
HAL Id: hal-04330769
https://hal.science/hal-04330769v1

Submitted on 8 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generating Constraint Programs for Variability Model
Reasoning: A DSL and Solver Agnostic Approach

Camilo Correa, Jacques Robin, Raùl MAZO

To cite this version:
Camilo Correa, Jacques Robin, Raùl MAZO. Generating Constraint Programs for Variability
Model Reasoning: A DSL and Solver Agnostic Approach. ACM SIGPLAN International Con-
ference on Generative Programming: Concepts and Experiences, Oct 2023, Lisboa, Portugal.
�10.1145/3624007.3624060�. �hal-04330769�

https://hal.science/hal-04330769v1
https://hal.archives-ouvertes.fr

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Generating Constraint Programs for Variability Model
Reasoning: A DSL and Solver Agnostic Approach
Camilo Correa Restrepo
camilo.correa-restrepo@univ-

paris1.fr
Université Paris 1 Panthéon-Sorbonne

Paris, France

Jacques Robin
jacques.robin@esiea.fr

ESIEA
Paris, France

Raul Mazo
raul.mazo@ensta-bretagne.fr
Lab-STICC, ENSTA-Bretagne

Brest, France

Abstract
Verifying and configuring large Software Product Lines (SPL)
requires automation tools. Current state-of-the-art approaches
involve translating Variability Models (VM) into a formalism
accepted as input by a constraint solver. There are currently
no standards for the Variability Modeling Languages (VML).
There is also a variety of constraint solver input languages.
This has resulted in a multiplication of ad-hoc architectures
and tools specialized for a single pair of VML and solver, frag-
menting the SPL community. To overcome this limitation,
we propose a novel architecture based on model-driven code
generation, where the syntax and semantics of VMLs can
be declaratively specified as data, and a standard, human-
readable, formal pivot language is used between the VML
and the solver input language. This architecture is the first
to be fully generic by being agnostic to both VML and the
solver paradigm. To validate the genericity of the approach,
we have implemented a prototype tool together with declar-
ative specifications for the syntax and semantics of two dif-
ferent VMLs and two different solver Families. One VML is
for classic, static SPL (Feature Model) and the other is for
run-time reconfigurable dynamic SPL with soft constraints
to be optimized during configuration. The two solver fami-
lies are Constraint Satisfaction Program (CSP) and Constraint
Logic Programming (CLP).

CCS Concepts: • Software and its engineering→ Soft-
ware product lines; Software architectures; • Comput-
ing methodologies → Model verification and valida-
tion.

Keywords: Software Product Lines, Automated Reasoning,
Generic Architecture, Configuration Automation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GPCE, October 22–27, 2023, Cascais, Portugal
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Camilo Correa Restrepo, Jacques Robin, and Raul Mazo. 2023. Gen-
erating Constraint Programs for Variability Model Reasoning: A
DSL and Solver Agnostic Approach. In Proceedings of ACM SIG-
PLAN International Conference on Generative Programming: Con-
cepts and Experiences (GPCE). ACM, New York, NY, USA, 14 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Software Product Lines Engineering (SPLE) [38] is a col-
lection of engineering techniques for managing the design,
development, and subsequent evolution of large sets of soft-
ware products that share partially overlapping sets of re-
quirements and reusable software assets implementing them.
Considered as one whole, these products form the epony-
mous Software Product Line (SPL). Crucially, each product
in a SPL is a variant that includes a specific subset of the re-
quirements and reusable assets. This variability makes SPLE
unique: it needs to be managed across the entire product line
to control the quality and consistency of the products. To
carry this out, SPLE prescribes the construction, verification
and maintenance of an additional software artifact called a
Variability Model, that represents the relationships hold-
ing among the SPL’s variable requirements and the reusable
assets implementing them. These models have been used for
three main distinct purposes:
• Software Mass Customization [29] from a baseline soft-
ware versionwith automated variant code generation from
reusable artifacts.

• Design Space Exploration [32], i.e., determining which
set of design choices best satisfices1 a set of hard (i.e., must
have) and soft (i.e., nice to have) requirements.

• Context-aware Autonomic Adaptation [31, 50] through
runtime self-reconfiguration.

The third purpose involves embarking the VM as a runtime
artifact to support re-exploring the design space during op-
erations to find an alternative configuration that restores
requirement satisficing following an operational context
change that rendered the current configuration inadequate.
SPLs for such self-adaptive systems are called Dynamic
SPLs (DSPL) [25].
1Satisfice is a portmanteau word derived from satisf ying and suffice, con-
veying satisfaction to a sufficent extent rather than necessarily completely.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

GPCE, October 22–27, 2023, Cascais, Portugal Camilo Correa Restrepo, Jacques Robin, and Raul Mazo

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

In all three cases, the models support the semi-automatic
derivation of correct configurations, i.e., choices of cohesive
and consistent requirements that satisfy the business, tech-
nical and regulatory constraints captured by the Variabil-
ity Model. Real-life, industrial SPLs are too large and com-
plex to be manually verified, troubleshooted and correctly
configured [33]. To make things worse, these tasks need
to be repeated after each evolution of the SPL during its
life-cycle that routinely spans over multiple decades [11].
Automated reasoning must thus be used to repeatedly verify,
troubleshoot and (re)configure an SPL at initial design-time,
evolution-time and even runtime throughout its life-cycle.
In most cases, the augmented intelligence [20] flavor of auto-
mated reasoning is required, in which the reasoning must be
explainable to the team of human engineers and operators
managing the SPL and that have the final say concerning
each configuration or defect correction choice.
Today, there is no accepted standard for SPL Variabil-

ity Models, so every SPLE automation tool uses its own
Domain-SpecificVariabilityModeling Language (DSVML).
However, despite superficial syntactic differences, at the se-
mantic level, most DSVMLs used for Software Mass Cus-
tomization define cohesive requirement sets, generally called
features, and share four key expressive capabilities:

SFM1 Organize these features into abstraction and compo-
sition hierarchies and associate the lowest level ones
with reusable and composable concrete software as-
sets implementing them.

SFM2 Distinguish between mandatory features shared by
all configurations from optional elements specific to
strict configuration space subsets.

SFM3 Specify ranges of alternative possibilities for the re-
finement of a higher-level feature into a set of lower-
level features.

SFM4 Specify simple required co-occurence or exclusion
constraints between two features across the abstrac-
tion hierarchy.

DSVML providing such expressive capabilities are gen-
erally referred to as Simple Feature Models (SFM). Four
additional expressive capabilities are provided by DSVML
which are often called Extended Feature Models (EFM):

EFM1 Structure features into sets of attributes of various
types rather than limiting them to Boolean variables.

EFM2 Specify ranges of alternative possible values for those
attributes.

EFM3 Specify multiplicity constraints on those attributes
and on relationships among features.

EFM4 Specify complex constraints on the values of attributes
of features located anywhere in the abstraction hier-
archy.

Whether SFM or EFM, all models used for Software Mass
Customization only contain hard constraints that must be

collectively consistent and fully satisfied by all valid con-
figurations. In contrast, models used for Design Space Ex-
ploration and Autonomic Adaptation also contain soft con-
straints to satisfice as much as possible rather than necessar-
ily fully; thus their modeling languages need to be semanti-
cally more expressive.
A wide variety of approaches have been proposed to im-

plement SPL model verification and model-guided SPL con-
figuration in SPLE automation tools. Just like for Variability
Modeling Languages, there is also currently no accepted
standard API for such tools. Nevertheless, the overwhelming
majority of them include a translator of the DSVML to some
logical Knowledge Representation Language (KRL). This
allows them to reuse practically scalable Inference Engines
(IE) developed over the last 50 years for formal software en-
gineering and artificial intelligence. Four main paradigms of
such IEs have been used to automate SPL model verification
and model-guided configurations:

• SATisfiability (SAT) solvers [24] and their extensions
with Satisfiability Modulo Theories (SMT) [16].

• Constraint Satisfaction Problem (CSP) solvers and their
extensions forConstraintOptimization Problems (COP)
[17].

• Logic Programming (LP) engines and their Constraint
LP (CLP) extensions [21].

• Description Logic (DL) engines and their semantic web
ontology reasoning extensions [5].

Notably, the foundational feature-based SPLE tool FODA
used an LP engine [27], the original version of VariaMos [47]
used a CLP engine, FeatureIDE [43], FlamaPy [22], Splot [35],
Glencoe [42], Kernel Haven [28] and pure::variants [10], all
use a SAT solver, Familiar can use either an SMT or a CSP
solver [2], COFFEE used a CSP solver [48] and AUFM used
a DL engine [37].

Each pair of KRL and IE from these paradigms corresponds
to a different trade-off in terms of semantic expressiveness,
inference scalability and reasoning explainability. The best
KRL for a given SPL reasoning task is thus very much de-
pendent on both the nature of the task and the semantic
expressiveness of the DSVML used to model variability [7].
Since SPLE is a heavy upfront investment method whose “Re-
turn on Investment” takes a fairly long time before becoming
tangible [38], SPLE projects have long life cycles. Therefore,
both the expressiveness requirements of a DSVML and the
automated reasoning tasks to analyze the VM and correctly
(re)configure the SPL can evolve significantly during its life
cycle.

The main common limitation of the state-of-the-art SPLE
automation tools listed above is their ad-hoc architectures
that tightly couples a single DSVML with an IE from a given
automated reasoning paradigm. This impedes one from mak-
ing the choice of IE follow in lockstep the evolution of the
DSVML and reasoning task requirements at a cost that is low

2

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

Generating Constraint Programs for Variability Model Reasoning: A DSL and Solver Agnostic Approach GPCE, October 22–27, 2023, Cascais, Portugal

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

enough to avoid denting the long-term benefits of adopting
SPLE.

In an attempt to overcome this severe limitation of current
state-of-the-art SPLE tools, we try, in this paper, to answer
the following open research question:
How to architect an SPLE automation tool so that IEs from

various paradigms can be seamlessly plugged in and out of
it at minimal development cost to adapt the tool’s reasoning
capabilities to the evolution, throughout the SPL’s life cycle, of
both the semantic expessiveness of the DSVMLs that it supports
for variability modeling and the analysis and configuration
automation tasks to run on the Variability Model?
Our first research hypothesis to answer this question is

that such an architecture must satisfy the following require-
ments:

REQ1 Support low-cost extension of existing DSVMLs and
addition of new DSVMLs.

REQ2 Support low-cost addition of new automated rea-
soning tasks to run on the VM.

REQ3 The architecture must be agnostic w.r.t. the logical
KRL and IE paradigm used for automated reasoning
on the VM, supporting low-cost addition of inter-
operability with solvers from different paradigms.

REQ4 The architecture must be agnostic w.r.t. the DSVML
editor tool, accepting the VMas input data exportable
from multiple popular editors.

To satisfy these requirements, we propose the following
design principles, inspired fromModel-Driven Engineering
[41]:

DP1 The concrete and abstract syntaxes of the DSVML
should be decoupled from one another.

DP2 They both should be declaratively specified as data in a
widely used exchange format, rather than hard-coded
in the SPLE tool.

DP3 The semantics of the DSVML should also be declar-
atively specified as data in a widely used exchange
format encoding a mapping from the abstract syntax
elements to expressions in a formal KRL.

DP4 The set of reasoning automation tasks to be run on the
VM should also be declaratively specified as data in a
widely used exchange format, which must furthermore
be decoupled from any specific IE KRL.

DP5 The many-to-many translation from the multiple
DSVMLs to the multiple IE KRLs should be decoupled
into a pipeline of N many-to-one transformations
to a standard pivot intermediate language followed
by M one-to-many transformations from this pivot,
to avoid the combinatorially explosive cost of devel-
oping and evolving NxM direct DSVML to IE KRL
transformations.

DP6 This standard pivot language must be easily inter-
pretable by a wide range of stakeholders.

Our second research hypothesis is that REQ1 and REQ4
can be satisfied by the combination of DP1 to DP3, REQ2
can be satisfied by DP4 and REQ3 by that of DP5. In the rest
of the paper, we attempt to verify our two hypotheses.
To do so we proceed as follows. In section 2, we start

by presenting two SPLE reasoning task examples that we
have used as a first step toward validating these hypothe-
ses. While they are small enough to fit in this article, they
are purposely representative of very different VM language
families used for very different VM purposes. In that sec-
tion, we also explain how these tasks can be carried out
by leveraging, as intermediate pivot language between the
two different input DSVML and any logical IE input KRL,
the ISO standard for logical IE interoperability CLIF (Com-
mon Logic Interchange Format) [1] following the original
proposal of [14]. Next, in section 3, we propose a detailed
SPLE tool architecture following the design principles DP1
to DP5 listed above. We then discuss the prototype SPLE tool
PLEIADES (Product Line Engineering Intelligent Assis-
tant for Defect detection Explanation and Solving) that
we (a) implemented to show the practical feasibility of this
architecture and (b) tested on the two example tasks pre-
sented in section 2. In section 5, we then compare PLEIADES
with state-of-the-art SPLE tools. Since none of them aimed
to satisfy requirements REQ1 through REQ4, nor explicitly
followed design principles DP1 to DP5, this comparison is
grounded on various tool versatility criteria which are met
by following these principles. In section 6 we discuss the
limitations of both the presented architecture and its cur-
rent implementation in terms of satisfaction of requirements
REQ1 to REQ4 and the future work that we intend to carry
out to overcome them. Finally in section 7, we conclude by
recapitulating the original contributions of the presented
research.

2 Background and Running Examples
To illustrate our approach on concrete examples, we now
present two of them. The first concerns a defect detection
verification task on an SFM. The second concerns an optimal
reconfiguration search for a DSPL that leverages a DSVML
specifically designed for that purpose and presented in [40].
They thus represent two intentionally distant points in the
space of the VM diversity encountered in the literature.

2.1 Variability Modeling Languages
2.1.1 Simple Feature Models. In Fig. 1, we present a
minimalist SFM example. Its graphical concrete syntax shows
features as rectangular vertices in a directed graph and the
hierarchical decomposition of features in mandatory and
optional sub-features as edges ending with a filled or empty
circle (respectively). This decomposition forms a tree. Edges
ending with an arrow represent exclusion or co-occurence

3

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

GPCE, October 22–27, 2023, Cascais, Portugal Camilo Correa Restrepo, Jacques Robin, and Raul Mazo

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

Figure 1. First part of our running example with a synthetic Feature Model. The query specifying the iterative search for dead
features in the model is beside the model.

constraints among feature pairs in different branches of the
tree.

Verification reasoning tasks on such VMs generally search
for defects, which were comprehensively categorized in [7].
In figure 1 we show a SFM which contains two dead feature
defects. A feature is said to be "dead" if, although it is present
in the VM, it can never be selected in any valid configuration
due to contextual constraints relating to other features. Fol-
lowing principle DP4, the text beside the SFM diagram is the
declarative specification in JSON [15] of the search for dead
feature defects reasoning task. The one-way widgets on the
top-left features F4 and F5 visualize the result of this task. It
detects that F4 and F5 are dead. F4 is dead as excluded by the
selection of F3, which must be selected in all configurations
as a mandatory descendant of the top-level feature F1. F5 is
also dead as a child of F4, a dead feature.

2.1.2 Sawyer et al.’s DSPL VML. In Fig.2, we present a
second example of reasoning task. This time it is a search
for an optimal reconfiguration leveraging the context-aware
DPSL VM of a flood early-warning system. The vocabulary
of concepts and relations of this DSPL DSVML [40] is much
more extensive than that of SFMs used in the first example.
They are the following:

• Hard goals, shown as green parallelograms, determine the
functional requirements of the system and are analogous
to features in feature models. Hard goals are structured in
a decomposition hierarchy where higher level ones can be
achieved by achieving all their lower level components.

• Soft Goals, shown as blue clouds, encode the non-
functional requirements of the system and can be
satisficed on a 0 to 4 scale, which is encoded as “--”, “-”,
“=”, “+”, “++” in the model. They are themselves structured
into a decomposition hierarchy. The level of satisficing of
a higher level soft goal in this hierarchy is the average of
the satisficing level of its lower level components.

• Context Variables, shown in blue rectangles on the right,
encode the state of the system’s context among symbolic
value enumerations.

• Operationalizations, shown as gray hexagons, are concrete
software assets that can implement the hard goals.

• Bundles, shown as white circles, contain integer range
expressions for the multiplicity of the operationalizations
that can implement a hard goal.

• Claims, shown as white trapezoids, express the level to
which operationalizations satisfy soft Goals as a function
of which has been selected.

• Soft Influences, shown as grey ellipses, relate the context
variables to the soft goals, and determine the required
level of satisfaction when the given state is determined
by the context, e.g., if CV1 is “Low”, the required level of
satisfaction of SG5 is “++”.

The VM in Fig. 2 models the various redundant means
of communications available to transfer sensor data in a
distributed autonomic flood early-warning system. It also
supports determining which set of means represent the best
trade-off between energy consumption, fault tolerance and
prediction accuracy in various flood risk contexts.

The contrast between the VM of figures 1 and 2 highlights
the great diversity of DSVMLs and the reasoning tasks to
carry out on them.

2.2 CLIF and Model Transformation
The language used to encode the semantics of the differ-
ent variability modeling languages, CLIF, is part of a larger
family of (logic) languages “designed for use in the represen-
tation and interchange of information and data among [...]
computer systems” [1] named Common Logic. CLIF has not
been created ex nihilo, but rather, is a simplified descendant
of the Knowledge Interchange Format Version 3 [23] KRL. It

4

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

Generating Constraint Programs for Variability Model Reasoning: A DSL and Solver Agnostic Approach GPCE, October 22–27, 2023, Cascais, Portugal

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

Figure 2. Second part of our running example with a model using Sawyer et al.’s DSPL VML. This model reproduces the
original example from the paper [40] for a flood early-warning system. As with our other example, in addition to a reasoning
query to solve (on the bottom right), this time, an optimization problem to find an optimal configuration whose additional
constraints are shown below the model (bottom left).

uses a LISP [34] derived syntax to represent logical expres-
sions. For example (𝑎 ∧ 𝑏) would be rendered as (and a b)
where 𝑎 and 𝑏 can also be nested subexpressions.

Figure 3 exemplifies the overall mechanism underlying the
architecture. Given a fragment of a diagram and the corre-
sponding semantics specification given as a JSON [15] object,
our architecture would allow then for the construction of the
human- and machine-readable semantics in CLIF. It would
then allow one to target different solvers based purely on the
CLIF semantics. The object, then, of this article, is to provide
a detailed account of how this is achieved and how this archi-
tecture overcomes the key limitation of ad-hoc architectures
and tools specialized for a single pair of variability modeling
language and solver.

2.3 Reasoning Tasks
One of the primary goals of our approach is to allow practi-
tioners to perform reasoning tasks on their models through
a simple specification mechanism to avoid the need to under-
stand the particular details of the underlying implementation
or how to perform meta-programming, for example. Both of
our running examples (Figs. 1 and 2) include a JSON object
that encodes the reasoning request that is to be made about
the model. For the Feature Model, we perform an iterative
reasoning task that corresponds to searching for dead fea-
tures [7]. This object informs the backend of the operations
required for the reasoning task. The first attribute “opera-
tion” determines what type of problem will be solved(e.g. a
satisfiability check, finding a concrete solution, or solving

an optimization problem). The second, “solver”, tells the
system which runtime to utilize for the query.

The two attributes above are always required and set the
main parameters of the system. The (optional) attribute “iter-
ate_over” allows the user to perform a succession of queries
on the model. Its value is a list of objects that determine how
the elements will be modified in each run of the iteration. In
the concrete case of Fig. 1, it will iterate over all “Features”,
setting their associated variable to 1, i.e., selected. The result
of the reasoning task is then overlayed on the model as a red
prohibition/one way sign showing that those two features
are not selectable in any valid configuration.

The other attributes depicted in Fig. 2, “optimization_target”
and “optimization_direction” serve a different purpose.
They parametrize the search for optimal solutions where the
optimization expression is a variable in the desired direction,
e.g. maximizing it. At the very bottom of Fig. 2 are the textual
constraints that complement the graphical model and permit
the construction of the optimization problem. They are writ-
ten in CLIF right alongside the Graphical models and are part
of them, exhibiting our support for hybrid textual/graphical
models. The key takeaway of these constraints is that they
define a set of equations related to the model elements and
ultimately allow one to equate the optimization variable to
a complex expression. In this case, our objective variable
is ObjValue which is defined as a weighted (shown below)
sum over the satisfaction level of claims, soft influences and
soft goals as defined above. Since we seek to simulate the
behaviour of a context-aware Dynamic SPL, we also provide

5

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

GPCE, October 22–27, 2023, Cascais, Portugal Camilo Correa Restrepo, Jacques Robin, and Raul Mazo

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

Figure 3. Concrete examples of translation using the translation rules specification for Feature Models (top) and Sawyer et
al.’s DSPL Variability Modeling Language (bottom).

the context values to influence the search for an optimal
solution by setting the context variables (blue boxes on the
right) to one of their possible values.
(and (int ObjValue)

(= ObjValue ((1000*TotC)+(100*TotSD)+TotNFR)))

3 Overview of the Architecture
As mentioned in the introduction, the key contribution of
this article is a generic architecture for reasoning on VMs
that is agnostic to both the input VM and the IE used for
reasoning (and hence its KRL). We propose a client-server
web architecture in which variability model verification and
configuration reasoning functionalities are provided as web
services accessible through a REST API endpoint. With this
approach, multiple VM editor clients can send HTTP re-
quests for VM verification or SPL configuration tasks and
receive as response the result of the automated reasoning per-
formed by the constraint solvers hosted by the server. This
choice of a web service architecture allows fully separating
the concern of editing a VM from the concern of reasoning
on it. It also insures full decoupling of the implementation
platforms respectively used for (a) VM editing, (b) transla-
tion of VM reasoning requests into constraint solver inputs
and back from constraint solver outputs into VM reasoning

responses and (c) constraint solving. Additionally, it pro-
vides an installation-free friction-less usage of the reasoning
services.

3.1 High-Level Component Structure and Control
Flow of the Architecture

The UML diagram in Fig. 4 shows the structural model of the
PLEIADES architecture that we propose for SPLE reasoning
services. It shows its main components, the signatures of
the operations that they implement, together with the data
types of each signature parameter. While this diagram is
technically a class diagram, to remain as agnostic as possible
with respect to the modeling or programming paradigm, it
contains the very general concepts of components (a.k.a.,
service, module or package in different implementation plat-
forms) and data types, rather than classes, which may have
implied the adoption of class-based object-orientation to
implement our architecture.

The SPLE Reasoning Web Service is the top-level com-
ponent of the architecture. It answers web requests that
contain as their payload a serialized JSON representation of
the reasoning request to execute on the server. As shown at
the top-left of Fig. 4, this Serialized Reasoning Request
includes four top-level properties: (a) the VM to analyze, (b)

6

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

Generating Constraint Programs for Variability Model Reasoning: A DSL and Solver Agnostic Approach GPCE, October 22–27, 2023, Cascais, Portugal

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

Figure 4. High-level components and data types of the PLEIADES architecture

the specification of the reasoning task to carry out for the
analysis, (c) the abstract syntax specification of the VML
used by the VM to model the variability of an SPL, and (d)
the semantic specification of the VML in the form of a map-
ping between VML model elements and logical sentences
in CLIF. It is the fact that the reasoning request comes with
declarative specifications of the abstract syntax and formal
semantics of the VML in which the VM is modeled that
allows VM reasoning services following this PLEIADES ar-
chitecture to be VML agnostic. And it is also the fact that the
VML’s formal semantics are expressed in CLIF, a standard
for logical inference engine interoperability, whose expres-
siveness subsumes that of all constraint solvers widely used
for SPLE automated reasoning, that allows VM reasoning
services following the PLEIADES architecture to be solver
agnostic.
In addition to its public answer operation endpoint, the

SPLE Reasoning Web Service also encapsulates three pri-
vate operations: one to deserialize the reasoning request
JSON string into an instance of the Reasoning Request
data type, one to generate the instance of the Reasoning
Response data type from the result returned by the solver
called to answer the Reasoning Request in a solver agnos-
tic format and one to serialize this Reasoning Response
data type instance into a JSON string.

This top-level component also has access to the operations
of its nested components. Let us now review them in top-to-
bottom order as depicted in Fig. 4. The first is the VM2CLIF
Translatorwhich translates the VM data structure contained
in the Reasoning Request data structure into a CLIF text
by simultaneously leveraging the VM syntax and semantic
specifications that accompany the VM in the Reasoning
Request.

The second is the CLIF2GenericCSP Translator which
translates the CLIF text representing the semantics of the
VM into a semantically equivalent solver-agnostic CSP rep-
resentation of the VM. As shown at the top right of Fig.4,
this representation is simply a set of constraints relating
variables, each one associated with its domain of possible
values. This translation occurs in two steps. The first is to
parse the CLIF text into an Abstract Syntactic Tree (AST)
and the second is to generate, from this AST, the constraints,
variables and domain data types of the solver-agnostic CSP.

The third is the Generic2SpecificCSP Translatorwhich
translates this solver-agnostic representation of a CSP into
one accepted as input by the solver chosen in the Reasoning
Task Specification. This component is also used to trans-
late the solver output back in the other direction into a
Solver Agnostic CSP Solution. Note that due to its purely
declarative, relational and intentional nature, a CSP and its
solution can be uniformly represented by the same three data
types: Constraint, Variable and Domain. A CSP solution
is merely a CSP with less constraints and more variables
with domains reduced to a singleton [17]. As shown at the
bottom-left of 4, the Reasoning Response data type asso-
ciates the value of those singleton domains with the VM
element represented by the CSP variable whose domain has
been reduced to a single value. That value is injected in the
Reasoning Response that is then serialized and sent back
to the client VM editor.

The fourth is the Solver Controller, the most complex
component of the architecture. Understanding its role re-
quires realizing that many VM verification tasks cannot be
directly executed through a single call to a constraint solver.
They rather require meta-programming an iteration over the
VM elements in which, at each step, the initial CSP represen-
tation of the VM is modified by adding or removing some

7

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

GPCE, October 22–27, 2023, Cascais, Portugal Camilo Correa Restrepo, Jacques Robin, and Raul Mazo

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

Figure 5. Activity diagram detailing the operation of our achitecture.

constraints and the solver is called on this modified CSP [39].
Depending on the result returned by the solver at each step,
the iteration proceeds to the next step or stops. During the
iteration, the results of each solver call are accumulated in
a set. The IterativeBridgeCall operation of the Solver
Controller implements this iteration. It returns a set of
Solver Output data type instances.
As an example of this need for iteration, let us consider

the search for so-called dead features in a feature model:
i.e., those that cannot be selected in any valid configuration.
The declarative specification of this task as a JSON object
is shown beside the model of Fig.3. It defines a strategy for
the Solver Controller to find dead features in the VM [7].
It consists of iterating over the VM features, and, for each
of them, adding to the CSP, representing the VM, the new
constraint that this feature is selected ("with_value": 1)
and checking whether this makes the CSP unsatisfiable. To
be able to repeatedly call the requested solver, the Solver
Controller encapsulates a set of bridges, one for each solver
to be integrated in the SPLE Reasoning Web Service. The
role of each bridge is to start a new instance of the solver,
call its API to pass the CSP to solve at each iteration of the
IterativeBridgeCall operation and pass the result of each
such call back to the Solver Controller.

The control flow of the top-level answer operation of the
root SPLE Reasoning Web Service component is modeled
by the UML activity diagram of Fig.5. It shows the input and

output parameter of the answer and in what order this oper-
ation internally calls the other operations of the architecture.
It also shows the data structures that these calls exchange as
arguments. At a high-level, this activity is divided in three
main phases. The first is the pipeline on the left side of Fig.5
that progressively transform the Serialized Reasoning
Request received from the VM web client editor into an in-
put for the solver (Solver Input) chosen as a property of the
Serialized Reasoning Request. The second is the loop of
calls to the solver made by the Solver Controller shown
in the top right quadrant of Fig.5. The third and last phase
is another pipeline, shown in the bottom right quadrant of
Fig.5, that translates the solver outputs accumulated during
the iteration into a Serialized Reasoning Response to
send back to the web client editor.

3.2 Revisiting Requirements and Design Principles
In light of the requirements and design principles we’ve out-
lined in the Introduction, it is important to highlight how our
architecture reflects these principles and above all meets the
requirements. Design principles DP1 and DP2 are reflected
first in the clear separation of the data types shown in Fig. 4,
where every concern has its own dedicated data structure
(and hence treatment in the function signatures in the com-
ponents). They are also reflected in the envisioned operation
of the architecture shown in Fig. 5, where they are taken as
user-specified specifications (as part of the Reasoning Re-
quest) instead of being hard-coded into the architecture. The

8

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

Generating Constraint Programs for Variability Model Reasoning: A DSL and Solver Agnostic Approach GPCE, October 22–27, 2023, Cascais, Portugal

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

Figure 6. Current PLEIADES prototype instantiating the generic architecture

same is also true for PrincipleDP3when it comes to the spec-
ification of the semantics. As for the widely used exchange
format, JSON [15] is well supported and certainly widely
used. In addition, concerning the enconding into a formal
KRL, this is covered by the translation into CLIF based on the
semantics specification, allowing virtually any DSVML with
first order semantics to be translated into it. Considering
that we have met these principles with our architecture, this
would cover requirements REQ1 and REQ3.

Design Principle DP4 is handled in much the same way
as DP2, wherein JSON is again used to allow the user to
tailor his specification for his reasoning task with no need to
manually hard-code it in the system, as described in Section
2.3. This would then cover requirement REQ2. Principle
DP5 is, firstly, contingent on the earlier principles being met,
and, second, is covered by the VM transformation outlined
in Fig. 5. Indeed, a significant portion of the architecture is
dedicated to enabling this translation, as evidenced by both
the component solely dedicated to it (VM2CLIF Translator
shown in Fig. 4) and the subsequent components that are
dedicated to the treatment of the generated CLIF to arrive
at the solvers’ input. To be clear, what this achieves is to
completely decouple integrating DSVMLs and IEs into the
architecture by linking both through CLIF and meeting re-
quirement REQ3.

Design principle DP6 stands alone as it is tied to a consid-
eration that is not purely functional, as are the requirements,
but rather, it is tied to the very nature of the architecture, that
is, easing the use and analysis of VMs by different stakehold-
ers without needing to dive into the details of the specific
underlying solvers. This also aids users to construct (and
debug) new DSVMLs as they can examine the semantics in
CLIF of their models independent of any particular solving
technology.

4 Prototype
To validate our architecture and its feasibility for construct-
ing a reasoning platform that covers all of the requirements
outlined above, we have implemented a prototype in Python
based on this architecture. Fig. 6 shows how the prototype
specializes the components outlined in the architecture. This
prototype’s internal component structure closely reflects the
architecture. A key element of our prototype is the integra-
tion of multiple solvers from different solver families: SWI
Prolog [51] andMiniZinc [36] (which allows us to target mul-
tiple Constraint and Integer Programming Solver libraries).
To implement the pivot language, we wrote our own "CLIF
Parser" with the TextX library [18] based on the grammar
described in the latest version of the ISO standard [1].

We demonstrate our approach within an open-source tool
called VariaMos [47] for all visualization concerns, and for
the specification of the concrete visual syntax, the abstract
syntax and the formal semantics in JSON format. The exam-
ples shown in Figs. 1 and 2, and the results shown, were all
done within this tool. We have modified the tool so that the
reasoning requests can be made directly from it by specify-
ing the address of the reasoning web service. We have made
the prototype available on GitHub as an open source tool2.

5 Related Work
5.1 State of the art VM tools
In this section, we examine state-of-the-art tools with aims
similar to ours that are currently available, mature and well
documented as reported by a recent survey [26], with the ad-
dition of some others that we consider particularly relevant.
The tools we’ve identified are: Feature IDE [43], its related
project FAMILIAR [2], FlamaPy [22], the COFFEE Frame-
work [48], SPLOT [35], Glencoe [42], ClaferTools [4], Kernel
2https://github.com/ccr185/semantic_translator. The use manual is in the
repository’s wiki page: https://github.com/ccr185/semantic_translator/wiki

9

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

GPCE, October 22–27, 2023, Cascais, Portugal Camilo Correa Restrepo, Jacques Robin, and Raul Mazo

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

Table 1. Characteristics of State of the Art Tools

Tools

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Architecture

Standard Modeling Language P N N P P N N N N N Y
Architecture Complexity 36 14 9 36 27 ? 4 32 ? ? 50
Structural(a) & Behavioral Models(b) (a) (a) N (a) Y N N N N N Y
Architectural Pattern A B C D E F F G H ? I

Variability
Model Support

Integer Attributes Y N Y Y N N N Y N ? Y
First Order Constraints N N Y P N N Y N N N Y
Context Aware Dynamic SPL P P N N N N N Y N N Y
Human Interpretable VM Semantic
Language

P N N N N N N P N N Y

Solver Support

Integer Domains P P Y Y N N N Y N ? Y
First Order Constraints N N N N N N N Y N ? Y
Optimization Y ? Y Y Y Y ? Y N ? Y
Meta-Programming Y Y Y P Y ? Y ? Y ? Y
Incremental Solutions Y Y Y Y Y Y Y Y Y ? Y

Reasoning Task
Spec Support

Declarative Verification Task
Specification Language

N N P N Y N N N N ? Y

Declarative Configuration Task
Specification Language

N N P N Y N N N N ? Y

Standards Leverages Existing Standards N N N P N N N N N ? Y
Tools: (1) FeatureIDE; (2) FlamaPy; (3) FAMILIAR; (4) COFFEE; (5) Kernel Haven; (6) SPLOT; (7) Glencoe; (8) ClaferTools; (9) Pure::Variants; (10) Gears; (11) Our Approach
Architecural Patterns: A Java API + Eclipse Plugin; B CLI + Python API (Plugin-Based); C CLI + Java API + Eclipse Plugin; D 3-Layered Web Service; E 3 Layered Monolith with
Plugin System; F Client/Server (With no further details); G Haskell API/Web Server + Web Client; H IDE Plugins (With no further details); I Multi Layer Python API/Web Server +
Pivot Language
Legend: Y – Yes; N – No; P – Partial Fulfillment; ? – Unknown/Unclear;

Haven [28], pure::variants [10], and Gears [30]. Though most
of these tools also cover other use-cases such as modeling,
visualization or code generation, we focus on the verification
pipelines.

In Table 1 we present an analysis of the characteristics of
these tools. We divide our analysis into five main dimensions:
• First, we examine the different approaches from a purely
architectural perspective. Of interest are the following
characteristics: whether the approaches are well docu-
mented with standard modeling languages like the UML;
the detail and granularity of the models as a function of
the quantity of elements they contain; whether the mod-
els are structural, behavioral, or both; and, finally, what
general architectural pattern is applied for their tool. We
also analyze the interaction with model editors as part of
their architectural patterns related to requirement REQ4.

• Next, we analyze the support their respective approaches
have for the diversity of variability modeling languages.
This includes the treatment of integers, and first-order
constraints among the elements of a variability model.
Two other key factors are whether the languages support

concepts of context-aware dynamic SPLs and whether
the semantics of the variability models are expressed in
a human-interpretable language, or whether they are im-
plicit as part of the tools’ internal pipelines. This is related
to requirement REQ1 and the types of languages sup-
ported by competing tools.

• We analyze in a similar way the support for different solver
features among the tools. We must, nevertheless, highlight
the fact that our analysis of these features relates to the
capabilities of the solvers themselves and not necessarily
as they are used within the tool. For instance, though Fea-
tureIDE has a mechanism to handle numeric attributes
in their models, and their solving backend, a modified
SAT4J [9], it cannot run automated verification or con-
figuration tasks on these aspects of the models. Among
the characteristics we examine we find the treatment of
integer domains; whether there are first order constraints;
whether optimization can be run in addition to pure solv-
ing; whether there are meta-programming mechanisms
to control the behavior of the solvers; and whether the
solvers can present series of solutions without restarting

10

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

Generating Constraint Programs for Variability Model Reasoning: A DSL and Solver Agnostic Approach GPCE, October 22–27, 2023, Cascais, Portugal

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

the search space exploration from scratch. This is tied to
our requirement REQ3 and the backend support offered
by the different tools.

• We also analyze the support for declarative specifications
of the reasoning tasks to be performed and whether this is
declarative and user-specifiable. This is related to require-
ment REQ2.

• Finally, we analyze the use of internationally recognized
standards as part of the proposals as part of our analysis
tied to our design principle DP6.

From this one can conclude that all of the approaches cited
follow an approach of transforming the variability model
into an input for a constraint solver. (It is worth repeating
that here the term “constraint” is to be understood in its gen-
eral sense, thus including other families such as SAT solvers,
SMT solvers, etc.) We, therefore, have integrated these ideas
and seek to generalize them to provide a truly generic ar-
chitecture to perform these tasks and, moreover, lift the veil
on the details of how these transformations are performed.
Notably, the characteristics of the competing approaches
tied in directly to our formulation of the requirements for
the architecture.

5.2 Domain Specific Languages in SPL
A key feature of our architecture is its agnosticity w.r.t.
DSVMLs; while one can make use of Feature Models and all
its derivatives, the use of DSLs as alternative VMLs has been
well attested in the literature, whose fit as alternatives to
feature models is highlighted in [12], with some of the first
proposals aiming to integrate textual DSVMLs directly into
artefacts [6]. This was further explored in a survey article
[49] where all the possible combinations of DSLs and Feature
Models (and variations thereof) were explored, concluding
that they may coexist to different degrees in a project, or
that one may outright replace the VM with a DSVML model.
Though their focus was primarily on textual-based DSLs,
other authors have found it important to construct Graphi-
cal DSL based proposals. In this vein, the work of Demuth et
al. [19] is particularily important. They proposed a tool that
would allow one to construct DSLs and their meta-models all
as part of a single graphical tool. This allows the generation
of artefacts from the models since all of their elements are
ultimately mapped to a restricted subset of UML, though the
analysis capabilities were quite limited.
There have been other approaches to use and integrate

Graphical DSLs for Variability Modeling, such as [44], pre-
senting a case study of a DSL for creating variants of robot
software. Several approaches hinged on creating custom
UML profiles [13, 52] to aid in the automated generation of
websites. A large set of industrial case studies where Graphi-
cal DSLs for managing variability were employed has also
been presented [46], highlighting the use of a commercial
DSL development tool [45]. This tool has also been used for

creating a graphical DSL for an automatic performance test
generation approach based on a product line approach [8].

These approaches, however, are all held back by one fun-
damental limitation which is the need for an ad-hoc imple-
mentation to construct a formal representation (if they do
so at all), which does not allow one to tailor the underly-
ing reasoning to the particular characteristics of the DSL,
as we have done with Sawyer et al.’s language [40], which,
though originally a graphical DSL for DPSL without any
code generation capabilities, we have brought directly into
our approach as a key demonstrator of its capabilities.

6 Evaluation and Discussion
6.1 Requirements coverage
Given the novelty of our approach, and the mechanism em-
ployed, we begin first with an analysis of the coverage of
our requirements by our approach. This analysis is informed
both by our analysis of the architecture in Section 3 and the
lessons learned from the prototype implementation.
REQ1 Support low-cost extension of existing DSVMLs and

addition of new DSVMLs: Our approach is specifi-
cally designed to use a declarative specification of
the modeling languages, and, within reason, any
VML could be handled by our approach. We illus-
trate this variety by implementing and testing our
implementationwith two languages that differ greatly
syntactically and semantically.

REQ2 Support low-cost addition of new automated reason-
ing tasks to run on the VM: Our architecture is de-
signed to handle precisely this, with a view on ex-
posing a large variety of operations to the user so
that as new DSVMLs are created, it is simple to
create the corresponding reasoning tasks. As a con-
sequence, the prototype reflects this and has been
demonstrated to be robust enough to support very
different reasoning tasks through the same mecha-
nism.

REQ3 The architecture must be agnostic w.r.t. the logical
KRL and IE paradigm used for automated reasoning
on the VM, supporting low-cost addition of interoper-
ability with solvers from different paradigms: Given
that multi-solver support has been a key design
goal for the architecture, this is covered by the N-
to-one-to-M translation approach through CLIF, so
that there is no hard-coded bias towards any IE and
allowing easy integration of new IEs.

REQ4 The architecture must be agnostic w.r.t. the DSVML
editor tool, accepting the VM as input data exportable
frommultiple popular editors:Our architecture seeks
to be as independent as possible from any particular
modeling tool by relying on the declarative specifi-
cations of the languages to perform all processing
instead of relying on a particular set of technologies.

11

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

GPCE, October 22–27, 2023, Cascais, Portugal Camilo Correa Restrepo, Jacques Robin, and Raul Mazo

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

Our prototype implementation has been developed
and tested initially on the VariaMos [47] modeling
frameworkwhich has beenmodified to allow for the
declarative specifications needed for the prototype.
Further integration with other tools will require
determining how to add this functionality to them.

6.2 Limitations of the architecture and prototype
The architecture has one important omission that is worth
discussing. The architecture has an underlying assumption
that the models are graphical models with possibly a portion
of the model being text (constraints in CLIF). This has an
important effect on the abstract syntax and therefore inter-
pretation of the models: it is not yet clear how to deal with
purely textual VMLs that don’t use a well-known data in-
terchange format like JSON. The reason for this is simple.
Textual VMLs with their own grammar and structure would
need their parser to be integrated into the architecture. In
addition to this, a more abstract, common representation of
both the hybrid and textual models would need to be con-
structed such that it would serve the base for constructing
the semantics. Nevertheless, this seems possible with some
modifications to the architecture, with, in particular, a more
capable input management system.

The prototype we present is limited in some key ways. We
have developed the prototype utilizing the VariaMos mod-
eling environment, which has the underlying assumption
that all the graphical models are directed graphs where the
nodes can be typed and have attributes. This is sufficiently
general for the DSLs we’ve observed in the literature, though
one could imagine DSLs that use a more complex underlying
structure. We seek nevertheless to combat this limitation
through the abstract syntax specification mechanism which
has only been partially implemented in the current prototype,
given the limitation outlined in the previous paragraph.

6.3 Threats to validity
In addition to the limitations above, our work is subject to
internal and external threats to validity. In terms of Internal
Validity our primary concern is how feasible our architec-
ture is. To counter this threat, we have created a prototype
that covers as closely as possible the proposed architecture.
The converse of this is the correctness of the prototype, that
we’ve endeavored to test extensively. We have sought, there-
fore, to demonstrate its capacity to provide the functionality
envisioned in the architecture. Another further threat is tied
to the correctness of our architectural design. We have uti-
lized a standard and well-understood modeling language
(UML) for its definition and have sought to collect feedback
from colleagues and users of the tool, both from a developer’s
perspective and from an end-user perspective.

Now, in terms of external validity, we recognize that we
can’t provide guarantees on the exhaustiveness of the tools
surveyed, more recent efforts that the authors are unaware

of might have been proposed in the meantime. Nevertheless,
we have sought to base our overview on a recent and well
sourced survey of these very tools. An additional threat
concerns our ability to manage purely textual languages
within the architecture, as mentioned in the previous section.
To combat this we have designed a flexible and modular
architecture capable of being modified in this direction.

6.4 Future Work
To overcome our limitations, work continues in several di-
rections: first, textual languages, beginning with UVL, are
being integrated; second, work continues on enlarging the
set of reasoning requests possible, including having a more
fine grained control over the variables used for iteration;
third, more output languages, beginning with the Z3 SMT
solver, are being integrated and tested, to further guarantee
the robustness of CLIF as pivot representation; and, finally,
work is being done on adding an incremental solving compo-
nent (as opposed to iterative) in order to make interactions
far more efficient. This will all imply minor refinements of
the architecture, though we believe the core will remain
unchanged.
Another future work we envision is to treat the architec-

ture itself as an SPL, such that we could create fully config-
urable distributions for particular needs, i.e. include commer-
cial solvers if the licenses are present, and, more importantly,
give a larger freedom on the query formulation. We see value
in this direction because the decision system for DSPLs can
be modeled and then exported for whatever solver is sup-
ported, or even combinations of solvers, which could enable
portfolio [3] constraint solving using multiple engines.

7 Conclusion
In this paper, we have presented an innovative software
architecture to provide automated reasoning for SPLE. As
we have seen in section 5, its main contribution is to be
the first proposal focused on being agnostic with respect to
both the VML used to model variability, and the constraint
solving paradigm used to implement the reasoning. Such
agnosticism allows fully decoupling the VM and SPL asset
editing tools from the automated reasoning tools. We have
put forward four requirements for an architecture to achieve
such agnosticism. We then have presented fairly detailed
structural and behavioral models for the architecture and
discussed why it satisfies those requirements. Its key ideas
are (a) to avoid combinatorial explosion of components by
using a pivot standard semantic language and (b) pass as pa-
rameters declarative specifications of (i) the abstract syntax
and semantics of the VML used by the VM to analyze and
(ii) the analysis task itself.

We have validated this architecture by quickly refining
and instantiating these models allowing for four distinct
SPLE reasoning pipelines already available in our PLEIADES

12

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375

Generating Constraint Programs for Variability Model Reasoning: A DSL and Solver Agnostic Approach GPCE, October 22–27, 2023, Cascais, Portugal

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

framework prototype. Each one combines any of two VML
languages, respectively feature models and a context-aware
dynamic SPL VML, with solvers from two logical reason-
ing paradigms, respectively CLP, through libraries of SWI-
Prolog, and CSP, through the CSP solver integration layer
MiniZinc. We hope that our demonstration of the feasibility
of VML and solver agnostic SPLE reasoning services together
with the simplicity of instantiating the PLEIADES architec-
ture we propose into a working implementation, reusing
various VML and solvers, will foster more reuse of third
party SPL model editors and third party solvers in the SPLE
community.

References
[1] 2018. Information Technology – Common Logic (CL) – A Framework

for a Family of Logic-Based Languages – ISO/IEC 24707:2018. Technical
Report. International Organization for Standardization, Geneva, CH.
70 pages.

[2] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France.
2013. FAMILIAR: A Domain-Specific Language for Large Scale Man-
agement of Feature Models. Science of Computer Programming 78, 6
(June 2013), 657–681. https://doi.org/10.1016/j.scico.2012.12.004

[3] Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. 2015.
SUNNY-CP: a sequential CP portfolio solver. In Proceedings of the
30th Annual ACM Symposium on Applied Computing. 1861–1867.

[4] Michał Antkiewicz, Kacper Bąk, AlexandrMurashkin, Rafael Olaechea,
Jia Hui (Jimmy) Liang, and Krzysztof Czarnecki. 2013. Clafer Tools
for Product Line Engineering. In Proceedings of the 17th International
Software Product Line Conference Co-Located Workshops. ACM, Tokyo
Japan, 130–135. https://doi.org/10.1145/2499777.2499779

[5] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. 2017. Intro-
duction to description logic. Cambridge University Press.

[6] Don Batory, Clay Johnson, BobMacDonald, andDale VonHeeder. 2000.
Achieving Extensibility through Product-Lines and Domain-Specific
Languages: A Case Study. In Software Reuse: Advances in Software
Reusability, Gerhard Goos, Juris Hartmanis, Jan Van Leeuwen, and
William B. Frakes (Eds.). Vol. 1844. Springer Berlin Heidelberg, Berlin,
Heidelberg, 117–136. https://doi.org/10.1007/978-3-540-44995-9_8

[7] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Au-
tomated Analysis of Feature Models 20 Years Later: A Literature
Review. Information Systems 35, 6 (Sept. 2010), 615–636. https:
//doi.org/10.1016/j.is.2010.01.001

[8] Maicon Bernardino, Avelino F. Zorzo, and Elder M. Rodrigues. 2016.
Canopus: A Domain-Specific Language for Modeling Performance
Testing. In 2016 IEEE International Conference on Software Testing,
Verification and Validation (ICST). IEEE, Chicago, IL, USA, 157–167.
https://doi.org/10.1109/ICST.2016.13

[9] Daniel Le Berre and Anne Parrain. [n. d.]. The Sat4j Library, Release
2.2. ([n. d.]).

[10] Danilo Beuche. 2011. Modeling and Building Software Product Lines
with Pure::Variants. In Proceedings of the 15th International Software
Product Line Conference, Volume 2. ACM,Munich Germany, 1–1. https:
//doi.org/10.1145/2019136.2019190

[11] Goetz Botterweck and Andreas Pleuss. 2014. Evolution of Software
Product Lines. In Evolving Software Systems, Tom Mens, Alexander
Serebrenik, and Anthony Cleve (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 265–295. https://doi.org/10.1007/978-3-642-45398-
4_9

[12] Barrett R. Bryant, Jeff Gray, andMarjanMernik. 2010. Domain-Specific
Software Engineering. In Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research. ACM, Santa Fe New Mexico

USA, 65–68. https://doi.org/10.1145/1882362.1882376
[13] Juan José Cadavid, Juan Bernardo Quintero, David Esteban Lopez,

Jesus Andrés Hincapié, Antonio Brogi, Araújo João, and Raquel Anaya.
2009. A Domain Specific Language to Generate Web Applications.. In
CIbSE. 139–144.

[14] Camilo Correa, Raul Mazo, Andres O. Lopez, and Jacques Robin. 2023.
A Lightweight Method to Define Solver-Agnostic Semantics of Do-
main Specific Languages for Software Product Line Variability Models.
In SOFTENG 2023 - The 9th International Conference on Advances and
Trends in Software Engineering. IARIA: International Academy, Re-
search and Industry Association, Venise, Italy.

[15] Douglas Crockford. 2006. The Application/Json Media Type for
JavaScript Object Notation (JSON). Request for Comments RFC 4627.
Internet Engineering Task Force. https://doi.org/10.17487/RFC4627

[16] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo
theories: introduction and applications. Commun. ACM 54, 9 (2011),
69–77.

[17] Rina Dechter and David Cohen. 2003. Constraint Processing. Morgan
Kaufmann.

[18] I. Dejanović, R. Vaderna, G. Milosavljević, and Ž. Vuković. 2017.
TextX: A Python tool for Domain-Specific Languages implementation.
Knowledge-Based Systems 115 (2017), 1–4. https://doi.org/10.1016/j.
knosys.2016.10.023

[19] Andreas Demuth, Roberto E. Lopez-Herrejon, and Alexander Egyed.
2011. Cross-Layer Modeler: A Tool for Flexible Multilevel Mod-
eling with Consistency Checking. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foun-
dations of Software Engineering. ACM, Szeged Hungary, 452–455.
https://doi.org/10.1145/2025113.2025189

[20] Douglas C Engelbart. 1962. Augmenting Human Intellect: A Concep-
tual Framework. Menlo Park, CA 21 (1962).

[21] Thom Frühwirth and Slim Abdennadher. 2003. Essentials of constraint
programming. Springer Science & Business Media.

[22] José A Galindo and David Benavides. 2020. A Python Framework
for the Automated Analysis of Feature Models: A First Step to Inte-
grate Community Efforts. In Proceedings of the 24th Acm International
Systems and Software Product Line Conference-Volume b. 52–55.

[23] Michael R Genesereth and Richard E Fikes. 1992. Knowledge Inter-
change Format-Version 3.0: Reference Manual. (1992).

[24] Carla P Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman.
2008. Satisfiability Solvers. Foundations of Artificial Intelligence 3
(2008), 89–134.

[25] Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid.
2008. Dynamic Software Product Lines. Computer 41, 4 (April 2008),
93–95. https://doi.org/10.1109/MC.2008.123

[26] José Miguel Horcas, Mónica Pinto, and Lidia Fuentes. 2023. Empirical
Analysis of the Tool Support for Software Product Lines. Software and
Systems Modeling 22, 1 (Feb. 2023), 377–414. https://doi.org/10.1007/
s10270-022-01011-2

[27] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak,
and A. S. Peterson. 1990. Feature-Oriented Domain Analysis (FODA)
Feasibility Study:. Technical Report. Defense Technical Information
Center, Fort Belvoir, VA. https://doi.org/10.21236/ADA235785

[28] Christian Kröher, Sascha El-Sharkawy, and Klaus Schmid. 2018. Ker-
nelHaven – An Experimentation Workbench for Analyzing Software
Product Lines. In Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings. 73–76. https:
//doi.org/10.1145/3183440.3183480 arXiv:2110.05858 [cs]

[29] CharlesW Krueger. 2001. Easing the transition to software mass
customization. In International Workshop on Software Product-Family
Engineering. Springer, 282–293.

[30] Charles Krueger and Paul Clements. 2018. Feature-Based Systems
and Software Product Line Engineering with Gears from BigLever.
In Proceedings of the 22nd International Systems and Software Product

13

https://doi.org/10.1016/j.scico.2012.12.004
https://doi.org/10.1145/2499777.2499779
https://doi.org/10.1007/978-3-540-44995-9_8
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1109/ICST.2016.13
https://doi.org/10.1145/2019136.2019190
https://doi.org/10.1145/2019136.2019190
https://doi.org/10.1007/978-3-642-45398-4_9
https://doi.org/10.1007/978-3-642-45398-4_9
https://doi.org/10.1145/1882362.1882376
https://doi.org/10.17487/RFC4627
https://doi.org/10.1016/j.knosys.2016.10.023
https://doi.org/10.1016/j.knosys.2016.10.023
https://doi.org/10.1145/2025113.2025189
https://doi.org/10.1109/MC.2008.123
https://doi.org/10.1007/s10270-022-01011-2
https://doi.org/10.1007/s10270-022-01011-2
https://doi.org/10.21236/ADA235785
https://doi.org/10.1145/3183440.3183480
https://doi.org/10.1145/3183440.3183480
https://arxiv.org/abs/2110.05858

1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485

GPCE, October 22–27, 2023, Cascais, Portugal Camilo Correa Restrepo, Jacques Robin, and Raul Mazo

1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

Line Conference-Volume 2. 1–4.
[31] Philippe Lalanda, Julie A McCann, and Ada Diaconescu. 2013. Au-

tonomic computing: principles, design and implementation. Springer
Science & Business Media.

[32] Shih-Hsi Liu. 2010. Design Space Exploration for Distributed Real-Time.
VDM Verlag Dr. Müller.

[33] Mike Mannion. 2002. Using First-Order Logic for Product Line Model
Validation. In Software Product Lines: Second International Conference,
SPLC 2 San Diego, CA, USA, August 19–22, 2002 Proceedings. Springer,
176–187.

[34] John McCarthy. 1960. Recursive functions of symbolic expressions
and their computation by machine, part I. Commun. ACM 3, 4 (1960),
184–195.

[35] Marcilio Mendonca, Moises Branco, and Donald Cowan. 2009.
S.P.L.O.T.: Software Product Lines Online Tools. In Proceedings of
the 24th ACM SIGPLAN Conference Companion on Object Oriented Pro-
gramming Systems Languages and Applications. ACM, Orlando Florida
USA, 761–762. https://doi.org/10.1145/1639950.1640002

[36] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. 2007. MiniZinc: Towards a Standard
CP Modelling Language. In Principles and Practice of Constraint Pro-
gramming – CP 2007, Christian Bessière (Ed.). Vol. 4741. Springer Berlin
Heidelberg, Berlin, Heidelberg, 529–543. https://doi.org/10.1007/978-
3-540-74970-7_38

[37] Mahdi Noorian, Alireza Ensan, Ebrahim Bagheri, Harold Boley, and
Yevgen Biletskiy. 2011. FeatureModel Debugging Based onDescription
Logic Reasoning.. In Proceedings of the 17th International Conference
on Distributed Multimedia Systems, DMS 2011, October 18-20, 2011,
Convitto della Calza, Florence, Italy, Vol. 11. Citeseer, 158–164.

[38] Klaus Pohl, Günter Böckle, and Frank van der Linden. 2005. Software
Product Line Engineering: Foundations, Principles, and Techniques (1st
ed ed.). Springer, New York, NY.

[39] Camille Salinesi and Ral Mazo. 2012. Defects in Product Line Models
and How to Identify Them. In Software Product Line - Advanced Topic,
Abdelrahman Elfaki (Ed.). InTech. https://doi.org/10.5772/35662

[40] Pete Sawyer, Raul Mazo, Daniel Diaz, Camille Salinesi, and Danny
Hughes. 2012. Using Constraint Programming to Manage Configura-
tions in Self-Adaptive Systems. Computer 45, 10 (2012), 56–63.

[41] DC Schmidt. 2006. Model-Driven Engineering. Computer 39, 2 (2006),
25–31.

[42] Anna Schmitt, Christian Bettinger, and Georg Rock. 2018. Glencoe–a
Tool for Specification, Visualization and Formal Analysis of Product
Lines. In Transdisciplinary Engineering Methods for Social Innovation
of Industry 4.0. IOS Press, 665–673.

[43] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke,
Gunter Saake, and Thomas Leich. 2014. FeatureIDE: An Extensible
Framework for Feature-Oriented Software Development. Science of
Computer Programming 79 (Jan. 2014), 70–85. https://doi.org/10.1016/
j.scico.2012.06.002

[44] Susumu Tokumoto. 2010. Product Line Development Using Multiple
Domain Specific Languages in Embedded Systems. (2010).

[45] Juha-Pekka Tolvanen and Steven Kelly. 2018. Describing Variability
with Domain-Specific Languages and Models. In Proceedings of the
22nd International Systems and Software Product Line Conference -
Volume 1. ACM, Gothenburg Sweden, 300–300. https://doi.org/10.
1145/3233027.3233059

[46] Juha-Pekka Tolvanen and Steven Kelly. 2019. How Domain-Specific
Modeling Languages Address Variability in Product Line Development:
Investigation of 23 Cases. In Proceedings of the 23rd International Sys-
tems and Software Product Line Conference - Volume A (Paris, France)
(SPLC ’19). Association for Computing Machinery, New York, NY, USA,
155–163. https://doi.org/10.1145/3336294.3336316

[47] VariaMos Team. 2023. VariaMos Framework. https://variamos.com/.
Accessed: 2023-03-27.

[48] Angela Villota. 2022. Coffee : A Framework Supporting Expressive Vari-
ability Modeling and Flexible Automated Analysis. Ph. D. Dissertation.
Université Panthéon-Sorbonne - Paris I.

[49] Markus Voelter and Eelco Visser. 2011. Product Line Engineering
Using Domain-Specific Languages. In 2011 15th International Software
Product Line Conference. IEEE, Munich, Germany, 70–79. https://doi.
org/10.1109/SPLC.2011.25

[50] Danny Weyns. 2020. An introduction to self-adaptive systems: A con-
temporary software engineering perspective. John Wiley & Sons.

[51] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager.
2010. SWI-Prolog. arXiv:1011.5332 [cs]

[52] Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel. 2004. Towards a
UML Profile for Software Product Lines. In Software Product-Family
Engineering, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friede-
mann Mattern, John C. Mitchell, Oscar Nierstrasz, C. Pandu Rangan,
Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough Tygar,
Moshe Y. Vardi, Gerhard Weikum, and Frank J. van der Linden (Eds.).
Vol. 3014. Springer Berlin Heidelberg, Berlin, Heidelberg, 129–139.
https://doi.org/10.1007/978-3-540-24667-1_10

Received 7 July 2023; revised 10 September 2023; accepted XX YYYY
ZZZZ

14

https://doi.org/10.1145/1639950.1640002
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.5772/35662
https://doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.1145/3233027.3233059
https://doi.org/10.1145/3233027.3233059
https://doi.org/10.1145/3336294.3336316
https://variamos.com/
https://doi.org/10.1109/SPLC.2011.25
https://doi.org/10.1109/SPLC.2011.25
https://arxiv.org/abs/1011.5332
https://doi.org/10.1007/978-3-540-24667-1_10

	Abstract
	1 Introduction
	2 Background and Running Examples
	2.1 Variability Modeling Languages
	2.2 CLIF and Model Transformation
	2.3 Reasoning Tasks

	3 Overview of the Architecture
	3.1 High-Level Component Structure and Control Flow of the Architecture
	3.2 Revisiting Requirements and Design Principles

	4 Prototype
	5 Related Work
	5.1 State of the art VM tools
	5.2 Domain Specific Languages in SPL

	6 Evaluation and Discussion
	6.1 Requirements coverage
	6.2 Limitations of the architecture and prototype
	6.3 Threats to validity
	6.4 Future Work

	7 Conclusion
	References

