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Abstract. Cautious classifiers are designed to make indeterminate deci-
sions when the uncertainty on the input data or the model output is too
high, so as to reduce the risk of making wrong decisions. In this paper, we
propose two cautious decision-making procedures, by aggregating trees
providing probability intervals constructed via the imprecise Dirichlet
model. The trees are aggregated in the belief functions framework, by
maximizing the lower expected discounted utility, so as to achieve a good
compromise between model accuracy and determinacy. They can be re-
garded as generalizations of the two classical aggregation strategies for
tree ensembles, i.e., averaging and voting. The efficiency and performance
of the proposed procedures are tested on random forests and illustrated
on three UCI datasets.

Keywords: Cautious decision making · Belief functions · Lower ex-
pected utility · Ensemble learning.

1 Introduction

Tree ensembles like random forests are highly efficient and accurate machine-
learning models widely applied in various domains [5,17]. Tree outputs consist of
precise class probability estimates based on counts of training instances falling in
the leaf nodes. Decisions are classically made either by averaging the probabilities
or by majority voting. However, trees may lack robustness when confronted
with low-quality data, for instance for noisy samples, or samples located in low-
density regions of the input space. To overcome this issue, previous works have
proposed to use the imprecise Dirichlet model (IDM) so as to replace precise class
probability estimates with a convex set of probability distributions (in the form
of probability intervals) whose size depends on the number of training samples
[4,22].

The joint use of the IDM and decision trees is not new, it has been explored
in two directions. First, it has been used to improve the training of single trees
or tree ensembles. Credal decision trees (CDT) [3,12] and credal random forests
(CRF) [1] use the maximum entropy principle to select split features and values
from the probability intervals obtained via the IDM, thus improving robust-
ness to data noise. To enhance the generalization performance of tree ensembles
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trained on small datasets, data sampling and augmentation based on the IDM
probability intervals have been proposed to train deep forests [20] and weights
associated with each tree in the ensemble can be learned to further optimize their
combination [21]. Second, the probability intervals given by the IDM can also
be used to make cautious decisions, thereby reducing the risk of prediction error
[4,16]. A cautious decision is a set-valued decision, i.e., a cautious classifier may
return a set of classes instead of a single one when the uncertainty is too high.
An imprecise credal decision tree (ICDT) [2] is a single tree where set-valued
predictions are returned by applying the interval dominance principle [19] to the
probability intervals obtained via the IDM.

In tree ensembles, applying cautious decision-making strategies becomes more
complex. One approach consists in aggregating the probability intervals given by
the trees—for example by conjunction, disjunction, or averaging—before making
cautious decisions by computing a partial order between the classes, e.g., using
interval dominance [6,10]. Another approach consists in allowing each tree to
make a cautious decision first, before pooling them. The Minimum-Vote-Against
(MVA) is such an approach, where the classes with minimal opposition are re-
tained [13]. It should be noted that MVA generally results in precise predictions,
whereas disjunction and averaging often turn out to be inconclusive. Even worse,
using conjunction very frequently results in empty predictions due to conflict.

In [24,25], we have proposed a generalized voting aggregation strategy for bi-
nary cautious classification within the belief function framework. In the present
paper, we generalize these previous works in the multi-class case. After recalling
background material in Section 2, we propose in Section 3 two cautious decision-
making strategies in the belief function framework, which generalize averaging
and voting for imprecise tree ensembles. These strategies are axiomatically prin-
cipled: they amount to maximizing the lower expected discounted utility, rather
than the expected utility as done in the conventional case. Our approach can be
applied to any kind of classifier ensemble where classifier outputs are probability
intervals; however, it is particularly well-suited to tree ensembles. The experi-
ments reported in Section 4 show that a good compromise between accuracy and
determinacy can be achieved and that our algorithms remain tractable even in
the case of a high number of classes. Finally, a conclusion is drawn in Section 5.

2 Preliminaries

2.1 Imprecise Dirichlet Model and trees

Let H = {h1, . . . , hT } be a random forest with trees ht trained on a classification
problem of K ≥ 2 classes. Let ht(x) be the leaf in which a given test instance
x ∈ X falls for tree ht, and let ntj denote the number of training samples of
class cj in ht(x).

The IDM consists in using a family of Dirichlet priors for estimating the class
posterior probabilities P(cj |x, ht), resulting in interval estimates:

Itj =
[
p
tj
, ptj

]
=

[
ntj

Nt + s
,
ntj + s

Nt + s

]
, j = 1, . . . ,K, (1)
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where Nt =
∑K

j=1 ntj is the total number of instances in ht(x), and s can be
interpreted as the number of additional virtual samples with unknown actual
classes also falling in ht(x). In the case of trees, the IDM, therefore, provides a
natural local estimate of epistemic uncertainty, i.e., the uncertainty caused by
the lack of training data in leaves.

2.2 Belief Functions

The theory of belief functions [7,18] provides a general framework for modeling
and reasoning with uncertainty. Let the frame of discernmentΩ = {c1, c2, . . . , cK}
denote the finite set that contains all values for our class variable C of interest.

A mass function is a mapping m : 2Ω → [0, 1], such that
∑

A⊆Ω m(A) = 1.
Any subset A ⊆ Ω such that m(A) > 0 is called a focal element of m. The value
m(A) measures the degree of evidence supporting C ∈ A only; m(Ω) represents
the degree of total ignorance, i.e., the belief mass that could not be assigned to
any specific subset of classes. A mass function is Bayesian if focal elements are
singletons only, and quasi-Bayesian if they are only singletons and Ω.

The belief and plausibility functions can be computed from the mass function
m, which are respectively defined as

Bel(A) =
∑
B⊆A

m(B), P l(A) =
∑

B∩A̸=∅

m(B), (2)

for all A ⊆ Ω. In a nutshell, Bel(A) measures the total degree of support to A,
and Pl(A) the degree of belief not contradicting A. These two functions are dual
since Bel(A) = 1 − Pl(A), with A = Ω \ A. The mass, belief, and plausibility
functions are in one-to-one correspondence and can be retrieved from each other.

2.3 Decision Making with Belief Functions

A decision problem can be seen as choosing the most desirable action among
a set of alternatives F = {f1, . . . , fL}, according to a set of states of nature
Ω = {c1, . . . , cK} and a corresponding utility matrix U of dimensions L × K.
The value of uij ∈ R is the utility or payoff obtained if action fi, i = 1, . . . , L is
taken and state cj , j = 1, . . . ,K occurs.

Assume our knowledge of the class of the test instance is represented by a
mass function m: the expected utility criterion under probability setting may be
extended to the lower and upper expected utilities, respectively defined as the
weighted averages of the minimum and maximum utility within each focal set:

EU(m, fi, U) =
∑
B⊆Ω

m(B)min
cj∈B

uij , EU(m, fi, U) =
∑
B⊆Ω

m(B)max
cj∈B

uij . (3)

We obviously have EU(m, fi, U) ≤ EU(m, fi, U), the equality applies when m
is Bayesian. Note that actions fi are not restricted to choosing a single class.
Based on Eq. (3), we may choose the action with the highest lower expected
utility (pessimistic attitude), or with the highest upper expected utility (opti-
mistic attitude). More details on decision-making principles in the belief func-
tions framework can be found in [9].
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2.4 Evaluation of Cautious Classifiers

Unlike traditional classifiers, cautious classifiers may return indeterminate deci-
sions so that classical evaluation criteria are no longer applicable. We mention
here several evaluation criteria to evaluate the quality of such set-valued predic-
tions: the determinacy counts the proportion of samples that are determinately
classified; the single-set accuracy measures the proportion of correct determinate
decisions; the set accuracy measures the proportion of indeterminate predictions
containing the actual class; the set size gives the average size of indeterminate
predictions; finally, the discounted utility calculates the expected utility of pre-
dictions, discounted by the size of the predicted set as explained below.

Let A be a decision made for a test sample with actual class c. Zaffalon et
al. [23] proposed to evaluate this decision using a discounted utility function uα

which rewards cautiousness and reliability as follows:

uα(A, c) = dα(|A|)1(c ∈ A), (4)

where |A| is the cardinality of A and dα(.) is a discount ratio that adjusts
the reward for cautiousness, which is considered preferable to random guessing
whenever dα(|A|) > 1/|A|. The u65 and u80 scores are two notable special cases:

d65(|A|) = 1.6

|A|
− 0.6

|A|2
, d80(|A|) = 2.2

|A|
− 1.2

|A|2
. (5)

Theorem 1. Given the utility matrix U of general term uAj = uα(A, cj) with
cj ∈ Ω and A ⊆ Ω an imprecise decision, the lower expected utility EU(m,A,U)
is equal to dα(|A|)Bel(A).

Proof. Following Eq. (3), and taking any A ⊆ Ω as action, we have

EU(m,A,U) =
∑
B⊆Ω

m(B) min
cj∈B

[dα(|A|)1(cj ∈ A)]

= dα(|A|)
∑
B⊆Ω

m(B) min
cj∈B

1(cj ∈ A)

= dα(|A|)
∑
B⊆A

m(B) = dα(|A|)Bel(A).

Indeed, for any B ∩ A ̸= ∅ such that B ⊈ A, there obviously exists cj ∈ B such
that cj /∈ A: thus, mincj∈B 1(cj ∈ A) = 1 iff B ⊆ A.

3 Cautious Decision-Making for Tree Ensembles

Classical belief-theoretic combination approaches such as the conjunctive rule,
which assumes independence and is sensitive to conflict, are in general not well-
suited to combining tree outputs. This calls for specific aggregation strategies,
such as those proposed below.
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Algorithm 1: Cautious Decision Making by Averaging

Input: Tree outputs
{
(p

tj
, ptj), t = 1, . . . , T, j = 1, . . . ,K

}
, discount ratio dα

Output: Decision A
1 for j = 1, . . . ,K do

2 m({cj}) = 1/T ×
∑T

t=1 ptj

3 m(Ω) = 1−
∑K

j=1 m({cj})
4 Sort classes by decreasing mass: m({c(1)}) ≥ m({c(2)}) ≥ · · · ≥ m({c(K)})
5 A = ∅
6 bel = 0
7 mleu = 0 // Maximum lower EU

8 for i = 1, . . . ,K do
9 bel = bel +m({c(i)})

10 leu = dα(i)× bel // Lower EU

11 if leu > mleu then
12 mleu = leu
13 A = A ∪ {c(i)}

14 Return A

3.1 Generalization of Averaging

We assume that the output of each decision tree ht is no longer a precise prob-
ability distribution, but a set of probability intervals as defined by Eq. (1). As
indicated in [8], the corresponding quasi-Bayesian mass function is

mt({cj}) = p
tj
, j = 1, . . . ,K; mt(Ω) = 1−

K∑
j=1

mt({cj}). (6)

These masses can then be averaged across all trees:

m({cj}) =
∑T

t=1 mt({cj})
T

, j = 1, . . . ,K; m(Ω) =

∑T
t=1 mt(Ω)

T
. (7)

To make a decision based on this mass function, we build a sequence of nested
subsets A ⊆ Ω by repeatedly aggregating the class with the highest mass, and we
choose the subset A⋆ which maximizes EU(A) := EU(m,A,U) over all A ⊆ Ω.
Note that there exists several kinds of decision-making strategies resulting in
imprecise predictions [11]; maximizing the lower EDU is a conservative strategy,
and can be done efficiently using the algorithms presented below.

Theorem 2. Consider the mass function in Eq. (7) with classes sorted by de-
creasing mass: m({c(j)}) ≥ m({c(j+1)}), for j = 1, . . . ,K − 1. Scanning the
sequence of nested subsets {c(1)} ⊂ {c(1), c(2)} ⊂ · · · ⊂ Ω makes it possible to
identify the subset A⋆ = argmaxEU(A) in complexity O(K).

Proof. Since the masses m({c(j)}) are sorted in a decreasing order, the focal
element with the highest belief among those of cardinality i is A⋆

i = {c(j), j =
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Algorithm 2: Tree aggregation via interval dominance

Input: Tree outputs
{
(p

tj
, ptj), t = 1, . . . T, j = 1, . . . ,K

}
Output: Mass function m

1 m(A) = 0, ∀A ⊆ Ω
2 for t = 1, . . . , T do
3 DC = ∅ // set of dominated classes

4 for j = 1, . . . ,K do
5 for j′ = 1, . . . ,K and j′ ̸= j do
6 if ptj < p

tj′
then

7 DC = DC ∪ cj
8 break

9 NDC = Ω \DC // non-nominated classes

10 m(NDC) = m(NDC) + 1
T

11 Return m

1, . . . , i}, i.e.Bel(A⋆
i ) =

∑i
j=1 m({c(j)}) ≥ Bel(B), for allB ⊆ Ω such that |B| =

i. Since dα(|A|) only depends on |A|, A⋆
i maximizes the lower EU over all sub-

sets of size i. As a consequence, keeping the subset with maximal lower EU in
the sequence of nested subsets defined above gives the maximizer A⋆ in time
complexity O(K).

The overall procedure, hereafter referred to as CDM Ave (standing for “cau-
tious decision-making via averaging”), extends classical averaging for precise
probabilities to averaging mass functions across imprecise trees, is summarized
in Alg. 1. Note that a theorem similar to Theorem 2 was proven in [14], which
addressed set-valued prediction in a probabilistic framework for a wide range of
utility functions. Since the masses considered here are quasi-Bayesian, the proce-
dure described in Alg. 1 is close to that described in [14]. The overall complexity
of Alg. 1 is O(K logK)—due to sorting the classes by decreasing mass.

3.2 Generalization of Voting

We now address the combination of probability intervals via voting. Our ap-
proach consists to identify first, for each tree, the set of non-dominated classes
as per interval dominance, i.e., trees vote for the corresponding subset of classes.
Then, we again compute the subset A⋆ maximizing EU(A) over all A ⊆ Ω.

Alg. 2 describes how interval dominance can be used to aggregate all tree
outputs into a single mass function m, in time complexity O(TK2). In this
approach, the focal elements of m can be any subset of Ω. Since m is not quasi-
Bayesian anymore, maximizing the lower EU requires in principle to check all
subsets of Ω in the decision step: the worst-case complexity of O(2K) prohibits
using this strategy for datasets with large numbers of classes.

In order to reduce the complexity, we exploit three tricks: (i) we arbitrarily
restrict the decision to subsets A ⊆ Ω with cardinality |A| ≤ M , which reduces
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Algorithm 3: Cautious Decision Making by Voting

Input: Mass function m from Alg 2, cardinality bound M , discount ratio dα
Output: Decision A

1 m = Alg 2 (Itj , t = 1, . . . T , and j = 1, . . . ,K)
2 FE = ∅ // Focal Elements

3 Ω′ = ∅ // Considering Classes

4 A = ∅
5 mleu = 0 // Maximum lower EU

6 for i = 1, . . . ,M do
7 d = dα(i)
8 if mleu > d then
9 Return A // Early Stopping

10 else
11 FE = FE ∪ {B : m(B) > 0, |B| = i, B ⊆ Ω}
12 Ω′ = Ω′ ∪ {c : c ∈ B, B ∈ FE}
13 for all B ⊆ Ω′ and |B| = i do
14 bel =

∑
C∈FE,C⊆B m(C)

15 leu = d× bel // Lower EU for B
16 if leu > mleu then
17 mleu = leu
18 A = B

19 Return A

the complexity to O(
∑M

k=1

(
K
k

)
); then, we can show that (ii) when searching

for a maximizer of the lower EU by scanning subsets of classes of increasing
cardinality, we can stop the procedure when larger subsets are known not to
further improve the lower EU (see Proposition 1); and (iii) during this search,
for a given cardinality i, only subsets A composed of classes appearing in focal
elements B such that |B| ≤ i need to be considered.

Proposition 1. If the lower EU of a subset A ⊆ Ω is (strictly) greater than
dα(i) for some i > |A|, then it is (strictly) greater than that of any subset B ⊆ Ω
with cardinality |B| ≥ i.

Proof. Let A ⊂ Ω be a subset of classes (typically, the current maximizer of the
lower EU in the procedure described in Alg 3). Assume that EU(A) > dα(i)
for some i > |A|. Since Bel(B) ≤ 1 for all B ⊆ Ω, then EU(A) > EU(B) for
all subsets B such that |B| = i. The generalization to all subsets B such that
|B| ≥ i comes from dα(i) being monotone decreasing in i.

Proposition 2. The subset A⋆
i ⊆ Ω maximizing the lower EU among all A

such that |A| = i is a subset of Ωi which is the set of classes appearing in focal
elements B such that |B| ≤ i.

Proof. Let Ωi be the set of classes appearing in focal elements of cardinality less
or equal to i, for some i ∈ {1, . . . ,K}. Assume a subset A of cardinality i is such
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that A = A1 ∪ A2, with A ∩Ωi = A1, then, Bel(A) = Bel(A1). If A2 ̸= ∅, then
EU(A) < EU(A1) since |A1| < |A|: classes cj /∈ Ωi necessarily decrease EU(A).
Moreover, since Bel(A) sums masses m(B) of subsets B ⊆ A, any focal element
B such that |B| > i does not contribute to Bel(A).

The procedure described in Alg. 3, hereafter referred to as CDM Vote (stand-
ing for “cautious decision-making via voting”), extends voting when votes are
expressed as subsets of classes and returns the subset A⋆ = argmaxEU(A)
among all subsets A ⊆ Ω such that |A| ≤ M ≤ K. It generalizes the method
proposed in [24,25] for binary cautious classification. It is computationally less
efficient than CDM Ave, even if time complexity can be controlled, as it will be
shown in the experimental part.

4 Experiments and Results

We report here two experiments. First, we study the effectiveness of controlling
the complexity of CDM Vote. Then we compare the performances of both ver-
sions of CDM with two other imprecise tree aggregation strategies (MVA and
Averaging). In both experiments, we used three datasets from the UCI: letter,
spectrometer, and vowel, with a diversity in size (2000, 531, and 990 samples),
number of classes (26, 48, and 11), and number of features (16, 100, and 10). We
applied the scikit-learn implementation of random forests with default parameter
setting: n estimators=100, criterion=’gini’, and min samples leaf=1 [15]. We have
set the parameter M to 5 in Alg. 3.

4.1 Decision-Making Efficiency

First, we studied the time complexity as a function of the number of labels. For a
given integer i, we first picked i labels at random and extracted the corresponding
samples. Then, we trained a random forest with the parameter s of the IDM
set to 1, and processed the test data using CDM Vote. During the test phase,
we recorded for each sample the elapsed time of the entire process (interval
dominance plus maximizing lower expected discounted utility), and the elapsed
time needed to maximize the lower EU after having applied interval dominance,
respectively referred to as ID+MLEDU and MLEDU. For each i, we report
average times per 100 inferences, computed over 10 repetitions of the above
process. Since for high values of i, decision-making would be intractable without
any control of the complexity, we compared the efficiency when using all tricks
in Section 3.2 with that when using only the two first ones.

Fig. 1 shows that for a small number of labels (e.g., less than 15), trick
3 (filtering out subsets A ̸⊆ Ωi) does not significantly improve the efficiency,
as the time required for interval dominance dominates. However, for a large
number of labels, the time required for maximizing the lower EU dominates,
and filtering out subsets A ̸⊆ Ωi accelerates the procedure. Apart from interval
dominance, this filtering step accelerates the decision-making process regardless
of the number of labels, as shown in the right column of Fig. 1. This experiment
demonstrates that CDM Vote remains applicable with a large number of labels.
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Fig. 1. Decision-making time complexity of CDM Vote according to the number of
labels (for 100 samples). Left: ID+MLEDU, right: MLEDU only.

4.2 Cautious Decision-Making Performance Comparison

We compared CDM Ave and CDM Vote with Minimum-Vote-Against (MVA)
and Averaging (AVE) according to the metrics listed in Section 2.4. For each
metric, each dataset, and each aggregation approach, we used 10-fold cross-
validation: the results (mean and standard deviation) are reported in Tables 1(a)
to 1(c), with the best results printed in bold. In each CV fold, the optimal value
of s for each model is determined by a separate validation set using the u65 score.
CDM Vote and CDM Ave also make decisions using the d65 discount ratio.

The results show that MVA often tends to be determinate, while AVE and
CDM tend to be more cautious, without a clear difference between both latter.
The same can be observed for the single-set accuracy which is negatively corre-
lated to determinacy. AVE always achieves the highest set accuracy, due to a high
average set size of indeterminate predictions, in contrast to MVA. Our approach
turns out to be in-between. According to the u65 and u80 scores, CDM turns
out to provide a better compromise between accuracy (single-set accuracy and



10 H. Zhang et al.

Table 1. Cautious decision-making performance comparisons.

(a) Dataset: vowel (11 labels)

Criteria MVA AVE CDM Vote CDM AVE
Determinacy 0.995±0.007 0.918±0.032 0.874±0.036 0.867±0.038
Single-set accuracy 0.952±0.024 0.982±0.015 0.991±0.013 0.994±0.011
Set accuracy 0.944±0.168 0.974±0.063 0.967±0.056 0.962±0.053
Set size 2.0±0.0 2.418±0.275 2.054±0.064 2.056±0.064
u65 score 0.950±0.025 0.948±0.019 0.944±0.016 0.941±0.017
u80 score 0.950±0.024 0.960±0.017 0.963±0.013 0.960±0.013

(b) Dataset: letter (26 labels)

Criteria MVA AVE CDM Vote CDM AVE
Determinacy 0.988±0.008 0.772±0.026 0.816±0.026 0.811±0.026
Single-set accuracy 0.861±0.026 0.964±0.016 0.943±0.018 0.949±0.016
Set accuracy 0.717±0.259 0.949±0.030 0.710±0.078 0.728±0.071
Set size 2.077±0.208 12.197±1.390 2.139±0.058 2.163±0.062
u65 score 0.855±0.026 0.809±0.023 0.852±0.021 0.856±0.020
u80 score 0.856±0.026 0.826±0.022 0.871±0.020 0.876±0.019

(c) Dataset: spectrometer (48 labels)

Criteria MVA AVE CDM Vote CDM AVE
Determinacy 0.978±0.023 0.544±0.071 0.480±0.063 0.499±0.064
Single-set accuracy 0.550±0.068 0.694±0.074 0.700±0.076 0.690±0.077
Set accuracy 0.741±0.280 0.817±0.080 0.722±0.097 0.712±0.099
Set size 2.067±0.222 9.582±3.213 2.132±0.072 2.121±0.065
u65 score 0.545±0.066 0.538±0.050 0.571±0.051 0.568±0.052
u80 score 0.546±0.066 0.580±0.052 0.626±0.055 0.621±0.055

set accuracy) and cautiousness (determinacy and set size) than MVA and AVE.
However, there is no significant difference between CDM Vote and CDM Ave.
Moreover, since the average cardinality of predictions is around 2, setting M = 5
has no influence on the performances. In summary, our approaches seem to be
appropriate for applications requiring highly reliable determinate predictions
and indeterminate predictions containing as few labels as possible.

5 Conclusions and Perspectives

In this paper, we proposed two aggregation strategies to make cautious deci-
sions from trees providing probability intervals as outputs, which are typically
obtained by using the imprecise Dirichlet model. The two strategies respectively
generalize averaging and voting for tree ensembles. In both cases, they aim at
making decisions by maximizing the lower expected discounted utility, thus pro-
viding set-valued predictions. The experiments conducted on different datasets
confirm the interest of our proposals in order to achieve a good compromise be-
tween model accuracy and determinacy, especially for difficult datasets, with a
limited computational complexity.

In the future, we may further investigate how to make our cautious decision-
making strategy via voting more efficient and tractable for classification problems
with a high number of classes. We may also compare both our cautious decision-
making strategies with other cautious classifiers beyond tree-based models.
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