Boué-Dupuis variational principle, as sketched in Section 3.1. We use the following blow-up profiles:

		where 𝑄 is an optimizer of the GNS inequality. Then			
		 𝐾 = 𝔼 𝜇	[	exp(𝛼𝑅 𝑝 (𝑢))𝟏 {‖𝑢‖ 2 𝐿 2 (ℝ 𝑑 )	≤𝐾}	]	= ∞.	(5.18)
	EM:soliton2	Lemma 5.4 (Blow-up profiles).					
		Assume (5.17) holds. Let					
				𝑊 𝜌 = 𝛽𝜌 -𝑑 2 𝑄(𝜌 -1 𝑥).				(5.19)
		5.2. Non-normalizability. In this subsection, we prove the rest of Theorem 1.4, i.e. the non-integrability
		part of (ii) and (iii):					
	:blow super	Lemma 5.3 (Divergence of the partition function).			
		Let 𝑠 > 2 and assume either of the following conditions			
		(i) critical nonlinearity: 𝑝 = 2 + (ii) supercritical nonlinearity: 𝑝 > 2 + 4 𝑑 and 𝛼 𝑑 4	𝑑 2 𝐾 > ‖𝑄‖ 2 𝐿 2 (ℝ 𝑑 ) ; and any 𝛼, 𝐾 > 0.	(5.17)	conditions

part W

)

  ODE3for any 𝑀 ≫ 1, 𝑐 ≫ 1 and 𝑠 > 2. Similarly, we have ODE31 where we used Corollaries 2.6 and 2.7. This proves(5.25). Then, (5.26) follows from(5.25) and the Khintchine inequality (see e.g., [11, Lemma 4.2]). By the 𝐿 2 orthogonality of {𝑒 𝑛 } 𝑛∈ℕ , (5.30), (4.64) and proceeding as in (4.73), we have 𝔼 [ 2 Re ∫ ℝ 𝑑 𝑌 𝑁 𝑍 𝑀 𝑑𝑥 -∫ ℝ 𝑑 |𝑍 𝑀 | 2 𝑑𝑥

	𝔼	[ ‖𝑌 (1) -𝑍 𝑀 ‖ 2 𝐿 2 (ℝ 𝑑 )	]	=	∑	𝔼	[ |𝑋 𝑛 (𝑡)| 2 ]	+	∑	𝔼 [ | Ỹ (𝑛)| 2 ]
					𝑛≤𝑀					𝑛>𝑀
				∼	∑ 𝑛≤𝑀	𝜆 -2 𝑛 ∫	0	1	𝑒 -2𝑐𝜆 -1 𝑛 𝜆 𝑀 (1-𝜏) 𝑑𝜏 + 𝑂	(	∑ 𝑛>𝑀	𝜆 -2 𝑛	)	(5.32)
				∼ 𝑂	( 𝑐 -1	∑	𝜆 -1 𝑛 𝜆 -1 𝑀	)	+ 𝜆	2 𝑠 -1 𝑀
										𝑛≤𝑀
				∼ 𝜆	2 𝑠 -1 𝑀 ,			
								]	= 𝔼	[	2 Re	∑

𝑛≤𝑀 Ỹ𝑁 (𝑛) Z𝑀 (𝑛) -∑ 𝑛≤𝑀 | Z𝑀 (𝑛)| 2

  𝛼𝑅 𝑝 (𝑌 (1) -𝑍 𝑀 (1) + 𝑊 𝜌 ) ⋅ 𝟏 {‖𝑌 (1)-𝑍 𝑀 (1)+𝑊 𝜌 ‖ 2 the test drift(5.23) in the Boué-Dupuis variational principle. In what follows, we consider the terms in the right-hand side one by one.For the term (A), from Lemma 5.4, we haveA = -𝛼𝑅 𝑝 (𝑊 𝜌 ) + 1 2 ‖𝑊 𝜌 ‖ 2  1 (ℝ 𝑑 ) = 𝐻(𝑊 𝜌 ) ≲ -𝜌 -𝑑𝑝 2 +𝑑 , (5.35) term1where the Hamiltonian 𝐻 is given in (1.5).For the term (B), by using the mean value theorem we see that∫ℝ 𝑑 which together with Lemma 5.5, Lemma 5.4, and Young's inequality, gives B = 𝔼 [ ( 𝛼𝑅 𝑝 (𝑊 𝜌 ) -𝛼𝑅 𝑝 (𝑌 (1) -𝑍 𝑀 (1) + 𝑊 𝜌 ) ) ⋅ 𝟏 {‖𝑌 (1)-𝑍 𝑀 (1)+𝑊 𝜌 ‖ 2 Now we turn to the term (C), by using Chebyshev's inequality, we haveC = 𝔼 [ 𝛼𝑅 𝑝 (𝑊 𝜌 ) ⋅ 𝟏 {‖𝑌 (1)-𝑍 𝑀 (1)+𝑊 𝜌 ‖ 2 𝐿 2 (ℝ 𝑑 ) 𝑍 𝑀 (1)‖ 2 𝐿 2 (ℝ 𝑑 ) ] ( √ 𝐾 -‖𝑊 𝜌 ‖ 𝐿 2 (ℝ 𝑑 ) ) 2≲ 𝜂 -2 𝜌 -𝑑𝑝 2 +𝑑 𝜆 Finally, the desired estimate (5.33) follows from (5.34) and (5.39). We thus finish the proof of Theorem 1.4.□ 𝑚 ℏ (𝑥, 𝑝) ≤ 1, ∀𝑥, 𝑝 ∈ ℝ, are the density and momentum functions associated to 𝛾 ℏ . In addition, we have

	We have									).
	Observing that 𝔼 𝜇 then (5.18) follows from [ exp(𝛼𝑅 𝑝 (𝑢)) ⋅ 𝟏 {‖𝑢‖ 2 𝐿 2 (ℝ 𝑑 ) ≲ ∫ ℝ 𝑑 ( 𝔼 [ |𝑌 (1) -𝑍 𝑀 (1)| 𝑝 ] ≥𝐾} ] ≥ 𝔼 𝜇 + 𝔼 [ [ |𝑌 (1) -𝑍 𝑀 (1)| exp ( 𝛼𝑅 𝑝 (𝑢) ⋅ 𝟏 {‖𝑢‖ 2 𝐿 2 (ℝ 𝑑 ) ] 0 ≤ 1 2𝜋ℏ ∬ 𝑚 ℏ (𝑥, 𝑝)𝑑𝑥𝑑𝑝 = Tr[𝛾 ℏ ], |𝑊 𝜌 | 𝑝-1 ) ≤𝐾} 𝐿 2 (ℝ 𝑑 ) )] -1, ≤𝐾} 𝑑𝑥 ≤ 𝐶 𝜀 𝔼 [ ‖𝑌 (1) -𝑍 𝑀 (1)‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) ] + 𝜀‖𝑊 𝜌 ‖ 𝑝 𝐿 𝑝 (ℝ 𝑑 ) 1 2𝜋ℏ ∫ 𝑚 ℏ (𝑥, 𝑝)𝑑𝑝 = 𝜌 ℏ * |𝑓 ℏ | 2 (𝑥),	]	(5.36)
	𝔼 𝜇 𝑠 -1 2 𝑀 ) 𝑝 [ 2 2𝜋ℏ ∫ exp ( 𝛼𝑅 𝑝 (𝑢) ⋅ 𝟏 {‖𝑢‖ 2 𝐿 2 (ℝ 𝑑 ) + 𝜀𝜌 -𝑑𝑝 2 +𝑑 1 𝑚 ℏ (𝑥, 𝑝)𝑑𝑥 = 𝑡 ℏ * |𝑔 ℏ ≤𝐾} ) ] | 2 (𝑝), = ∞. 𝑛≥1 𝑛≥1 We apply Lemma 3.1, together with (5.23) and (5.24), to get ≤ 𝐶 𝜀 ( 𝜆 where ≤ 2𝜀𝜌 -𝑑𝑝 2 +𝑑 , 𝜌 ℏ (𝑥) = ∑ 𝜇 ℏ 𝑛 |𝑢 ℏ 𝑛 (𝑥)| 2 , 𝑡 ℏ (𝑝) = ∑ 𝜇 ℏ 𝑛 | ℏ [𝑢 ℏ 𝑛 ](𝑝)| 2	(5.33)	var10
	-log 𝔼 𝜇	[	exp ℏ ∫ ( 𝛼𝑅 𝑝 (𝑢) ⋅ 𝟏 {‖𝑢‖ 2 𝐿 2 (ℝ 𝑑 ) 𝜌 ℏ (𝑥)𝑑𝑥 = ℏ ∫	≤𝐾} 𝑡 ℏ (𝑝)𝑑𝑝 = ℏTr[𝛾 ℏ ] = ) ]	1 2𝜋 ∬	𝑚 ℏ (𝑥, 𝑝)𝑑𝑥𝑑𝑝.	(A.2)	momen-densi-
	= inf 𝜃∈ℍ 𝑎	𝔼 [	(	-𝛼𝑅 𝑝 (𝑌 (1) + 𝐼(𝜃)(1)) ⋅ 𝟏 {‖𝑌 (1)+𝐼(𝜃)(1)‖ 2 𝐿 2 (ℝ 𝑑 ) APPENDIX B. FRACTIONAL SCHRÖDINGER OPERATOR ≤𝐾} + 1 2 ∫ 1 0 ‖𝜃(𝑡)‖ 2 𝐿 2 (ℝ 𝑑 )	) ]	(5.37)
	≤ inf 0<𝜌≪1	𝔼	[ (	-𝐿 2 (ℝ 𝑑 )	≤𝐾}
	≤ inf 0<𝜌≪1	𝔼 [	+ ( -𝛼𝑅 𝑝 (𝑊 𝜌 ) + 1 2 ∫ 1 0 ‖ ‖ ‖ -𝑑 𝑑𝑡 1 𝑍 𝑀 (𝑡) + 𝑊 𝜌 2 𝑠 -1 𝑀 = 𝑜(1)𝜌 -𝑑𝑝 ‖ ‖ 2 2 +𝑑 . ) 𝑑𝑡  1 (ℝ 𝑑 ) ‖ 2 ‖𝑊 𝜌 ‖ 2  1 (ℝ 𝑑 ) D = 1 2 ∫ 1 0 𝔼 [ ‖ ‖ ‖ -𝑑 𝑑𝑡 𝑍 𝑀 (𝑡) ‖ ‖ ‖ 2  1 (ℝ 𝑑 ) ] ] 𝑑𝑡 ≤ 𝐶𝜆 𝑀 ≪ 𝜌 -2 2 𝑠 𝑠 ,	(5.34) (5.38)
										35), (5.36), (5.37) and (5.38), we
	conclude that									>𝐾}
	+		1 2 ∫	0	1	‖ ‖ ‖	-	𝑑 𝑑𝑡	𝑍 𝑀 (𝑡) A + B + C + D ≲ -𝜌 -𝑑𝑝 ‖ ‖ ‖ 2  1 (ℝ 𝑑 ) -2 ⟨ 𝑑 𝑑𝑡 𝑍 𝑀 (𝑡), 𝑊 𝜌 2 +𝑑 + 𝑐𝜌 -2  1 (ℝ 𝑑 ) ⟩ 𝑠 → -∞, 𝑑𝑡 ]	(5.39)
	= inf 0<𝜌≪1 (A + B + C + D),

)

+

( 𝛼𝑅 𝑝 (𝑊 𝜌 ) -𝛼𝑅 𝑝 (𝑌 (1) -𝑍 𝑀
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+ 𝑊 𝜌 ) ) ⋅ 𝟏 {‖𝑌 (1)-𝑍 𝑀 (1)+𝑊 𝜌 ‖ 2 𝐿 2 (ℝ 𝑑 ) ≤𝐾} + 𝛼𝑅 𝑝 (𝑊 𝜌 ) ⋅ 𝟏 {‖𝑌 (1)-𝑍 𝑀 (1)+𝑊 𝜌 ‖ 2 𝐿 2 (ℝ 𝑑 ) var13

by inserting

( |𝑊 𝜌 | 𝑝 -|𝑌 (1) -𝑍 𝑀 (1) + 𝑊 𝜌 | 𝑝 ) 𝑑𝑥 ≲ ∫ ℝ 𝑑 ( |𝑌 (1) -𝑍 𝑀 (1)| 𝑝 + |𝑌 (1) -𝑍 𝑀 (1)||𝑊 𝜌 | 𝑝-1 ) 𝑑𝑥, term3 provided 𝑀 ≫ 1. >𝐾} ] ≤ 𝛼𝑅 𝑝 (𝑊 𝜌 ) ⋅ 𝔼 [ 𝟏 {‖𝑌 (1)-𝑍 𝑀 (1)‖ 𝐿 2 (ℝ 𝑑 ) > √ 𝐾-‖𝑊 𝜌 ‖ 𝐿 2 (ℝ 𝑑 ) } ] ≤ 𝛼𝑅 𝑝 (𝑊 𝜌 ) 𝔼[‖𝑌 (1) -term4

where in the last step we use the fact 𝜆 𝑀 → ∞ as 𝑀 → ∞ and 𝑠 > 2. For term (D), from (5.27), we have term5 where we used the fact that 𝜆 𝑀 ≪ 𝜌 -1 . By collecting estimates (5.

abcd provided 𝑐 ≪ 1, 𝑝 ≥ 6 and 𝑠 > 2.

  Green1By Trotter's formula, we haveTr[𝑒 -𝑡((-Δ) 𝛼 +𝑉 ) ] = lim 𝑘=0 𝑉 (𝑥 𝑘 ) 𝑑𝑥 0 𝑑𝑥 1 ⋯ 𝑑𝑥 𝑛-1 𝑒 -𝑡𝑉 (𝑥 𝑘 ) 𝑑𝑥 0 𝑑𝑥 1 ⋯ 𝑑𝑥 𝑛-1 𝑑 𝐺(𝑡, 𝑥 𝑘 -𝑥 𝑘 )𝑒 -𝑡𝑉 (𝑥 𝑘 ) 𝑑𝑥 𝑘 = 𝐺(𝑡, 0) ∫ ℝ 𝑑 𝑒 -𝑡𝑉 (𝑥) 𝑑𝑥 = 𝐶 𝛼 𝑡 -𝑑

	𝑛	Tr[(𝑒 -𝑡 𝑛 (-Δ) 𝛼	𝑒 -𝑡 𝑛 𝑉 ) 𝑛 ]
	= lim 𝑛 ∫ (ℝ 𝑑 ) 𝑛	𝐺	( 𝑡 𝑛	, 𝑥 -𝑥 1	)	𝑒 -𝑡 𝑛 𝑉 (𝑥 1 ) 𝐺	( 𝑡 𝑛	, 𝑥 1 -𝑥 2	)	𝑒 -𝑡 𝑛 𝑉 (𝑥 2 )
				⋯ 𝐺	( 𝑡 𝑛	, 𝑥 𝑛-1 -𝑥 )	𝑒 -𝑡 𝑛 𝑉 (𝑥) 𝑑𝑥𝑑𝑥 1 ⋯ 𝑑𝑥 𝑛-1
	= lim 𝑛 ∫ (ℝ 𝑑 ) 𝑛	𝑛-1 ∏ 𝑗=0	𝐺	( 𝑡 𝑛	, 𝑥 𝑗 -𝑥 𝑗+1	)	𝑛 𝑒 -𝑡	∑ 𝑛-1
	≤ lim 𝑛	1 𝑛	𝑛-1 ∑ 𝑘=0	∫ (ℝ 𝑑 ) 𝑛	𝑛-1 ∏ 𝑗=0	𝐺	( 𝑡 𝑛	, 𝑥 𝑗 -𝑥 𝑗+1	)	(B.3)
	= lim 𝑛	𝑛-1 ∑ 𝑘=0 ∫ ℝ 2𝛼 1 𝑛 ∫ ℝ 𝑑 𝑒 -𝑡𝑉 (𝑥) 𝑑𝑥,
											-𝑑 2𝛼 𝐺(1, 𝑡 -1 2𝛼 𝑥).	(B.2)

Green2

where in the last step we used (B.2) and

𝐶 𝛼 = 𝑐 𝑑 ∫ ℝ 𝑑 𝑒 -|𝜉| 2𝛼 𝑑𝜉.

  1 𝛼 (𝑥, 𝑥)𝑔 2 (𝑥)𝑑𝑥 ≲ ‖𝑔 2 ‖ 𝐿 𝑞 (ℝ 𝑑 ) , (B.5) 𝑞 = 1, for all 𝑔 ≥ 0 and 𝑔 2 ∈ 𝐿 𝑞 (ℝ 𝑑 ). With a slight abuse of notation, we still use 𝑔 to denote the multiplication operator of 𝑔(𝑥). Then we can rewrite ∫ ℝ 𝑑 𝐻 -1 𝛼 (𝑥, 𝑥)𝑔 2 (𝑥)𝑑𝑥 = Tr[𝑔𝐻 -1 𝑝 is the 𝑝-Schatten space. Then we apply the Hölder inequality in Schatten spaces to continue with

								G1
	where 1 𝑝 + 1						
						𝛼 𝑔] =	‖ ‖ ‖ 𝐻	-1 2 𝛼 𝑃 𝑁 𝑔	‖ ‖ ‖ 2 𝔖 2 ,	(B.6)
	‖ ‖ ‖ 𝐻	-1 2 𝛼 𝑔	‖ ‖ ‖ 2 𝔖 2 = ≤	‖ ‖ ‖ 𝐻 ‖ ‖ ‖ 𝐻	𝜎-1 2 𝛼 𝜎-1 2 𝛼	𝐻 -𝜎 𝛼 (1 + (-Δ) 𝛼 ) 𝜎 (1 + (-Δ) 𝛼 ) -𝜎 𝑔 𝑃 𝑁 ‖ ‖ ‖ 2 𝔖 2𝑝 ‖ ‖ ‖ 𝐻 -𝜎 𝛼 (1 + (-Δ) 𝛼 ) 𝜎 ‖ ‖ ‖ 2 𝔖 ∞ ‖ ‖ ‖ (1 + (-Δ) 𝛼 ) -𝜎 𝑔 2 ‖ ‖ 𝔖 2 ‖	2 ‖ ‖ ‖ 𝔖 2𝑞

G2

where 𝔖

  1 2 , i.e. 𝑑 ) ‖𝑔‖ 2 𝐿 2𝑞 (ℝ 𝑑 ) ≲ ‖𝑔 2 ‖ 𝐿 𝑞 (ℝ 𝑑 ) , (B.10) so that all the conditions in (B.12) are satisfied. Thus we finish the proof. □ Proposition B.3 (Weyl's law for fractional Schrödinger operators). Let 𝑑 ≥ 1, 𝛼 > 0, and 𝑠 > 0. Then 𝑁(𝐻 𝛼 , Λ) ∼ Λ 𝐻 𝛼 , Λ) ∶= #{𝜆 2 𝑛 ∶ 𝜆 2 𝑛 ≤ Λ}. The proof of this result follows the same argument as in Subsection 2.2. The coherent state is now defined by 𝑑 ) satisfying ‖𝑓 ‖ 𝐿 2 (ℝ 𝑑 ) = 1. The semiclassical Fourier transform is 𝑝) ∶= 𝟏 {|𝑝| 2𝛼 +|𝑥| 𝑠 -1≤0} . (B.14) From the energy upper bound, we deduce the lower bound and the upper bound on the trace. As in Remark 2.1, we can prove that Since most of the estimates are similar to the radial case, we omit the details. Let 𝑑 ≥ 1, 𝛼 > 𝑑 2 , 𝑠 > 0 and 𝑉 (𝑥) = |𝑥| 𝑠 . Then, we have Tr[(𝐏 𝑁 𝐻 𝛼 ) -𝛾 ] =

	provided									
				⎧ ⎪ ⎪ ⎨	𝑝 -2𝜎𝑝 > 𝑑 2𝛼 + 𝑑 𝑠 1 𝑝 + 1 𝑞 = 1 2 𝜎 < 1	(B.12)	G8
				⎪	4𝛼𝜎𝑞 > 𝑑
				⎪ ⎩	1 ≤ 𝑞 < ∞.
	Since 𝛼 > 𝑑 2 , we choose 𝑝 > 2𝛼𝑑 𝑠(2𝛼-𝑑) and						
				𝑑 4𝛼𝑞	< 𝜎 <	1 2	-	1 2𝑝	(	𝑑 2𝛼	+	𝑠 𝑑	)
								𝑑 2𝛼 + 𝑑 𝑠	as Λ → ∞,	(B.13)	CLR-frac
	where									
	𝑁(𝑓 ℏ 𝑥,𝑝 (𝑦) ∶= ℏ -𝑑∕4 𝑓 ( 𝑦 -𝑥 √ ℏ ) 𝑒 𝑖 𝑝⋅𝑦 ℏ , 𝑓 ℏ (𝑦) = ℏ -𝑑∕4 𝑓	(	𝑦 √ ℏ	)	, 𝑔 ℏ (𝑞) ∶= ℏ -𝑑∕4	f (	ℏ 𝑞 √	)
	for some function 𝑓 ∈ 𝐶 ∞ 0 (ℝ  ℏ [𝑓 ](𝑞) ∶=	1 (2𝜋ℏ) 𝑑∕2 ∫	𝑒 -𝑖 𝑞⋅𝑦 ℏ 𝑓 (𝑦)𝑑𝑦.
	The upper energy upper bound is proved by using the trial state
	𝛾 test =	1 (2𝜋ℏ) 𝑑 ∬	𝑚 0 (𝑥, 𝑝)|𝑓 ℏ 𝑥,𝑝 ⟩⟨𝑓 ℏ 𝑥,𝑝 |𝑑𝑥𝑑𝑝
	with									
				𝑚 0 (𝑥, m1-frac
	lim ℏ→0	‖ ‖ ‖ 𝐻 -𝜎 𝛼 (1 + (-Δ) 𝛼 ) 𝜎 ‖ ‖ ‖ ℏ 𝑑 Tr[𝛾 ℏ ] = 1 (2𝜋) 𝑑 ∬ 𝑚 0 (𝑥, 𝑝)𝑑𝑥𝑑𝑝. 2 𝔖 ∞ ≲ 1.	(B.9)	G5
	For the third factor in (B.7), we apply the Kato-Seiler-Simon inequality to get
	‖ ‖ ‖ (1 + (-Δ) 𝛼 ) -𝜎 𝑔	‖ ‖ ‖ 2 𝔖 2𝑞 ≤ ‖⟨𝜉⟩ -2𝛼𝜎 𝑁 ∑ 𝑛=0 𝜆 -2𝛾 𝑛 ≲ ⎧ ‖ 2 𝐿 2𝑞 (ℝ G7 ⎪ ⎨ ⎪ ⎩ 1 if 𝛾 > 𝑑 2𝛼 + 𝑑 𝑠 , (log 𝜆 𝑁 ) 2 if 𝛾 = 𝑑 2𝛼 + 𝑑 𝑠 , 𝜆 -2𝛾+ 𝑑 𝛼 + 𝑑 2𝑠 𝑁 if 𝛾 < 𝑑 2𝛼 + 𝑑 𝑠 .

G6

provided 4𝛼𝜎𝑞 > 𝑑 and 1 ≤ 𝑞 < ∞.

Finally, by collecting (B.6), (B.7), (B.8), (B.9), and (B.10), we arrive at

∫ ℝ 𝑑 𝐻 -1 𝛼 (𝑥, 𝑥)𝑔 2 (𝑥)𝑑𝑥 < ∞ (B.

11) COR:LS Corollary B.4 (Behavior of truncated Schatten norms).

We mean that the potential |𝑢| 𝑝 is well-defined.

We use our liberty of choosing a real eigenbasis for .

The proof is similar to that of Corollary 2.6. We omit the details.

Now, we consider two cases. Case 1. We first assume

Then, together with (4.22) we have

CN1_2-d which will be sufficient for our purpose.

APPENDIX A. REMINDER ON COHERENT STATES AND HUSIMI FUNCTIONS

SEC:Weyl

Let 𝑓 ∈ 𝐶 ∞ 0 (ℝ) be an odd function satisfying ‖𝑓 ‖ 2 𝐿 2 (ℝ) = 1. For ℏ ∈ (0, 1] and 𝑥, 𝑝 ∈ ℝ, we define the coherent state

where

is the standard Fourier transform. We also define the semiclassical Fourier transform

We have the following observation (see e.g., [43,Chapter 12] or [27, Section 2.1]).

em:coherent

Lemma A.1 (Coherent state formalism).

• (Plancherel identity)

• (Resolution of identity)

reso-iden

We define the Husimi function associated to a non-negative trace-class operator 𝛾 ℏ as

Here are some of its' basic properties, see again (see e.g., [43,Chapter 12] or [27, Section 2.1]).

lem:Husimi

Lemma A.2 (Properties of Husimi functions).

Write the spectral decomposition of 𝛾 ℏ as