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Abstract
Verifying and configuring large Software Product Lines (SPL)
requires automation tools. Current state-of-the-art approaches
involve translating Variability Models (VM) into a formalism
accepted as input by a constraint solver. There are currently
no standards for the Variability Modeling Languages (VML).
There is also a variety of constraint solver input languages.
This has resulted in a multiplication of ad-hoc architectures
and tools specialized for a single pair of VML and solver, frag-
menting the SPL community. To overcome this limitation,
we propose a novel architecture based on model-driven code
generation, where the syntax and semantics of VMLs can
be declaratively specified as data, and a standard, human-
readable, formal pivot language is used between the VML
and the solver input language. This architecture is the first
to be fully generic by being agnostic to both VML and the
solver paradigm. To validate the genericity of the approach,
we have implemented a prototype tool together with declar-
ative specifications for the syntax and semantics of two dif-
ferent VMLs and two different solver Families. One VML is
for classic, static SPL (Feature Model) and the other is for
run-time reconfigurable dynamic SPL with soft constraints
to be optimized during configuration. The two solver fami-
lies are Constraint Satisfaction Program (CSP) and Constraint
Logic Programming (CLP).

CCS Concepts: • Software and its engineering→ Soft-
ware product lines; Software architectures; • Comput-
ing methodologies → Model verification and valida-
tion.

Keywords: Software Product Lines, Automated Reasoning,
Generic Architecture, Configuration Automation
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1 Introduction
Software Product Lines Engineering (SPLE) [38] is a col-
lection of engineering techniques for managing the design,
development, and subsequent evolution of large sets of soft-
ware products that share partially overlapping sets of re-
quirements and reusable software assets implementing them.
Considered as one whole, these products form the epony-
mous Software Product Line (SPL). Crucially, each product
in a SPL is a variant that includes a specific subset of the re-
quirements and reusable assets. This variability makes SPLE
unique: it needs to be managed across the entire product line
to control the quality and consistency of the products. To
carry this out, SPLE prescribes the construction, verification
and maintenance of an additional software artifact called a
Variability Model, that represents the relationships hold-
ing among the SPL’s variable requirements and the reusable
assets implementing them. These models have been used for
three main distinct purposes:
• Software Mass Customization [29] from a baseline soft-
ware versionwith automated variant code generation from
reusable artifacts.

• Design Space Exploration [32], i.e., determining which
set of design choices best satisfices1 a set of hard (i.e., must
have) and soft (i.e., nice to have) requirements.

• Context-aware Autonomic Adaptation [31, 50] through
runtime self-reconfiguration.

The third purpose involves embarking the VM as a runtime
artifact to support re-exploring the design space during op-
erations to find an alternative configuration that restores
requirement satisficing following an operational context
change that rendered the current configuration inadequate.
SPLs for such self-adaptive systems are called Dynamic
SPLs (DSPL) [25].
1Satisfice is a portmanteau word derived from satisf ying and suffice, con-
veying satisfaction to a sufficent extent rather than necessarily completely.
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In all three cases, the models support the semi-automatic
derivation of correct configurations, i.e., choices of cohesive
and consistent requirements that satisfy the business, tech-
nical and regulatory constraints captured by the Variabil-
ity Model. Real-life, industrial SPLs are too large and com-
plex to be manually verified, troubleshooted and correctly
configured [33]. To make things worse, these tasks need
to be repeated after each evolution of the SPL during its
life-cycle that routinely spans over multiple decades [11].
Automated reasoning must thus be used to repeatedly verify,
troubleshoot and (re)configure an SPL at initial design-time,
evolution-time and even runtime throughout its life-cycle.
In most cases, the augmented intelligence [20] flavor of auto-
mated reasoning is required, in which the reasoning must be
explainable to the team of human engineers and operators
managing the SPL and that have the final say concerning
each configuration or defect correction choice.
Today, there is no accepted standard for SPL Variabil-

ity Models, so every SPLE automation tool uses its own
Domain-SpecificVariabilityModeling Language (DSVML).
However, despite superficial syntactic differences, at the se-
mantic level, most DSVMLs used for Software Mass Cus-
tomization define cohesive requirement sets, generally called
features, and share four key expressive capabilities:

SFM1 Organize these features into abstraction and compo-
sition hierarchies and associate the lowest level ones
with reusable and composable concrete software as-
sets implementing them.

SFM2 Distinguish between mandatory features shared by
all configurations from optional elements specific to
strict configuration space subsets.

SFM3 Specify ranges of alternative possibilities for the re-
finement of a higher-level feature into a set of lower-
level features.

SFM4 Specify simple required co-occurence or exclusion
constraints between two features across the abstrac-
tion hierarchy.

DSVML providing such expressive capabilities are gen-
erally referred to as Simple Feature Models (SFM). Four
additional expressive capabilities are provided by DSVML
which are often called Extended Feature Models (EFM):

EFM1 Structure features into sets of attributes of various
types rather than limiting them to Boolean variables.

EFM2 Specify ranges of alternative possible values for those
attributes.

EFM3 Specify multiplicity constraints on those attributes
and on relationships among features.

EFM4 Specify complex constraints on the values of attributes
of features located anywhere in the abstraction hier-
archy.

Whether SFM or EFM, all models used for Software Mass
Customization only contain hard constraints that must be

collectively consistent and fully satisfied by all valid con-
figurations. In contrast, models used for Design Space Ex-
ploration and Autonomic Adaptation also contain soft con-
straints to satisfice as much as possible rather than necessar-
ily fully; thus their modeling languages need to be semanti-
cally more expressive.
A wide variety of approaches have been proposed to im-

plement SPL model verification and model-guided SPL con-
figuration in SPLE automation tools. Just like for Variability
Modeling Languages, there is also currently no accepted
standard API for such tools. Nevertheless, the overwhelming
majority of them include a translator of the DSVML to some
logical Knowledge Representation Language (KRL). This
allows them to reuse practically scalable Inference Engines
(IE) developed over the last 50 years for formal software en-
gineering and artificial intelligence. Four main paradigms of
such IEs have been used to automate SPL model verification
and model-guided configurations:

• SATisfiability (SAT) solvers [24] and their extensions
with Satisfiability Modulo Theories (SMT) [16].

• Constraint Satisfaction Problem (CSP) solvers and their
extensions forConstraintOptimization Problems (COP)
[17].

• Logic Programming (LP) engines and their Constraint
LP (CLP) extensions [21].

• Description Logic (DL) engines and their semantic web
ontology reasoning extensions [5].

Notably, the foundational feature-based SPLE tool FODA
used an LP engine [27], the original version of VariaMos [47]
used a CLP engine, FeatureIDE [43], FlamaPy [22], Splot [35],
Glencoe [42], Kernel Haven [28] and pure::variants [10], all
use a SAT solver, Familiar can use either an SMT or a CSP
solver [2], COFFEE used a CSP solver [48] and AUFM used
a DL engine [37].

Each pair of KRL and IE from these paradigms corresponds
to a different trade-off in terms of semantic expressiveness,
inference scalability and reasoning explainability. The best
KRL for a given SPL reasoning task is thus very much de-
pendent on both the nature of the task and the semantic
expressiveness of the DSVML used to model variability [7].
Since SPLE is a heavy upfront investment method whose “Re-
turn on Investment” takes a fairly long time before becoming
tangible [38], SPLE projects have long life cycles. Therefore,
both the expressiveness requirements of a DSVML and the
automated reasoning tasks to analyze the VM and correctly
(re)configure the SPL can evolve significantly during its life
cycle.

The main common limitation of the state-of-the-art SPLE
automation tools listed above is their ad-hoc architectures
that tightly couples a single DSVML with an IE from a given
automated reasoning paradigm. This impedes one from mak-
ing the choice of IE follow in lockstep the evolution of the
DSVML and reasoning task requirements at a cost that is low
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enough to avoid denting the long-term benefits of adopting
SPLE.

In an attempt to overcome this severe limitation of current
state-of-the-art SPLE tools, we try, in this paper, to answer
the following open research question:
How to architect an SPLE automation tool so that IEs from

various paradigms can be seamlessly plugged in and out of
it at minimal development cost to adapt the tool’s reasoning
capabilities to the evolution, throughout the SPL’s life cycle, of
both the semantic expessiveness of the DSVMLs that it supports
for variability modeling and the analysis and configuration
automation tasks to run on the Variability Model?
Our first research hypothesis to answer this question is

that such an architecture must satisfy the following require-
ments:

REQ1 Support low-cost extension of existing DSVMLs and
addition of new DSVMLs.

REQ2 Support low-cost addition of new automated rea-
soning tasks to run on the VM.

REQ3 The architecture must be agnostic w.r.t. the logical
KRL and IE paradigm used for automated reasoning
on the VM, supporting low-cost addition of inter-
operability with solvers from different paradigms.

REQ4 The architecture must be agnostic w.r.t. the DSVML
editor tool, accepting the VMas input data exportable
from multiple popular editors.

To satisfy these requirements, we propose the following
design principles, inspired fromModel-Driven Engineering
[41]:

DP1 The concrete and abstract syntaxes of the DSVML
should be decoupled from one another.

DP2 They both should be declaratively specified as data in a
widely used exchange format, rather than hard-coded
in the SPLE tool.

DP3 The semantics of the DSVML should also be declar-
atively specified as data in a widely used exchange
format encoding a mapping from the abstract syntax
elements to expressions in a formal KRL.

DP4 The set of reasoning automation tasks to be run on the
VM should also be declaratively specified as data in a
widely used exchange format, which must furthermore
be decoupled from any specific IE KRL.

DP5 The many-to-many translation from the multiple
DSVMLs to the multiple IE KRLs should be decoupled
into a pipeline of N many-to-one transformations
to a standard pivot intermediate language followed
by M one-to-many transformations from this pivot,
to avoid the combinatorially explosive cost of devel-
oping and evolving NxM direct DSVML to IE KRL
transformations.

DP6 This standard pivot language must be easily inter-
pretable by a wide range of stakeholders.

Our second research hypothesis is that REQ1 and REQ4
can be satisfied by the combination of DP1 to DP3, REQ2
can be satisfied by DP4 and REQ3 by that of DP5. In the rest
of the paper, we attempt to verify our two hypotheses.
To do so we proceed as follows. In section 2, we start

by presenting two SPLE reasoning task examples that we
have used as a first step toward validating these hypothe-
ses. While they are small enough to fit in this article, they
are purposely representative of very different VM language
families used for very different VM purposes. In that sec-
tion, we also explain how these tasks can be carried out
by leveraging, as intermediate pivot language between the
two different input DSVML and any logical IE input KRL,
the ISO standard for logical IE interoperability CLIF (Com-
mon Logic Interchange Format) [1] following the original
proposal of [14]. Next, in section 3, we propose a detailed
SPLE tool architecture following the design principles DP1
to DP5 listed above. We then discuss the prototype SPLE tool
PLEIADES (Product Line Engineering Intelligent Assis-
tant for Defect detection Explanation and Solving) that
we (a) implemented to show the practical feasibility of this
architecture and (b) tested on the two example tasks pre-
sented in section 2. In section 5, we then compare PLEIADES
with state-of-the-art SPLE tools. Since none of them aimed
to satisfy requirements REQ1 through REQ4, nor explicitly
followed design principles DP1 to DP5, this comparison is
grounded on various tool versatility criteria which are met
by following these principles. In section 6 we discuss the
limitations of both the presented architecture and its cur-
rent implementation in terms of satisfaction of requirements
REQ1 to REQ4 and the future work that we intend to carry
out to overcome them. Finally in section 7, we conclude by
recapitulating the original contributions of the presented
research.

2 Background and Running Examples
To illustrate our approach on concrete examples, we now
present two of them. The first concerns a defect detection
verification task on an SFM. The second concerns an optimal
reconfiguration search for a DSPL that leverages a DSVML
specifically designed for that purpose and presented in [40].
They thus represent two intentionally distant points in the
space of the VM diversity encountered in the literature.

2.1 Variability Modeling Languages
2.1.1 Simple Feature Models. In Fig. 1, we present a
minimalist SFM example. Its graphical concrete syntax shows
features as rectangular vertices in a directed graph and the
hierarchical decomposition of features in mandatory and
optional sub-features as edges ending with a filled or empty
circle (respectively). This decomposition forms a tree. Edges
ending with an arrow represent exclusion or co-occurence
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Figure 1. First part of our running example with a synthetic Feature Model. The query specifying the iterative search for dead
features in the model is beside the model.

constraints among feature pairs in different branches of the
tree.

Verification reasoning tasks on such VMs generally search
for defects, which were comprehensively categorized in [7].
In figure 1 we show a SFM which contains two dead feature
defects. A feature is said to be "dead" if, although it is present
in the VM, it can never be selected in any valid configuration
due to contextual constraints relating to other features. Fol-
lowing principle DP4, the text beside the SFM diagram is the
declarative specification in JSON [15] of the search for dead
feature defects reasoning task. The one-way widgets on the
top-left features F4 and F5 visualize the result of this task. It
detects that F4 and F5 are dead. F4 is dead as excluded by the
selection of F3, which must be selected in all configurations
as a mandatory descendant of the top-level feature F1. F5 is
also dead as a child of F4, a dead feature.

2.1.2 Sawyer et al.’s DSPL VML. In Fig.2, we present a
second example of reasoning task. This time it is a search
for an optimal reconfiguration leveraging the context-aware
DPSL VM of a flood early-warning system. The vocabulary
of concepts and relations of this DSPL DSVML [40] is much
more extensive than that of SFMs used in the first example.
They are the following:

• Hard goals, shown as green parallelograms, determine the
functional requirements of the system and are analogous
to features in feature models. Hard goals are structured in
a decomposition hierarchy where higher level ones can be
achieved by achieving all their lower level components.

• Soft Goals, shown as blue clouds, encode the non-
functional requirements of the system and can be
satisficed on a 0 to 4 scale, which is encoded as “--”, “-”,
“=”, “+”, “++” in the model. They are themselves structured
into a decomposition hierarchy. The level of satisficing of
a higher level soft goal in this hierarchy is the average of
the satisficing level of its lower level components.

• Context Variables, shown in blue rectangles on the right,
encode the state of the system’s context among symbolic
value enumerations.

• Operationalizations, shown as gray hexagons, are concrete
software assets that can implement the hard goals.

• Bundles, shown as white circles, contain integer range
expressions for the multiplicity of the operationalizations
that can implement a hard goal.

• Claims, shown as white trapezoids, express the level to
which operationalizations satisfy soft Goals as a function
of which has been selected.

• Soft Influences, shown as grey ellipses, relate the context
variables to the soft goals, and determine the required
level of satisfaction when the given state is determined
by the context, e.g., if CV1 is “Low”, the required level of
satisfaction of SG5 is “++”.

The VM in Fig. 2 models the various redundant means
of communications available to transfer sensor data in a
distributed autonomic flood early-warning system. It also
supports determining which set of means represent the best
trade-off between energy consumption, fault tolerance and
prediction accuracy in various flood risk contexts.

The contrast between the VM of figures 1 and 2 highlights
the great diversity of DSVMLs and the reasoning tasks to
carry out on them.

2.2 CLIF and Model Transformation
The language used to encode the semantics of the differ-
ent variability modeling languages, CLIF, is part of a larger
family of (logic) languages “designed for use in the represen-
tation and interchange of information and data among [...]
computer systems” [1] named Common Logic. CLIF has not
been created ex nihilo, but rather, is a simplified descendant
of the Knowledge Interchange Format Version 3 [23] KRL. It
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Figure 2. Second part of our running example with a model using Sawyer et al.’s DSPL VML. This model reproduces the
original example from the paper [40] for a flood early-warning system. As with our other example, in addition to a reasoning
query to solve (on the bottom right), this time, an optimization problem to find an optimal configuration whose additional
constraints are shown below the model (bottom left).

uses a LISP [34] derived syntax to represent logical expres-
sions. For example (𝑎 ∧ 𝑏) would be rendered as (and a b)
where 𝑎 and 𝑏 can also be nested subexpressions.

Figure 3 exemplifies the overall mechanism underlying the
architecture. Given a fragment of a diagram and the corre-
sponding semantics specification given as a JSON [15] object,
our architecture would allow then for the construction of the
human- and machine-readable semantics in CLIF. It would
then allow one to target different solvers based purely on the
CLIF semantics. The object, then, of this article, is to provide
a detailed account of how this is achieved and how this archi-
tecture overcomes the key limitation of ad-hoc architectures
and tools specialized for a single pair of variability modeling
language and solver.

2.3 Reasoning Tasks
One of the primary goals of our approach is to allow practi-
tioners to perform reasoning tasks on their models through
a simple specification mechanism to avoid the need to under-
stand the particular details of the underlying implementation
or how to perform meta-programming, for example. Both of
our running examples (Figs. 1 and 2) include a JSON object
that encodes the reasoning request that is to be made about
the model. For the Feature Model, we perform an iterative
reasoning task that corresponds to searching for dead fea-
tures [7]. This object informs the backend of the operations
required for the reasoning task. The first attribute “opera-
tion” determines what type of problem will be solved( e.g. a
satisfiability check, finding a concrete solution, or solving

an optimization problem). The second, “solver”, tells the
system which runtime to utilize for the query.

The two attributes above are always required and set the
main parameters of the system. The (optional) attribute “iter-
ate_over” allows the user to perform a succession of queries
on the model. Its value is a list of objects that determine how
the elements will be modified in each run of the iteration. In
the concrete case of Fig. 1, it will iterate over all “Features”,
setting their associated variable to 1, i.e., selected. The result
of the reasoning task is then overlayed on the model as a red
prohibition/one way sign showing that those two features
are not selectable in any valid configuration.

The other attributes depicted in Fig. 2, “optimization_target”
and “optimization_direction” serve a different purpose.
They parametrize the search for optimal solutions where the
optimization expression is a variable in the desired direction,
e.g. maximizing it. At the very bottom of Fig. 2 are the textual
constraints that complement the graphical model and permit
the construction of the optimization problem. They are writ-
ten in CLIF right alongside the Graphical models and are part
of them, exhibiting our support for hybrid textual/graphical
models. The key takeaway of these constraints is that they
define a set of equations related to the model elements and
ultimately allow one to equate the optimization variable to
a complex expression. In this case, our objective variable
is ObjValue which is defined as a weighted (shown below)
sum over the satisfaction level of claims, soft influences and
soft goals as defined above. Since we seek to simulate the
behaviour of a context-aware Dynamic SPL, we also provide
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Figure 3. Concrete examples of translation using the translation rules specification for Feature Models (top) and Sawyer et
al.’s DSPL Variability Modeling Language (bottom).

the context values to influence the search for an optimal
solution by setting the context variables (blue boxes on the
right) to one of their possible values.
(and (int ObjValue)

(= ObjValue ((1000*TotC)+(100*TotSD)+TotNFR)))

3 Overview of the Architecture
As mentioned in the introduction, the key contribution of
this article is a generic architecture for reasoning on VMs
that is agnostic to both the input VM and the IE used for
reasoning (and hence its KRL). We propose a client-server
web architecture in which variability model verification and
configuration reasoning functionalities are provided as web
services accessible through a REST API endpoint. With this
approach, multiple VM editor clients can send HTTP re-
quests for VM verification or SPL configuration tasks and
receive as response the result of the automated reasoning per-
formed by the constraint solvers hosted by the server. This
choice of a web service architecture allows fully separating
the concern of editing a VM from the concern of reasoning
on it. It also insures full decoupling of the implementation
platforms respectively used for (a) VM editing, (b) transla-
tion of VM reasoning requests into constraint solver inputs
and back from constraint solver outputs into VM reasoning

responses and (c) constraint solving. Additionally, it pro-
vides an installation-free friction-less usage of the reasoning
services.

3.1 High-Level Component Structure and Control
Flow of the Architecture

The UML diagram in Fig. 4 shows the structural model of the
PLEIADES architecture that we propose for SPLE reasoning
services. It shows its main components, the signatures of
the operations that they implement, together with the data
types of each signature parameter. While this diagram is
technically a class diagram, to remain as agnostic as possible
with respect to the modeling or programming paradigm, it
contains the very general concepts of components (a.k.a.,
service, module or package in different implementation plat-
forms) and data types, rather than classes, which may have
implied the adoption of class-based object-orientation to
implement our architecture.

The SPLE Reasoning Web Service is the top-level com-
ponent of the architecture. It answers web requests that
contain as their payload a serialized JSON representation of
the reasoning request to execute on the server. As shown at
the top-left of Fig. 4, this Serialized Reasoning Request
includes four top-level properties: (a) the VM to analyze, (b)
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Figure 4. High-level components and data types of the PLEIADES architecture

the specification of the reasoning task to carry out for the
analysis, (c) the abstract syntax specification of the VML
used by the VM to model the variability of an SPL, and (d)
the semantic specification of the VML in the form of a map-
ping between VML model elements and logical sentences
in CLIF. It is the fact that the reasoning request comes with
declarative specifications of the abstract syntax and formal
semantics of the VML in which the VM is modeled that
allows VM reasoning services following this PLEIADES ar-
chitecture to be VML agnostic. And it is also the fact that the
VML’s formal semantics are expressed in CLIF, a standard
for logical inference engine interoperability, whose expres-
siveness subsumes that of all constraint solvers widely used
for SPLE automated reasoning, that allows VM reasoning
services following the PLEIADES architecture to be solver
agnostic.
In addition to its public answer operation endpoint, the

SPLE Reasoning Web Service also encapsulates three pri-
vate operations: one to deserialize the reasoning request
JSON string into an instance of the Reasoning Request
data type, one to generate the instance of the Reasoning
Response data type from the result returned by the solver
called to answer the Reasoning Request in a solver agnos-
tic format and one to serialize this Reasoning Response
data type instance into a JSON string.

This top-level component also has access to the operations
of its nested components. Let us now review them in top-to-
bottom order as depicted in Fig. 4. The first is the VM2CLIF
Translatorwhich translates the VM data structure contained
in the Reasoning Request data structure into a CLIF text
by simultaneously leveraging the VM syntax and semantic
specifications that accompany the VM in the Reasoning
Request.

The second is the CLIF2GenericCSP Translator which
translates the CLIF text representing the semantics of the
VM into a semantically equivalent solver-agnostic CSP rep-
resentation of the VM. As shown at the top right of Fig.4,
this representation is simply a set of constraints relating
variables, each one associated with its domain of possible
values. This translation occurs in two steps. The first is to
parse the CLIF text into an Abstract Syntactic Tree (AST)
and the second is to generate, from this AST, the constraints,
variables and domain data types of the solver-agnostic CSP.

The third is the Generic2SpecificCSP Translatorwhich
translates this solver-agnostic representation of a CSP into
one accepted as input by the solver chosen in the Reasoning
Task Specification. This component is also used to trans-
late the solver output back in the other direction into a
Solver Agnostic CSP Solution. Note that due to its purely
declarative, relational and intentional nature, a CSP and its
solution can be uniformly represented by the same three data
types: Constraint, Variable and Domain. A CSP solution
is merely a CSP with less constraints and more variables
with domains reduced to a singleton [17]. As shown at the
bottom-left of 4, the Reasoning Response data type asso-
ciates the value of those singleton domains with the VM
element represented by the CSP variable whose domain has
been reduced to a single value. That value is injected in the
Reasoning Response that is then serialized and sent back
to the client VM editor.

The fourth is the Solver Controller, the most complex
component of the architecture. Understanding its role re-
quires realizing that many VM verification tasks cannot be
directly executed through a single call to a constraint solver.
They rather require meta-programming an iteration over the
VM elements in which, at each step, the initial CSP represen-
tation of the VM is modified by adding or removing some
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Figure 5. Activity diagram detailing the operation of our achitecture.

constraints and the solver is called on this modified CSP [39].
Depending on the result returned by the solver at each step,
the iteration proceeds to the next step or stops. During the
iteration, the results of each solver call are accumulated in
a set. The IterativeBridgeCall operation of the Solver
Controller implements this iteration. It returns a set of
Solver Output data type instances.
As an example of this need for iteration, let us consider

the search for so-called dead features in a feature model:
i.e., those that cannot be selected in any valid configuration.
The declarative specification of this task as a JSON object
is shown beside the model of Fig.3. It defines a strategy for
the Solver Controller to find dead features in the VM [7].
It consists of iterating over the VM features, and, for each
of them, adding to the CSP, representing the VM, the new
constraint that this feature is selected ("with_value": 1)
and checking whether this makes the CSP unsatisfiable. To
be able to repeatedly call the requested solver, the Solver
Controller encapsulates a set of bridges, one for each solver
to be integrated in the SPLE Reasoning Web Service. The
role of each bridge is to start a new instance of the solver,
call its API to pass the CSP to solve at each iteration of the
IterativeBridgeCall operation and pass the result of each
such call back to the Solver Controller.

The control flow of the top-level answer operation of the
root SPLE Reasoning Web Service component is modeled
by the UML activity diagram of Fig.5. It shows the input and

output parameter of the answer and in what order this oper-
ation internally calls the other operations of the architecture.
It also shows the data structures that these calls exchange as
arguments. At a high-level, this activity is divided in three
main phases. The first is the pipeline on the left side of Fig.5
that progressively transform the Serialized Reasoning
Request received from the VM web client editor into an in-
put for the solver (Solver Input) chosen as a property of the
Serialized Reasoning Request. The second is the loop of
calls to the solver made by the Solver Controller shown
in the top right quadrant of Fig.5. The third and last phase
is another pipeline, shown in the bottom right quadrant of
Fig.5, that translates the solver outputs accumulated during
the iteration into a Serialized Reasoning Response to
send back to the web client editor.

3.2 Revisiting Requirements and Design Principles
In light of the requirements and design principles we’ve out-
lined in the Introduction, it is important to highlight how our
architecture reflects these principles and above all meets the
requirements. Design principles DP1 and DP2 are reflected
first in the clear separation of the data types shown in Fig. 4,
where every concern has its own dedicated data structure
(and hence treatment in the function signatures in the com-
ponents). They are also reflected in the envisioned operation
of the architecture shown in Fig. 5, where they are taken as
user-specified specifications (as part of the Reasoning Re-
quest) instead of being hard-coded into the architecture. The
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Figure 6. Current PLEIADES prototype instantiating the generic architecture

same is also true for PrincipleDP3when it comes to the spec-
ification of the semantics. As for the widely used exchange
format, JSON [15] is well supported and certainly widely
used. In addition, concerning the enconding into a formal
KRL, this is covered by the translation into CLIF based on the
semantics specification, allowing virtually any DSVML with
first order semantics to be translated into it. Considering
that we have met these principles with our architecture, this
would cover requirements REQ1 and REQ3.

Design Principle DP4 is handled in much the same way
as DP2, wherein JSON is again used to allow the user to
tailor his specification for his reasoning task with no need to
manually hard-code it in the system, as described in Section
2.3. This would then cover requirement REQ2. Principle
DP5 is, firstly, contingent on the earlier principles being met,
and, second, is covered by the VM transformation outlined
in Fig. 5. Indeed, a significant portion of the architecture is
dedicated to enabling this translation, as evidenced by both
the component solely dedicated to it (VM2CLIF Translator
shown in Fig. 4) and the subsequent components that are
dedicated to the treatment of the generated CLIF to arrive
at the solvers’ input. To be clear, what this achieves is to
completely decouple integrating DSVMLs and IEs into the
architecture by linking both through CLIF and meeting re-
quirement REQ3.

Design principle DP6 stands alone as it is tied to a consid-
eration that is not purely functional, as are the requirements,
but rather, it is tied to the very nature of the architecture, that
is, easing the use and analysis of VMs by different stakehold-
ers without needing to dive into the details of the specific
underlying solvers. This also aids users to construct (and
debug) new DSVMLs as they can examine the semantics in
CLIF of their models independent of any particular solving
technology.

4 Prototype
To validate our architecture and its feasibility for construct-
ing a reasoning platform that covers all of the requirements
outlined above, we have implemented a prototype in Python
based on this architecture. Fig. 6 shows how the prototype
specializes the components outlined in the architecture. This
prototype’s internal component structure closely reflects the
architecture. A key element of our prototype is the integra-
tion of multiple solvers from different solver families: SWI
Prolog [51] andMiniZinc [36] (which allows us to target mul-
tiple Constraint and Integer Programming Solver libraries).
To implement the pivot language, we wrote our own "CLIF
Parser" with the TextX library [18] based on the grammar
described in the latest version of the ISO standard [1].

We demonstrate our approach within an open-source tool
called VariaMos [47] for all visualization concerns, and for
the specification of the concrete visual syntax, the abstract
syntax and the formal semantics in JSON format. The exam-
ples shown in Figs. 1 and 2, and the results shown, were all
done within this tool. We have modified the tool so that the
reasoning requests can be made directly from it by specify-
ing the address of the reasoning web service. We have made
the prototype available on GitHub as an open source tool2.

5 Related Work
5.1 State of the art VM tools
In this section, we examine state-of-the-art tools with aims
similar to ours that are currently available, mature and well
documented as reported by a recent survey [26], with the ad-
dition of some others that we consider particularly relevant.
The tools we’ve identified are: Feature IDE [43], its related
project FAMILIAR [2], FlamaPy [22], the COFFEE Frame-
work [48], SPLOT [35], Glencoe [42], ClaferTools [4], Kernel
2https://github.com/ccr185/semantic_translator. The use manual is in the
repository’s wiki page: https://github.com/ccr185/semantic_translator/wiki
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Table 1. Characteristics of State of the Art Tools

Tools

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Architecture

Standard Modeling Language P N N P P N N N N N Y
Architecture Complexity 36 14 9 36 27 ? 4 32 ? ? 50
Structural(a) & Behavioral Models(b) (a) (a) N (a) Y N N N N N Y
Architectural Pattern A B C D E F F G H ? I

Variability
Model Support

Integer Attributes Y N Y Y N N N Y N ? Y
First Order Constraints N N Y P N N Y N N N Y
Context Aware Dynamic SPL P P N N N N N Y N N Y
Human Interpretable VM Semantic
Language

P N N N N N N P N N Y

Solver Support

Integer Domains P P Y Y N N N Y N ? Y
First Order Constraints N N N N N N N Y N ? Y
Optimization Y ? Y Y Y Y ? Y N ? Y
Meta-Programming Y Y Y P Y ? Y ? Y ? Y
Incremental Solutions Y Y Y Y Y Y Y Y Y ? Y

Reasoning Task
Spec Support

Declarative Verification Task
Specification Language

N N P N Y N N N N ? Y

Declarative Configuration Task
Specification Language

N N P N Y N N N N ? Y

Standards Leverages Existing Standards N N N P N N N N N ? Y
Tools: (1) FeatureIDE; (2) FlamaPy; (3) FAMILIAR; (4) COFFEE; (5) Kernel Haven; (6) SPLOT; (7) Glencoe; (8) ClaferTools; (9) Pure::Variants; (10) Gears; (11) Our Approach
Architecural Patterns: A Java API + Eclipse Plugin; B CLI + Python API (Plugin-Based); C CLI + Java API + Eclipse Plugin; D 3-Layered Web Service; E 3 Layered Monolith with
Plugin System; F Client/Server (With no further details); G Haskell API/Web Server + Web Client; H IDE Plugins (With no further details); I Multi Layer Python API/Web Server +
Pivot Language
Legend: Y – Yes; N – No; P – Partial Fulfillment; ? – Unknown/Unclear;

Haven [28], pure::variants [10], and Gears [30]. Though most
of these tools also cover other use-cases such as modeling,
visualization or code generation, we focus on the verification
pipelines.

In Table 1 we present an analysis of the characteristics of
these tools. We divide our analysis into five main dimensions:
• First, we examine the different approaches from a purely
architectural perspective. Of interest are the following
characteristics: whether the approaches are well docu-
mented with standard modeling languages like the UML;
the detail and granularity of the models as a function of
the quantity of elements they contain; whether the mod-
els are structural, behavioral, or both; and, finally, what
general architectural pattern is applied for their tool. We
also analyze the interaction with model editors as part of
their architectural patterns related to requirement REQ4.

• Next, we analyze the support their respective approaches
have for the diversity of variability modeling languages.
This includes the treatment of integers, and first-order
constraints among the elements of a variability model.
Two other key factors are whether the languages support

concepts of context-aware dynamic SPLs and whether
the semantics of the variability models are expressed in
a human-interpretable language, or whether they are im-
plicit as part of the tools’ internal pipelines. This is related
to requirement REQ1 and the types of languages sup-
ported by competing tools.

• We analyze in a similar way the support for different solver
features among the tools. We must, nevertheless, highlight
the fact that our analysis of these features relates to the
capabilities of the solvers themselves and not necessarily
as they are used within the tool. For instance, though Fea-
tureIDE has a mechanism to handle numeric attributes
in their models, and their solving backend, a modified
SAT4J [9], it cannot run automated verification or con-
figuration tasks on these aspects of the models. Among
the characteristics we examine we find the treatment of
integer domains; whether there are first order constraints;
whether optimization can be run in addition to pure solv-
ing; whether there are meta-programming mechanisms
to control the behavior of the solvers; and whether the
solvers can present series of solutions without restarting
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the search space exploration from scratch. This is tied to
our requirement REQ3 and the backend support offered
by the different tools.

• We also analyze the support for declarative specifications
of the reasoning tasks to be performed and whether this is
declarative and user-specifiable. This is related to require-
ment REQ2.

• Finally, we analyze the use of internationally recognized
standards as part of the proposals as part of our analysis
tied to our design principle DP6.

From this one can conclude that all of the approaches cited
follow an approach of transforming the variability model
into an input for a constraint solver. (It is worth repeating
that here the term “constraint” is to be understood in its gen-
eral sense, thus including other families such as SAT solvers,
SMT solvers, etc.) We, therefore, have integrated these ideas
and seek to generalize them to provide a truly generic ar-
chitecture to perform these tasks and, moreover, lift the veil
on the details of how these transformations are performed.
Notably, the characteristics of the competing approaches
tied in directly to our formulation of the requirements for
the architecture.

5.2 Domain Specific Languages in SPL
A key feature of our architecture is its agnosticity w.r.t.
DSVMLs; while one can make use of Feature Models and all
its derivatives, the use of DSLs as alternative VMLs has been
well attested in the literature, whose fit as alternatives to
feature models is highlighted in [12], with some of the first
proposals aiming to integrate textual DSVMLs directly into
artefacts [6]. This was further explored in a survey article
[49] where all the possible combinations of DSLs and Feature
Models (and variations thereof) were explored, concluding
that they may coexist to different degrees in a project, or
that one may outright replace the VM with a DSVML model.
Though their focus was primarily on textual-based DSLs,
other authors have found it important to construct Graphi-
cal DSL based proposals. In this vein, the work of Demuth et
al. [19] is particularily important. They proposed a tool that
would allow one to construct DSLs and their meta-models all
as part of a single graphical tool. This allows the generation
of artefacts from the models since all of their elements are
ultimately mapped to a restricted subset of UML, though the
analysis capabilities were quite limited.
There have been other approaches to use and integrate

Graphical DSLs for Variability Modeling, such as [44], pre-
senting a case study of a DSL for creating variants of robot
software. Several approaches hinged on creating custom
UML profiles [13, 52] to aid in the automated generation of
websites. A large set of industrial case studies where Graphi-
cal DSLs for managing variability were employed has also
been presented [46], highlighting the use of a commercial
DSL development tool [45]. This tool has also been used for

creating a graphical DSL for an automatic performance test
generation approach based on a product line approach [8].

These approaches, however, are all held back by one fun-
damental limitation which is the need for an ad-hoc imple-
mentation to construct a formal representation (if they do
so at all), which does not allow one to tailor the underly-
ing reasoning to the particular characteristics of the DSL,
as we have done with Sawyer et al.’s language [40], which,
though originally a graphical DSL for DPSL without any
code generation capabilities, we have brought directly into
our approach as a key demonstrator of its capabilities.

6 Evaluation and Discussion
6.1 Requirements coverage
Given the novelty of our approach, and the mechanism em-
ployed, we begin first with an analysis of the coverage of
our requirements by our approach. This analysis is informed
both by our analysis of the architecture in Section 3 and the
lessons learned from the prototype implementation.
REQ1 Support low-cost extension of existing DSVMLs and

addition of new DSVMLs: Our approach is specifi-
cally designed to use a declarative specification of
the modeling languages, and, within reason, any
VML could be handled by our approach. We illus-
trate this variety by implementing and testing our
implementationwith two languages that differ greatly
syntactically and semantically.

REQ2 Support low-cost addition of new automated reason-
ing tasks to run on the VM: Our architecture is de-
signed to handle precisely this, with a view on ex-
posing a large variety of operations to the user so
that as new DSVMLs are created, it is simple to
create the corresponding reasoning tasks. As a con-
sequence, the prototype reflects this and has been
demonstrated to be robust enough to support very
different reasoning tasks through the same mecha-
nism.

REQ3 The architecture must be agnostic w.r.t. the logical
KRL and IE paradigm used for automated reasoning
on the VM, supporting low-cost addition of interoper-
ability with solvers from different paradigms: Given
that multi-solver support has been a key design
goal for the architecture, this is covered by the N-
to-one-to-M translation approach through CLIF, so
that there is no hard-coded bias towards any IE and
allowing easy integration of new IEs.

REQ4 The architecture must be agnostic w.r.t. the DSVML
editor tool, accepting the VM as input data exportable
frommultiple popular editors:Our architecture seeks
to be as independent as possible from any particular
modeling tool by relying on the declarative specifi-
cations of the languages to perform all processing
instead of relying on a particular set of technologies.
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Our prototype implementation has been developed
and tested initially on the VariaMos [47] modeling
frameworkwhich has beenmodified to allow for the
declarative specifications needed for the prototype.
Further integration with other tools will require
determining how to add this functionality to them.

6.2 Limitations of the architecture and prototype
The architecture has one important omission that is worth
discussing. The architecture has an underlying assumption
that the models are graphical models with possibly a portion
of the model being text (constraints in CLIF). This has an
important effect on the abstract syntax and therefore inter-
pretation of the models: it is not yet clear how to deal with
purely textual VMLs that don’t use a well-known data in-
terchange format like JSON. The reason for this is simple.
Textual VMLs with their own grammar and structure would
need their parser to be integrated into the architecture. In
addition to this, a more abstract, common representation of
both the hybrid and textual models would need to be con-
structed such that it would serve the base for constructing
the semantics. Nevertheless, this seems possible with some
modifications to the architecture, with, in particular, a more
capable input management system.

The prototype we present is limited in some key ways. We
have developed the prototype utilizing the VariaMos mod-
eling environment, which has the underlying assumption
that all the graphical models are directed graphs where the
nodes can be typed and have attributes. This is sufficiently
general for the DSLs we’ve observed in the literature, though
one could imagine DSLs that use a more complex underlying
structure. We seek nevertheless to combat this limitation
through the abstract syntax specification mechanism which
has only been partially implemented in the current prototype,
given the limitation outlined in the previous paragraph.

6.3 Threats to validity
In addition to the limitations above, our work is subject to
internal and external threats to validity. In terms of Internal
Validity our primary concern is how feasible our architec-
ture is. To counter this threat, we have created a prototype
that covers as closely as possible the proposed architecture.
The converse of this is the correctness of the prototype, that
we’ve endeavored to test extensively. We have sought, there-
fore, to demonstrate its capacity to provide the functionality
envisioned in the architecture. Another further threat is tied
to the correctness of our architectural design. We have uti-
lized a standard and well-understood modeling language
(UML) for its definition and have sought to collect feedback
from colleagues and users of the tool, both from a developer’s
perspective and from an end-user perspective.

Now, in terms of external validity, we recognize that we
can’t provide guarantees on the exhaustiveness of the tools
surveyed, more recent efforts that the authors are unaware

of might have been proposed in the meantime. Nevertheless,
we have sought to base our overview on a recent and well
sourced survey of these very tools. An additional threat
concerns our ability to manage purely textual languages
within the architecture, as mentioned in the previous section.
To combat this we have designed a flexible and modular
architecture capable of being modified in this direction.

6.4 Future Work
To overcome our limitations, work continues in several di-
rections: first, textual languages, beginning with UVL, are
being integrated; second, work continues on enlarging the
set of reasoning requests possible, including having a more
fine grained control over the variables used for iteration;
third, more output languages, beginning with the Z3 SMT
solver, are being integrated and tested, to further guarantee
the robustness of CLIF as pivot representation; and, finally,
work is being done on adding an incremental solving compo-
nent (as opposed to iterative) in order to make interactions
far more efficient. This will all imply minor refinements of
the architecture, though we believe the core will remain
unchanged.
Another future work we envision is to treat the architec-

ture itself as an SPL, such that we could create fully config-
urable distributions for particular needs, i.e. include commer-
cial solvers if the licenses are present, and, more importantly,
give a larger freedom on the query formulation. We see value
in this direction because the decision system for DSPLs can
be modeled and then exported for whatever solver is sup-
ported, or even combinations of solvers, which could enable
portfolio [3] constraint solving using multiple engines.

7 Conclusion
In this paper, we have presented an innovative software
architecture to provide automated reasoning for SPLE. As
we have seen in section 5, its main contribution is to be
the first proposal focused on being agnostic with respect to
both the VML used to model variability, and the constraint
solving paradigm used to implement the reasoning. Such
agnosticism allows fully decoupling the VM and SPL asset
editing tools from the automated reasoning tools. We have
put forward four requirements for an architecture to achieve
such agnosticism. We then have presented fairly detailed
structural and behavioral models for the architecture and
discussed why it satisfies those requirements. Its key ideas
are (a) to avoid combinatorial explosion of components by
using a pivot standard semantic language and (b) pass as pa-
rameters declarative specifications of (i) the abstract syntax
and semantics of the VML used by the VM to analyze and
(ii) the analysis task itself.

We have validated this architecture by quickly refining
and instantiating these models allowing for four distinct
SPLE reasoning pipelines already available in our PLEIADES
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framework prototype. Each one combines any of two VML
languages, respectively feature models and a context-aware
dynamic SPL VML, with solvers from two logical reason-
ing paradigms, respectively CLP, through libraries of SWI-
Prolog, and CSP, through the CSP solver integration layer
MiniZinc. We hope that our demonstration of the feasibility
of VML and solver agnostic SPLE reasoning services together
with the simplicity of instantiating the PLEIADES architec-
ture we propose into a working implementation, reusing
various VML and solvers, will foster more reuse of third
party SPL model editors and third party solvers in the SPLE
community.
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