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ABSTRACT: The Qinghai–Tibet Plateau, known as the Asian Water Tower, has a significant area of water bodies that
provide a wide range of valuable ecosystem services. In the context of climate change, the formation condition of surface
water and water extent is changing fast. Thus, there is a critical need for monthly detection algorithms at high spatial reso-
lution (;30 m) with good accuracy. Multiple sensors’ observations are available, but producing reliable long time series
surface water mapping at a subannual temporal frequency still remains a challenge, mainly due to data limitations. In this
study, we proposed a neural-network-based monthly surface water classification framework relying on Landsat 5/7/8
images in 2000–20 and topographic indices, and retrieved monthly water mask for the year 2020. The surface water was
mainly distributed in the central and western parts of the plateau and the maximum area of permanent surface water
(water frequency . 60%) was 26.66 3 103 km2 in 2020. The overall, producer, and user accuracies of our surface water
map were 0.96, 0.94, and 0.98, respectively, and the kappa coefficient reached 0.90, demonstrating a better performance
than existing products [i.e., Joint Research Centre (JRC) Monthly Water History with overall accuracy 0.94, producer
accuracy 0.89, user accuracy 0.99, and kappa coefficient 0.89]. Our framework efficiently solved the problem of missing
data in Landsat images referring to the JRC and a priori information and performed well in dealing with ice/snow cover
issues. We showed that higher uncertainties exist on wetlands and recommended exploring relationships between water
and wetlands in the future.

SIGNIFICANCE STATEMENT: In this paper, we present a new methodology to estimate surface water and its
intra-annual changes using Landsat data. Missing data and retrieval errors in the winter are major issues in the existing
products (i.e., JRC dataset). This motivated us to develop a new machine learning algorithm to better improve the re-
trieval scheme. We show that our approach, based on a neural network classifier, delivers a significant improvement
compared to the previous estimates. As shown in the literature, JRC data can hardly be used at the monthly level,
whereas our retrieval appears to be exploitable at the monthly scale. This is essential to understand the trend in surface
water, one of the key elements of the water cycle.

KEYWORDS: Water resources; Remote sensing; Satellite observations; Classification

1. Introduction

Known as the “Asian Water Tower,” the Qinghai–Tibet Pla-
teau has numerous lakes and is the source of many rivers provid-
ing precious water resources for human needs (Qu et al. 2019).
On the one hand, the formation of water might be changing over
a period, e.g., rainfall or snowmelt. Furthermore, the widely dis-
tributed glaciers and permafrost in this region have been influ-
enced by climate change and the hydrological cycle appears to
have been intensified, resulting in significant area changes of sur-
face water (Yang et al. 2014). The “water goal” set in the United
Nations’ Sustainable Development Goals (SDGs) 6 for sustain-
able water management gives a strong impetus for continuously
monitoring monthly surface water with high spatial resolution.

Previous studies on surface water mapping with 30-m spa-
tial resolution (Table 1) have provided us with unprecedented
information for understanding surface water dynamics. Yet,
most of these studies extract water information based on one
or more years of composite images, instead of benefiting from
the whole time series (Zhang et al. 2014; Chen et al. 2017;
Gong et al. 2013; Feng et al. 2016). Gong et al. (2013) col-
lected Landsat images from 1984 to 2011 and obtained a
global land cover mapping based on synthetic images. They
provided a one-time static surface water extent, which does
not allow for the monitoring of recent dynamics. We also note
that the surface area in the Qinghai–Tibet Plateau was quite differ-
ent among these studies, ranging from 503 103 to 1003 103 km2

(Zhang et al. 2014; Chen et al. 2017; Gong et al. 2013; Feng
et al. 2016; Wang et al. 2020; Pekel et al. 2016; Ran et al. 2023;
Pickens et al. 2020). The studies that generated annual water
body products are from Wang et al. (2020), who proposed
yearly surface water maps across all China from 1989 to 2016,
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and Ran et al. (2023), who derived yearly surface water maps in
the Qinghai–Tibet Plateau from 2000 to 2020. However, these
studies do not give insights on the monthly dynamics of sur-
face water. The European Commission Joint Research Centre
(JRC) Monthly Water History dataset (Pekel et al. 2016) and
global surface water dynamics (Pickens et al. 2020) give up-
dated monthly extent of surface water, which are currently the
long time series monthly classification dataset at 30-m resolu-
tion with open access at the global scale, and by far the most
widely used global surface water dataset. However, these data-
sets are restricted by the missing data of Landsat observations
(Meyer et al. 2020; Pickens et al. 2020), and therefore monthly
estimates can hardly be fully used. Moreover, the time series
of the JRC dataset are shown to miss fluctuations caused by
climate events (Wang et al. 2020).

Mapping surface water from satellites is constrained by the
spatial/temporal resolution and geographic/time scope. Stud-
ies have revealed that there is a trade-off between the tempo-
ral and spatial resolutions of the satellite sensors, with current
noncommercial satellites offering either high temporal resolu-
tion images with coarse spatial resolution, or high spatial resolu-
tion images with sparse temporal resolution (Li et al. 2021; Zhu
et al. 2018). The Moderate Resolution Imaging Spectroradiome-
ter (MODIS) provides daily images and has the advantage of
detecting temporal dynamics, with few studies giving surface
water dataset at an 8-day time step (Li et al. 2021; Lu et al.
2017). However, the spatial resolution (i.e., 250 m) is too coarse
to capture subtle changes in small water bodies. Sentinel-2 Mul-
tispectral Instrument (MSI) was launched in 2015, with a spatial
resolution of 10 m and revisit cycle of 10 days, and is one of the
data sources for refined surface water mapping (Kordelas et al.
2018; Wang et al. 2018). The WorldCover product was gener-
ated based on Sentinel-1 and Sentinel-2 data, which is a global
land cover map (including surface water extent) for 2020 at
10-m resolution (Zanaga et al. 2021). The big size and archive
accessibility make Sentinel data heavy to process and the length
of the data archive does now allow to reconstruct long time se-
ries. Landsat [Thematic Mapper (TM), Enhanced Thematic
Mapper Plus (ETM1), and Operational Land Imager (OLI)]
has been a widely used data source for large-scale, refined,

dynamic surface water mapping studies. Since the first sensor
launched in 1972, Landsat has provided continuous Earth obser-
vations for almost 50 years, which makes it possible for long
time series analysis (Bullock et al. 2020; Zhu 2017). In addition,
Landsat data are adequate to detect water body types (lakes,
rivers, ponds, etc.) and also monthly and seasonal variations
(Chen et al. 2020; Senay et al. 2017; Halabisky et al. 2016) with
high spatial (30 m) and temporal (16 day) resolutions. With the
rapid development of the Google Earth Engine (GEE) plat-
form, the open access to the Landsat archive makes the proc-
essing more convenient and efficient (Gorelick et al. 2017;
Tamiminia et al. 2020). However, due to cloud contamination
and instrumental defects, missing observations may result in
uncertainties when using such Landsat images (Wang et al.
2012; Zhang et al. 2017). Therefore, more efforts should be
put into image preprocessing to improve the spatial continuity
and quality, especially for large-scale studies.

There are many methodologies for surface water mapping.
Spectral-index-based threshold method, decision tree, expert
system, and machine learning are commonly used for super-
vised classification. The spectral-index-based threshold is a
convenient and efficient method to extract surface water in-
formation, it is linked to the spectral distribution characteris-
tics of the different land cover types. Water indices and
vegetation indices are the commonly used spectral indexes for
surface water classification (Feyisa et al. 2014; Xu 2006; Qiao
et al. 2012; Wang et al. 2020; Fisher et al. 2016). Using the
modified normalized difference water index (mNDWI), en-
hanced vegetation index (EVI), and normalized difference
vegetation index (NDVI), Zou et al. (2017) and Wang et al.
(2020) proposed the mNDWI-VIs algorithm and reported
long-time series of annual surface water maps in China and
Oklahoma, respectively. However, the spectral-index-based
threshold method is not universal especially in large-scale
studies, because the classification criteria is based on a limited
number of samples, and the threshold varies with time and lo-
cation (Feyisa et al. 2014). The expert system is another com-
monly used method. It integrates diverse models and exploits
multiple data sources to generate expert rules (Pekel et al.
2016; Gumbricht et al. 2017). Pekel et al. (2016) adopted such

FIG. 1. (left) Number of valid Landsat observations after cloud-filtering (Landsat 5/7/8 fusion) over the 2000–20 pe-
riod. (right) Histogram and cumulative percentage of the number of valid observations for all the pixels of the domain
for the whole period.
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an expert system method using the Landsat archive as well as
a series of auxiliary datasets [digital elevation model (DEM),
lava mask, glacier data, etc.] to obtain a long-term water re-
cord. The expert system method is flexible and can easily be ad-
justed by experts, but it is highly affected by the data source and
model (Gumbricht et al. 2017; Stefanov et al. 2001). Machine
learning classification methods, such as decision tree (Pal and
Mather 2003; Wu et al. 2021), random forest (Ghorbanian et al.
2020), extreme gradient boosting (XGBoost; Georganos et al.
2018), and neural network (NN) classifier (Aires et al. 2021;
Scott et al. 2017), have become popular in the land-cover com-
munity. Among these machine learning methods, NN classifier
is thought to be robust and tolerant, and adequate to deal with
complex problems (Aires et al. 2021; Kulkarni and Lowe 2016).
Jiang et al. (2018) adopted a multilayer perceptron NN for sur-
face water classification with a higher performance, compared
to the water index method or the support vector machine

algorithm. Rezaee et al. (2018) proposed a convolutional
NN-based framework for completing complex wetland clas-
sification and their result showed better performance than
random forest even when using a small number of input fea-
tures. It is actually shown that if there are enough samples
and hidden neurons, any complex relationship can be repre-
sented by a neural network (Cybenko 1989). However, the
performance of NN retrieval greatly relies on the size and
quality of the reference database (Aires et al. 2021).

Here, we propose a NN-based monthly surface water classi-
fication framework using the 30-m Landsat data and some to-
pographic indexes. Our method has several improvements
compared with previous studies:

1) We developed some solutions for the problem of invalid
observations (e.g., missing or negative data), at a finer
temporal resolution, which greatly improved the accuracy
of the classification results.

FIG. 2. Examples of Landsat spectral features (see Table 2) in the small region of the Qinghai–Tibet Plateau at 30-m spatial resolution
(August 2020), including blue, green, red near-infrared (NIR), shortwave infrared 1 (SWIR1), and SWIR2 surface reflectance bands;
entropy and contrast texture attributes; NDWI, NDSI, AWEIsh, and NDVI spectral indexes; hue, saturation, and value color features
(Table 2).
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2) We conducted a preliminary filtering that greatly reduced
the amount of data and the computation cost.

3) The NN method provides its prediction results with a
probability value for the presence of surface water instead
of a binary value, which enables us to propose a quality
flag index to assess the pixel classification reliability.

4) We used seasonal models that are stable and robust for
the monthly surface water mapping.

5) We collected hundreds of field samples, especially river
samples, and unmanned aerial vehicle (UAV) images,
that can be used to better evaluate the mapping result.

This paper is structured as follows. The datasets are pre-
sented in section 2: specifically, the adopted strategies to deal
with invalid pixels and to generate monthly Landsat compo-
sites are introduced in sections 2a and 2b, respectively, and
the inputs for the classification (i.e., the spectral information
and topography-based indices) are proposed in section 2c.
Section 2d introduces field investigation samples, UAV images,
and the European Space Agency (ESA) WorldCover dataset,
that are used as reference data for evaluation. The detailed clas-
sification algorithm is described in section 3. Then, we evaluate
the surface water mapping performance in the year 2020 by
comparing it with the reference datasets (section 4a), and ana-
lyze the monthly patterns (section 4b). Finally, we summarize
our results and provide perspectives in section 5.

2. Data

a. Landsat dataset

All available Landsat 5/7/8 Collection 2 surface reflectance
images from 2000 to 2020 were utilized here. This is the latest
version released by the United States Geological Survey
(USGS) in 2020 with more advanced data processing algo-
rithm. Landsat images before 2000 were confirmed to have a
larger proportion of wrong observation pixels (Wang et al.
2020). More high-quality images can be obtained after the
launch of Landsat 7 and Landsat 8 in 1999 and 2013, respec-
tively, making it possible to detect surface water since 2000
with higher precision, and at the monthly scale. Figure 1

shows the spatial distribution and histograms of valid observa-
tion numbers after filtering cloud and cloud shadow at pixel
scale, over the study period between 2000 and 2020. About
90% of the individual pixels obtain more than 300 valid obser-
vations. The monthly pixels percentage and spatial distribu-
tion of Landsat data were displayed in Figs. A1 and A2,
respectively. On average, more than 85% of pixels have one
or more images per month.

b. Image preprocessing

The quality assurance (QA) variable was referred to iden-
tify the cloud-contaminated observations for each image.
Then, to fill the data gaps preliminarily, images from different
sensors were fused to generate monthly composites according
to the median value. For the study of surface information ex-
traction, clouds often lead to the weakening or even loss of land
cover information (Shen et al. 2014). As shown in Fig. A1, inva-
lid observations, including missing data and negative reflectance
data, were present every month over the Qinghai–Tibet Plateau.
Therefore, pixels with missing data were filled using a priori in-
formation, that is neighboring information based on a historical
record (Aires 2020). Here, the monthly average value from 2000
to 2020 was used for data filling. For pixels with negative data
over water, using the JRC dataset as a reference supple-
mented by visual interpretation, the pixel value was as-
signed to 0, while for those over land, the data were filled
using a priori information. After these preprocessing steps,
the average percentage of monthly valid pixels increased
from 86.3% to 99.7% (Fig. A1), which ensured the spatial
continuity of the classification results. Thus, data quality in-
creased to a satisfying physical coherency.

Spectral features, such as water index, vegetation index, sur-
face texture, and color information, were validated as effective
for surface water extraction (Ran et al. 2023). These features
were calculated on the time series of the image collection and
were the potential predictors in the forthcoming classifier (Fig. 2,
Table 2), including two texture attributes measured with a
gray-level co-occurrence matrix (GLCM): entropy and con-
trast (Haralick et al. 1973; Conners et al. 1984); three water

TABLE 2. Summary of spectral features.

No. Input Description

1 Blue Surface reflectances
2 Green
3 Red
4 NIR
5 SWIR1
6 SWIR2
7 Entropy Texture attribute measuring the randomness of a gray-level distribution
8 Contrast Texture attribute measuring the local contrast of an image
9 NDWI Normalized difference water index

10 NDSI Normalized difference snow index
11 AWEIsh Automated water extraction index shadow
12 NDVI Normalized difference vegetation index
13 Hue Color model related to a full saturation
14 Saturation Color model related to the purity and intensity of the color
15 Value Color model related to relative lightness or darkness of the color
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indices: normalized difference water index (NDWI; Gao
1996); automated water extraction index shadow (AWEIsh;
Feyisa et al. 2014), and normalized difference snow index
(NDSI; Hall et al. 1995); one vegetation index: NDVI
(Rouse et al. 1974); and three color attributes: hue, satura-
tion, and, value (Wu et al. 2014). All Landsat image acquisi-
tion and processing tasks were conducted on GEE cloud
platform.

c. Topographic data

Topographic information was used to facilitate surface water
detection because hydrology is often influenced by elevation.
Elevation affects factors such as slope, topography, and

drainage patterns, which further influence hydrological pro-
cesses (Aires et al. 2018). As shown in Fig. 3 and Table 3,
elevation and slope were derived from the 30-m SRTM DEM
dataset. The multiscale topographic position index (mTPI), con-
tinuous heat-insolation load index (CHILI), yopographic diver-
sity (TD), and landforms were ecologically relevant layers of
topographic information (Theobald et al. 2015). Height above
the nearest drainage (HAND) was obtained from the MERIT
(Multi-Error-Removed Improved-Terrain) Hydro dataset, which
is a global flow direction dataset with a resolution of 3 arc-s
(Yamazaki et al. 2019). The terrain ruggedness index (TRI) was
calculated using a 30-m SRTM DEM dataset based on System
for Automated Geoscientific Analyses (SAGA) GIS. The DNSD

FIG. 3. Examples of topographic features in the Qinghai–Tibet Plateau retrieved from the SRTMDEM and the MERIT Hydro dataset,
including elevation, slope, mTPI, CHILI, TD, HAND, TRI, DNSD, DNMD, and DNLD (Table 3).

TABLE 3. Summary of topographic features.

No. Input
Spatial

resolution (m) Description

1 Elevation 30 }

2 Slope 30 }

3 mTPI 270 Multiscale topographic position index ranging from negative (valleys) to positive (ridges) values
4 CHILI 90 Continuous heat-insolation load index ranging from 0 (very cool) to 255 (very warm)
5 TD 270 Topographic diversity refers to the temperature and moisture conditions available to local species
6 HAND 90 Height above the nearest drainage
7 TRI 30 Terrain ruggedness index is a measure of local topographic relief
8 DNSD 90 Distance to the nearest small drainage with upstream area . 0.5 km2

9 DNMD 90 Distance to the nearest medium drainage with upstream area . 10 km2

10 DNLD 90 Distance to the nearest large drainage with upstream area . 100 km2
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(distance to the nearest small drainage), DNMD (distance to the
nearest medium drainage), and DNLD (distance to the nearest
large drainage) represent the distances to the nearest drainage
with an upstream area larger than 0.5, 10, and 100 km2, respec-
tively. These topographic inputs were downscaled to 30 m using
the nearest-neighbor method.

d. Reference datasets for evaluation

1) ESA WORLD COVER SURFACE TYPE

The WorldCover product, released by ESA, provides a
global land cover map with a resolution of 10 m for 2020 using
Sentinel-1 and Sentinel-2 data (Zanaga et al. 2021). This

FIG. 4. (a) Location of the ESA WorldCover sampling points (1400 for surface water and 200 for each of the other land cover
types) and the field investigation samples used for evaluation; (b),(c) examples of UAV images and (d),(e) field investigation
pictures.

FIG. 5. Workflow for the monthly surface water mapping. m represents month: four seasonal training datasets were created using
monthly samples from the same season, and then seasonal NN prediction models were developed. LDB represents learning database, in-
cluding monthly spectral features and topographic features.
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dataset includes 10 land cover types over the Qinghai–Tibet
Plateau: water, bare land, built-up, cropland, grassland, moss,
shrubland, snow, trees, and wetland. First, the WorldCover
dataset was upscaled to 30 m and pixels containing mixed
land-cover types were removed. Then, random sampling was
conducted on each land-cover type for evaluation, including
1400 water samples, and 200 samples for each of the other
nine land-cover types (Fig. 4a). Manual validation was finally
performed to ensure the samples’ quality.

2) GROUND DATA

Field surveys using a UAV equipped with DJI Phantom 4
pro platform were conducted in August 2020, taking a series
of high-resolution multispectral images of Yellow River sour-
ces, Qinghai Lake, Longyang Gorge, and Star Lake of the

Qinghai–Tibet Plateau to detect the boundary of typical lakes
(Jia et al. 2021). The flight was implemented under good
weather conditions, and the route was planned to be centered
on the water–land boundary of lakes. Figures 4b and 4c are
examples of true-color drone images at 5-cm resolution.

We conducted field surveys along rivers during the growing
season of 2020/21, considering the difficulties in river map-
ping. 930 sampling points were marked as water in total.
Meanwhile, digital cameras were used to take pictures of the
scene and global positioning system (GPS) was used to record
the location. We recorded the morphological characteristics
of the river (river width, river depth, and river turbidity) and
the characteristics of the environment (human disturbance,
and riparian vegetation). These sampling points were up-
loaded to GEE to facilitate the correction through visual

FIG. 6. AWEIsh and NDVI histograms for different land-cover types from the ESAWorldCover map. The nonwater
pixels are masked using these two potential water thresholds (AWEIsh.20.2 and NDVI, 0.2).

FIG. 7. Spatial distribution of training dataset. Green, blue, orange, and purple represent sam-
ples from spring, summer, autumn, and winter months, respectively. Triangles and crosses repre-
sent nonwater and water samples, respectively.
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interpretation. Sampling points distributed in small rivers
were deleted (i.e., river width less than 30 m). Finally, 471
samples were reserved and used for evaluation. Figure 4a
shows the spatial distribution and some examples of field pic-
tures recorded during this ground survey.

3. Methods

a. Overview of the classification algorithm

Our monthly water classification model includes two main
parts: Landsat time series preparation (sections 3b and 3c)
and the original water classification scheme (section 3d). In
the first part, after the preprocessing of Landsat images, spa-
tially continuous monthly images in a single year were ob-
tained by calculating the average value first and filling missing
data with a priori information (neighboring information based
on a historical record). The annual potential water extent was
then generated using spectral indices thresholds based on the
Landsat annual composites. Thereafter, monthly images were
prepared by combining spatially continuous monthly images

with the annual potential water extent map, to facilitate the
forthcoming NN classification. In the second part, monthly
classification was achieved through building the learning data-
base (monthly spectral features and topographic features),
training seasonal models, and then performing pixel-by-pixel
prediction. The workflow of monthly surface water classifica-
tion is shown in Fig. 5.

b. Potential water filtering

To reduce data size and computation cost, and thus improve
the classification efficiency in a large-scale study, we developed
a preliminary potential water extent mask by excluding non-
water areas. Figure 6 shows the AWEIsh and NDVI histograms
of different land-cover types in the Qinghai–Tibet Plateau. The
index values were extracted from the 2020 composite images,
and the average value was calculated for each land-cover type.
We can see that there was a fair separation between water (red)
and the other land-cover types when considering both conserva-
tive thresholds of AWEIsh . 20.2 and NDVI , 0.2. These
thresholds suppressed unambiguous nonwater pixels. We

FIG. 8. Step-forward feature selection for the four seasonal models. The y axis represents the MSE for the model’s
predictions using the current feature combined with the previously selected features. The dashed line indicates the
last selected factor, which, along with the previous features, serves as input to the model.
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conservatively kept in our mask some cases of ambiguous
water (located in mountains and rivers) and nonwater situa-
tions, because it will be the role of the forthcoming classifi-
cation to disentangle these nonwater pixels.

c. Neural network classification

1) BUILDING THE LEARNING DATABASE

The learning database was built using a stratified random
sampling strategy. First, monthly samples (30 m 3 30 m pixel)
were collected in 2018–20. For each month, 100 water samples
and 100 nonwater samples based on the JRC dataset were ran-
domly selected. Then, all samplings were checked and relabeled
with visual interpretation based on high-resolution images. There-
fore, a collection of 7200 (200 samples 3 12 months 3 3 years)
samples were obtained. In addition, samples in difficult and
ambiguous regions were collected through visual interpreta-
tion. After extracting the values of input features (15 spectral

and 10 topographic features in Tables 2 and 3), four learning
databases were built by gathering samples in the following sea-
sons: S1 (December–February), S2 (March–May), S3 (June–
August), and S4 (September–November) (Fig. 7) (Xu et al.
2019; Shen 2011; Zhang et al. 2021).

2) NEURAL NETWORK CLASSIFIER

NN has been widely used for surface information extraction
(Aires and Pellet 2021; Ienco et al. 2017). Our study used sea-
sonal NN classifiers to identify water or nonwater pixels. A
NN is defined first by an architecture. The inputs (from 6 to
25 depending on the seasonal model) represent the input
layer. The experiments and iterative improvements showed
that having 10 neurons in the hidden layer achieves a balance
between model complexity and flexibility and a unique hidden
layer is sufficient for water body extraction. Then, the unique
hidden layer of 10 neurons connected to one output neuron

FIG. 9. (a) Classification performance of the ninefold cross-validation assessment of the four seasonal models. The
results of the nine classifications were averaged by season to estimate the seasonal mean water accuracy and overall
accuracy. (b) Probability density function (PDF) of the NN classifier outputs for the four seasonal models, for the
water (blue) and the land (dotted red) pixels, over the testing database.

TABLE 4. Error matrix of our results and JRC dataset. The reference dataset is based on field samples, visual interpretation, and
ESA world cover dataset, for August 2020. Note: P_Accuracy is the producer accuracy, U_Accuracy is the user accuracy, and kappa
is the kappa coefficient.

Reference data

Class Nonwater Water Total U_accuracy kappa

Our result (Aug 2020) Nonwater 1771 116 1887 0.94 }

Water 29 1665 1694 0.98 }

Total 1800 1781 3581 } }

P_Accuracy 0.98 0.94 } 0.96 }

kappa } } } } 0.90
JRC (Aug 2020) Nonwater 1798 197 1995 0.90 }

Water 2 1584 1586 0.99 }

Total 1800 1781 3581 } }

P_Accuracy 0.99 0.89 } 0.94 }

kappa } } } } 0.88
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representing the predicted class (0 for land and 1 for water).
All transfer functions are tan-sigmoids. The NN is trained
with binary data (water or no water). The trained NN, how-
ever, when used in operational mode on new data, will provide
a continuous value between 0 and 1 (Aires et al. 2017; Bishop
1995). This output represents the posterior probability to be one
or the other class (Aires et al. 2017). The NN used here was
developed with the Levenberg–Marquardt back-propagation
algorithm over 7200 samples which were selected all over the
plateau (with 50% water pixels and 50% nonwater pixels).
Among them, 70% of samples were used for training, 15% for
validation, and 15% for testing.

A step-forward approach was adopted in combination with
the NN for the feature selection. Initially, six Landsat spectral
bands were selected as the NN inputs, providing the basic in-
formation for classification. Then potential features, such as
spectral index, topographic index, texture index, etc., were
evaluated and selected one by one as input by calculating the
mean square error (MSE) for the model’s predictions. MSE
provides a measure of how well the model’s predictions align with
the true values, with lower values indicating better performance.
In each iteration, a potential feature is selected if its inclusion
leads to a smaller MSE when combined with the previously
selected features. This process is repeated until adding more fea-
tures no longer results in a MSE improvement. Figure 8 shows
the process of feature selection and the classification performance
of each model over the testing database. The selected input fea-
tures to the NN classifier were different for the four seasonal
models, with 12 features selected for spring (6 surface reflectance
bands plus DNMD, HAND, DNLD, TD, entropy, hue), 9 for
summer (6 surface reflectance bands plus DNMD, HAND,
slope), 12 for autumn (6 surface reflectance bands plus slope,
NDVI, TD, DNLD, NDWI, mTPI), and 10 for winter (6 surface
reflectance bands plus TD, DNMD, HAND, DNSD).

To test the performance of the seasonal models, the
K-fold cross-validation method was used on each learning da-
tabase (Kohavi 1995) (Fig. 9a). The original dataset is ran-
domly and equally divided into K folds, and the model is
trained K times, each time using K 2 1 folds as the training
data and the remaining fold as the testing data. The perfor-
mance of the model is measured by calculating the average
overall accuracy (number of correctly classified samples/total
number of samples) and water accuracy (number of correctly
classified samples for water/total number of water samples)
across the K iterations. Here, K was assigned to 9 based on
the number of months in which we collected samples for each
model. The results show that each model had high overall
classification and water accuracies, all above 95%. Also, the ac-
curacy scores of the learning and testing datasets were close, in-
dicating that the NN performed well in avoiding overfitting (i.e.,
performed well on the training dataset but generalized less well
on unknown samples). The probability density function of the
NN outputs also showed a clear distinction between water and
nonwater for each model and also demonstrates that setting
the threshold of 0.5 to binarize the classification outputs is rea-
sonable (Fig. 9b). The stepwise forward selection (Fig. 8) was
therefore efficient, and the selected seasonal NN architectures
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that we used were sufficiently complex, but robust enough for
the generalization skills of the predictions.

3) A POSTERIORI QUALITY FLAG

The output of the NN is between 0 and 1, denoting the
probability of being classified as a target land-cover. The
smaller the value of NN output, the greater the probability of
being classified as a nonwater pixel. When the value is 0, the
pixel can be labeled as nonwater without any ambiguity. On
the contrary, the greater the value, the greater the probability
of being classified as water. When the value is 1, the pixel can
be labeled as water without any ambiguity. Here, we set a

threshold of 0.5 to binarize the classification outputs. When
the value is greater than 0.5, the pixel is labeled as water;
otherwise, it is labeled as nonwater.

A quality flag (QF) was defined to measure the certainty
that a pixel is correctly classified:

QF 5
|0 2 nn|, if nn , 0:5

|1 2 nn|, if nn . 0:5
,

{

where nn refers to the value of the nn output. The smaller the
value of QF, the higher certainty of the classification result of
the pixel is.

FIG. 10. Surface water classification result on the Qinghai–Tibet Plateau (shown in the middle row) and comparison
of the UAV images and our classification result of (a)–(c) the Yellow River Sources, (d) the Qinghai Lake, (e),(f) the
Longyang Gorge, and (g) the Star Lake in August 2020. Pink represents our classification result of surface water,
which was overlayed on the Landsat images and UAV images.
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d. Evaluation

Evaluation of our mapping result includes three processes: us-
ing independent validation samples, comparing the results on
the water area and the spatial distribution with JRC mapping
result, and evaluating with UAV images (for boundaries).

For the first part, independent validation samples con-
sisted of ESA land-cover samples (section 2d), field samples
(section 2d) and 15% independent samples from our sample
database. The confusion matrix and several metrics were
then calculated, including the overall accuracy, the user ac-
curacy (U_Accuracy), the producer accuracy (P_Accuracy),
and kappa coefficient. Here, the producer accuracy meas-
ures the accuracy of the model in correctly classifying water
in the image, it is defined as the ratio of the number of cor-
rectly classified pixels of water to the total number of water
pixels (Foody 2002). The user accuracy measures the accu-
racy of the model in representing the true land cover type
on the ground as perceived by the user, it is defined as the
ratio of the number of correctly classified pixels of water to
the total number of pixels that the model classified as water
(Foody 2002). The kappa coefficient is a statistical measure
of interrater agreement or reliability for categorical data.
The value of kappa ranges from 21 to 1, where 1 indicates
perfect agreement, 21 indicates agreement worse than
chance (Foody 2002). Then, our results on the water area
and the spatial distribution were compared with the JRC
monthly surface water maps. Finally, independent UAV im-
ages were used to validate our classification results.

4. Results and discussion

a. Evaluation of the surface water retrieval

1) EVALUATION WITH INDEPENDENT SAMPLES

Independent samples (field investigation, visual interpreta-
tion, and WorldCover dataset in Figs. 4 and 6) were used to

evaluate the accuracy of both the JRC dataset and our results
for August 2020 (Tables 4 and 5). Generally, the confusion
matrix (Table 4) indicates that our results were highly consis-
tent with independent reference data and achieved higher
surface water mapping accuracy than the JRC dataset. The
overall accuracy and kappa coefficient of our results (overall
accuracy 5 0.96, kappa 5 0.90) were slightly higher than the
JRC surface water map (overall accuracy 5 0.94, kappa 5

0.89). The producer accuracy of surface water in our results
(0.94) was higher than in JRC (0.89), while the user accuracy
of surface water in our results (0.98) was only slightly lower,
compared with in JRC (0.99). The relatively lower producer
accuracy compared with user accuracy indicated that there
were omission errors for more than 100 water samples mis-
classified as nonwater (both in JRC and in our result). It may
be related to the obscure water characteristics when these
samples were located in small water bodies or under vegeta-
tion. Then, the accuracy of each land-cover type was calcu-
lated for further evaluation (Table 5). The higher water
accuracy in our results (0.94) than in JRC (0.89) indicated
that our results were more consistent with water samples,
while JRC had a higher omission error of surface water. As
for the nonwater surface types, especially for herbaceous
wetland, our result had more commission errors, with lower
accuracy (0.87) than JRC (0.99) in wetland classification.
Wetland is defined as a transitional zone between aquatic
systems and terrestrial where the land is sometimes covered
by shallow water (Cowardin 1979). Therefore, there exist
uncertainties in the wetland and water mapping. Further
studies are needed to explore the relationships between
water and wetlands. The classification accuracy was also
assessed in specific regions where data interpolation was
performed. The result shows that the water classification
accuracy in this area reached 0.92 for August 2020, indicat-
ing a good performance of classification and the rationality
of interpolation (appendix).

FIG. 11. (a) Comparison of monthly surface water area from JRC (orange bar) and from our results (green bar),
the dark line refers to the percentage of missing data for JRC for each month of 2020, and gray shading indicates that
the month is in the freezing period (Cai et al. 2019). (b) Variation of surface water area with water frequency in 2020
of JRC and our results.
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2) VALIDATION WITH UAV IMAGES

UAV images were collected in the Yellow River sources
(Figs. 10a–c), the Qinghai Lake (Fig. 10d), the Longyang
Gorge (Figs. 10e,f), and the Star Lake (Fig. 10g) of the
Qinghai–Tibet Plateau with a submeter spatial resolution.
Generally, our results showed a clear delineation of the sur-
face water boundary, as well as a precise detection of pud-
dles (small water bodies) (Fig. 10). Figures 10b and 10e

show a small part of omission errors, which may be caused
by the mismatch of spatial resolution.

3) COMPARISON WITH JRC DATASET

Our results show that the monthly surface water fluctuated
greatly in 2020, ranging from 9.701 3 103 km2 (February) to
60.467 3 103 km2 (August) (Fig. 11). Compared with JRC,
there is no big difference with our classification result in the

FIG. 12. Comparison of monthly surface water from JRC and from our results. Blue refers to pixels that were classified as water both in
JRC and in our results, green represents pixels that were classified as water only in our results, and red represents pixels that were classi-
fied as water only in JRC.
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summer period. However, the surface water areas of our
results were much lower than that of JRC in spring (February–
May), while much higher than the JRC in winter (November–
January). The proportion of valid pixels in each month of
the JRC dataset was counted, as shown with the black line in
Fig. 11a. It can be seen that there existed a large amount of
missing data in JRC, for example only three months (August,
September, and October) had less than 10% missing data.
The amount of missing data in January and December even
reached over 90%. Thus, we suspected that the underestima-
tion of the JRC dataset may be related to the existence of
missing data (Meyer et al. 2020). The next section will provide
a more detailed exploration of this. Water frequency is calcu-
lated by months with water divided by 12 months, which is
always used as a criterion rule to define seasonal surface water
and permanent surface water (Pickens et al. 2020; Yang et al.
2020). As shown in Fig. 11b, surface water areas with different
water frequency thresholds differed between JRC and our re-
sults. When water frequency was smaller than 50%, the water
areas were lower in our results than in JRC. When water fre-
quency was larger than 50%, the water areas were larger in
our results than in JRC. The overestimation and underestima-
tion of surface water area affect the detection of water recur-
rence which is an important characteristic of water resources
assessment and management (Mueller et al. 2016).

Figure 12 shows the classification results of the JRC and
our study and the corresponding Landsat images. In summer,
both of the JRC and our result had good performance on

surface water extraction, but JRC slightly underestimated the
water extent because it suffered from the missing data. It can
be seen that the striped data gaps caused by sensors (Wang
et al. 2012) in the JRC affect the spatial continuity of the large
water bodies mapping, as the lake classification result in sum-
mer in Fig. 12. Also, there existed a large amount of data gaps
in JRC as shown in November, so that only part of the lake
and river have been detected. This problem may be related to
cloud contamination (Zhang et al. 2017), and to the fact there
are not enough images to cover all the region within a short
time step after the cloud masking. The preprocessing in our
study efficiently addressed this difficulty, and it is mandatory
for monthly land information extraction studies. In freez-
ing period (i.e., February and May), JRC seems to detect
more water pixels than our results because the JRC classi-
fied erroneously ice cover as water. The overestimation of
JRC in winter may be related to the decision tree–based
classification procedure that may not be capable enough to
separate water from ice/snow cover. The spectral indices of
water and ice always have a nonnegligible overlap (Fig. 6).
The high accuracy of water detection each month in our re-
sults indicate the stability and robustness of the seasonal
classifier.

b. Intra-annual variation of surface water in 2020

In 2020, the maximum area of permanent surface water was
26.656 3 103 km2, and the maximum area of permanent

FIG. 13. Water frequency in 2020 in the Qinghai–Tibet Plateau.
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surface water and seasonal surface water was 55.2463 103 km2.
In this study, we defined permanent surface water when
water frequency is larger than 60%, considering the long ice
cover period in the alpine ecosystem (Cai et al. 2019). Seasonal
surface water was defined when water frequency was between
25% and 60%. Pixels with a water frequency lower than
25% were screened for the consideration of image quality,
artifacts, etc. (Zou et al. 2018; Yang et al. 2020). The water
recurrence is measured by the frequency with which water
appears in a pixel (Li et al. 2021). It differs in regions and
months in the Qinghai–Tibet Plateau, which is mainly re-
lated to the lake-ice phenology affected by water supply, geo-
graphical location, water physicochemical characteristics, and
local climate condition (Cai et al. 2019, 2022; Guo et al. 2020).

Figure 13 shows the surface water frequency in 2020, with
zoomed regions including lakes [Qinghai Lake (Fig. 13a),
Aksai Chin Lake (Fig. 13b), Yamzho Yumco (Fig. 13c)] and
rivers (Tongtian River and Jiqu Qu). In general, the water fre-
quency was much smaller in the central and western Tibetan
Plateau (Qiangtang Plateau) than in other regions. These
results were consistent with Cai et al. (2019). The temperature
and wind speed were lower in the central and western Tibetan
Plateau, compared with the southern region, causing longer
ice cover period with the earlier freeze-up dates and later
breakup dates (Cai et al. 2019). Qinghai Lake, the largest
saline inland lake in China, has moderate climate conditions
and elevation on the plateau. Although the chemical proper-
ties of the salt lake lead to lower freezing points, the relatively

FIG. 14. (a) The surface water percentage under different quality flag levels in 2020 on the Qinghai–Tibet Plateau. The larger the quality
flag, the higher certainty of the classification result. (b) Area variation of the monthly classification over Namtso (Fig. 13f). (c) Monthly
water variations over Namtso. The top of the zoom shows the corresponding Landsat images, the second row is the classification result,
and the third row is the quality flag. The bottom two rows are thumbnails of monthly classification results and quality flag images.

J OURNAL OF HYDROMETEOROLOGY VOLUME 241650

Unauthenticated | Downloaded 01/16/25 10:26 AM UTC



lower water frequency may be related to the lake size. Generally,
a larger lake size implies larger volume, stronger vertical heat
transfer, and less intense water evaporation, leading to a longer
ice cover period (Yao et al. 2016).

Seasonal classification models for monthly water identifica-
tion proved to be reasonable and efficient. Figure 14a represents
the monthly QF statistics of the classification results for
2020. Figures 14b and 14c indicate the monthly surface
water mapping results and QF of Namtso (Fig. 13f). Above
80% of the pixels had high certainty on the classification for
each month (QF , 0.2, Fig. 14a). Generally, the classifica-
tion results of warmer months (July–September) had higher
certainty than colder months (January–March). This further
indicates that the surface water classification on the alpine
ecosystem in the winter months is more likely to be con-
fused with ice/snow cover and thus has higher uncertainties.
In a typical region of Namtso, the delineation of the lake
boundary was clear compared to land, while ambiguous re-
gions mainly existed in the junction zone between the water
body and the ice cover (Fig. 14c). For the lake-ice phenology,
the lake started to freeze in January, froze completely in April,
and melted in May. The areas of surface water in March and
April were near 0, but they increased very fast from April to

May. Surface water extent was maintained at high values (maxi-
mum of the distribution) from June to December (Figs. 14b,c).

c. Strengths and prospects of surface water
mapping framework

The surface environmental features vary over time, such as
vegetation coverage, water distribution, and snow and ice
cover. By training models for different seasons, these land-
cover differences can be better captured. The spectral index
of surface water is prone to confusion with snow and ice cover
(Fig. 6). Therefore, during the freezing period compared to
open water bodies in summer, the model requires more infor-
mation to obtain the distribution of water bodies (Fig. 8). In
addition, the classification framework using seasonal neural
network model with image preprocessing (dealing with invalid
observation) showed better performance compared with two
comparable methods: one using a total model with image pre-
processing and the other using seasonal model without image
preprocessing (Fig. 15). In February (the freezing period),
methods using one total model or using seasonal model with-
out image preprocessing were more inclined to identify ice/
snow cover as water (Figs. 15b,c). In August (open water pe-
riod), there existed lakes that were accurately delineated in

FIG. 15. (a)–(f) Comparison of surface water extent derived from three methods: the method proposed in this study using seasonal
model with image preprocessing, the method using one total model with image preprocessing, and the method using a seasonal model
without image preprocessing. The first row is the contemporaneous Landsat true color images. Black refers to missing data in images, gray
refers to pixels that were classified as water in cases using three different methods, green refers to pixels that were classified as water only
in this study, red refers to pixels that were classified as water only when using a total model, and blue refers to pixels that were classified as
water when using seasonal model without image preprocessing. (g) The statistics of surface water area on the Qinghai–Tibet Plateau using
the three different methods.
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this study but were misclassified as nonwater when adopting
one total model or adopting seasonal model without image
preprocessing (Figs. 15d,e). Pixels with missing data were mis-
classified as water when using the method without image
preprocessing (Figs. 15a,f). In terms of classification area,
surface water area was overestimated in winter months
when using one total model or using seasonal model with-
out image preprocessing, and underestimation and overestima-
tion both existed in summer months when adopting the other
two comparable methods (Fig. 15g), which is consistent with
our discussion above (Figs. 15a–f). Our method dealt with
disturbance from the seasonal ice/snow cover during the
freezing period and handled missing data more reasonably
throughout the year, and the retrieval was more exploitable
at the monthly scale.

Our method also showed several improvements over previous
studies. First, the problem of invalid observations (e.g., missing
and negative data) was solved at a finer temporal resolution,
which guaranteed spatial continuity and greatly improved the
accuracy of the classification result. Invalid observations are
widespread in satellite images, especially in large-scale studies
(Wang et al. 2012). The preprocessing was proved to be efficient
for the average percentage improvement of monthly valid pix-
els, with an increased value from 86.3% to 99.7% (Fig. A1).
Then, we trained seasonal models based on corresponding
seasonal samples and a rigorous feature selection strategy
(selection from 25 spectral and topographic features based on
minimizing prediction MSE) to predict monthly images. Sea-
sonal models showed a stable and robust performance for the
monthly surface water mapping. Pekel et al. (2016) used a uni-
versal rule for monthly surface water detection, but the results
showed many misclassifications in the winter months (Fig. 12).
Xu et al. (2019) used seasonal/monthly training data and models
to map seasonal/monthly cropland in three Landsat footprints
and indicated a higher accuracy when using seasonal/monthly
models. Considering the large scale and the complex land-cover
conditions in the Qinghai–Tibet Plateau, different features were
selected for each model in our study. Studies have shown that
feature selection increased the classification accuracy and re-
duced the computation cost (Duro et al. 2012; Pal 2006). The
characteristics of surface water (water depth, vegetation shade,
etc.) and the other land cover types change greatly over time
(Pickens et al. 2020), and the long ice cover period in the pla-
teau (spanning autumn, winter, and spring) brings more uncer-
tainties in the surface water detection (Cai et al. 2019; Ji et al.
2018). It is therefore necessary to specialize the learning data-
base of different seasonal models. Third, the quality flag index
was proposed for the first time to assess the pixel classifica-
tion reliability. It revealed that above 80% of surface water
had been extracted with a high confidence level, and uncer-
tain or ambiguous classification results were mainly distrib-
uted in the junction of ice/snow cover and water in winter.
Last but not least, the preliminary filtering of the potential
water extent not only decreased the need for a large training
sample size, but also reduced the classification data size and
computation cost.

This study shows the great potential for application in
monthly classification studies with high spatial resolution. An

observation-based (in opposition to the present topography-
based) floodability index could be obtained based on our
monthly dataset (Nguyen and Aires 2023), which could pro-
vide precious information for future wetland mapping studies
(Dvorett et al. 2016). Daily MODIS data with coarse-resolution
data might be used with Landsat (16 days) images to capture a
quick change of surface water (Aires et al. 2014). As optical/
infrared satellite has limited penetration of the canopy, SAR
data which are less sensitive to vegetation (Rao et al. 2019;
White et al. 2015) could be introduced into the classification
model. For the methodology, different types of neural network
classifiers can be employed in the future. For example, using
convolutional neural network models that take images as input
can incorporate shape information and enable classification of
different types of water bodies.

5. Conclusions

Surface water distribution changes extensively with time and
space, and it is still a challenge to use remote sensing data for
monthly surface water mapping with high spatial resolutions.
This study proposed a robust NN-based monthly classification
framework that precisely captured the monthly dynamics of sur-
face water in the Qinghai–Tibet Plateau with accuracy. Our
framework efficiently solved the problem of invalid observa-
tions and showed high performance in seasonal water and ice/
snow cover separation in remote sensing images. The classifica-
tion results showed higher accuracy than previous datasets, and
they were highly consistent with the ground investigation and
independent high-resolution images. The overall accuracy of
surface water mapping reached 0.96 and more than 80% of the
pixel classification results had a high-quality flag. This study
shows the great potential for applications requiring monthly
monitoring and high spatial resolution. In the future, a long
time series monthly dataset and floodability index could be
obtained based on this framework, which can provide precious
information for wetland mapping studies, water resource man-
agement, and water security maintenance.
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APPENDIX

Accuracy Assessment of the Interpolation Region

After the cloud masking, missing data were present every
month over the Qinghai–Tibet Plateau (Fig. A1a). For instance,
in July 2020, the worst month of that year, less than 70% of
valid observations remained. Radiometric calibration also af-
fects the reflection accuracy, resulting in negative reflectance
values in some regions (Deng et al. 2018). Negative reflectance
values in the monthly composite images were distributed over
water and land (Fig. A1b). These negative values are invalid,
making the derived spectral index value exceed the normal
range, a true problem for the forthcoming classifier.

The number of images per month on a pixel scale after
cloud masking and image fusion (Landsat 7 and Landsat 8),
indicating that approximately 80%, 68%, 72%, and 83% of
the pixels contained two or more images in January, May,
August, and November, respectively. To address data gaps,
we performed interpolation based on a historical record.

Taking August 2020 as an example, the classification results
for the specific regions were evaluated (interpolated data that
were missing in the Landsat images). First, 200 water samples
and 200 nonwater samples were randomly generated in this
region according to our classification results (Fig. A2, August
2020). Then, these samples were checked by visual inter-
pretation based on contemporaneous remote sensing im-
ages. Finally, the classification accuracy was calculated.

FIG. A1. (a) Percentage of valid Landsat pixels for each month of 2020 before (orange) and after (orange plus blue)
the interpolation. (b) Percentage of negative data over land (orange) and water (green).
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logic attribution of temporary wetlands using recurrent Land-
sat imagery. Wetlands, 36, 431–443, https://doi.org/10.1007/
s13157-016-0752-9.

Feng, M., J. O. Sexton, S. Channan, and J. R. Townshend, 2016:
A global, high-resolution (30-m) inland water body dataset
for 2000: First results of a topographic-spectral classification
algorithm. Int. J. Digit. Earth, 9, 113–133, https://doi.org/10.
1080/17538947.2015.1026420.

Feyisa, G. L., H. Meilby, R. Fensholt, and S. R. Proud, 2014: Au-
tomated water extraction index: A new technique for surface
water mapping using Landsat imagery. Remote Sens. Envi-
ron., 140, 23–35, https://doi.org/10.1016/j.rse.2013.08.029.

Fisher, A., N. Flood, and T. Danaher, 2016: Comparing Landsat wa-
ter index methods for automated water classification in eastern
Australia. Remote Sens. Environ., 175, 167–182, https://doi.org/
10.1016/j.rse.2015.12.055.

Foody, G. M., 2002: Status of land cover classification accuracy as-
sessment. Remote Sens. Environ., 80, 185–201, https://doi.org/
10.1016/S0034-4257(01)00295-4.

Gao, B., 1996: NDWI}A normalized difference water index for
remote sensing of vegetation liquid water from space. Remote
Sens. Environ., 58, 257–266, https://doi.org/10.1016/S0034-
4257(96)00067-3.

Georganos, S., T. Grippa, S. Vanhuysse, M. Lennert, M. Shimoni,
and E. Wolff, 2018: Very high resolution object-based land
use–land cover urban classification using extreme gradient
boosting. IEEE Geosci. Remote Sens. Lett., 15, 607–611, https://
doi.org/10.1109/LGRS.2018.2803259.

Ghorbanian, A., M. Kakooei, M. Amani, S. Mahdavi, A. Moham-
madzadeh, and M. Hasanlou, 2020: Improved land cover
map of Iran using Sentinel imagery within Google Earth En-
gine and a novel automatic workflow for land cover classifica-
tion using migrated training samples. ISPRS J. Photogramm.
Remote Sens., 167, 276–288, https://doi.org/10.1016/j.isprsjprs.
2020.07.013.

Gong, P., and Coauthors, 2013: Finer resolution observation and
monitoring of global land cover: First mapping results with
Landsat TM and ETM1 data. Int. J. Remote Sens., 34, 2607–
2654, https://doi.org/10.1080/01431161.2012.748992.

Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau,
and R. Moore, 2017: Google Earth Engine: Planetary-scale
geospatial analysis for everyone. Remote Sens. Environ., 202,
18–27, https://doi.org/10.1016/j.rse.2017.06.031.

Gumbricht, T., R. M. Roman-Cuesta, L. Verchot, M. Herold,
F. Wittmann, E. Householder, N. Herold, and D. Murdiyarso,
2017: An expert system model for mapping tropical wetlands
and peatlands reveals South America as the largest contribu-
tor. Global Change Biol., 23, 3581–3599, https://doi.org/10.
1111/gcb.13689.

Guo, L., H. Zheng, Y. Wu, T. Zhang, M. Wen, L. Fan, and B.
Zhang, 2020: Responses of lake ice phenology to climate
change at Tibetan Plateau. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens., 13, 3856–3861, https://doi.org/10.1109/
JSTARS.2020.3006270.

Halabisky, M., L. M. Moskal, A. Gillespie, and M. Hannam, 2016:
Reconstructing semi-arid wetland surface water dynamics
through spectral mixture analysis of a time series of Landsat
satellite images (1984–2011). Remote Sens. Environ., 177,
171–183, https://doi.org/10.1016/j.rse.2016.02.040.

Hall, D. K., G. A. Riggs, and V. V. Salomonson, 1995: Development
of methods for mapping global snow cover using moderate res-
olution imaging spectroradiometer data. Remote Sens. Environ.,
54, 127–140, https://doi.org/10.1016/0034-4257(95)00137-P.

Haralick, R. M., K. Shanmugam, and I. Dinstein, 1973: Textural
features for image classification. IEEE Trans. Syst. Man Cy-
bern., 6, 610–621, https://doi.org/10.1109/TSMC.1973.4309314.

Ienco, D., R. Gaetano, C. Dupaquier, and P. Maurel, 2017: Land
cover classification via multitemporal spatial data by deep re-
current neural networks. IEEE Geosci. Remote Sens. Lett.,
14, 1685–1689, https://doi.org/10.1109/LGRS.2017.2728698.

Ji, L., P. Gong, J. Wang, J. Shi, and Z. Zhu, 2018: Construction of
the 500-m resolution daily global surface water change data-
base (2001–2016). Water Resour. Res., 54, 10270–10 292,
https://doi.org/10.1029/2018WR023060.

Jia, M., Z. Wang, D. Mao, C. Ren, C. Wang, and Y. Wang, 2021:
Rapid, robust, and automated mapping of tidal flats in China
using time series Sentinel-2 images and Google Earth Engine.
Remote Sens. Environ., 255, 112285, https://doi.org/10.1016/j.
rse.2021.112285.

Jiang, W., G. He, T. Long, Y. Ni, H. Liu, Y. Peng, K. Lv, and G.
Wang, 2018: Multilayer perceptron neural network for sur-
face water extraction in Landsat 8 OLI satellite images. Re-
mote Sens., 10, 755, https://doi.org/10.3390/rs10050755.

Kohavi, R., 1995: A study of cross-validation and bootstrap for accu-
racy estimation and model selection. Proc. 14th Int. Joint Conf.
on Artificial Intelligence, Montreal, QC, Canada, IJCAI, 1137–
1145, https://www.ijcai.org/Proceedings/95-2/Papers/016.pdf.

Kordelas, G. A., I. Manakos, D. Aragonés, R. Dı́az-Delgado, and
J. Bustamante, 2018: Fast and automatic data-driven thresh-
olding for inundation mapping with Sentinel-2 data. Remote
Sens., 10, 910, https://doi.org/10.3390/rs10060910.

Kulkarni, A. D., and B. Lowe, 2016: Random forest algorithm for
land cover classification. Int. J. Recent Innovation Trends
Comput. Commun., 4, 58–63, https://doi.org/10.17762/ijritcc.
v4i3.1834.

Li, X., and Coauthors, 2021: Monitoring high spatiotemporal wa-
ter dynamics by fusing MODIS, Landsat, water occurrence
data and DEM. Remote Sens. Environ., 265, 112680, https://
doi.org/10.1016/j.rse.2021.112680.

Lu, S., and Coauthors, 2017: Lake water surface mapping in the
Tibetan Plateau using the MODIS MOD09Q1 product. Re-
mote Sens. Lett., 8, 224–233, https://doi.org/10.1080/2150704X.
2016.1260178.

Meyer, M. F., S. G. Labou, A. N. Cramer, M. R. Brousil, and
B. T. Luff, 2020: The global lake area, climate, and population

RAN E T AL . 1655OCTOBER 2023

Unauthenticated | Downloaded 01/16/25 10:26 AM UTC

https://www.fws.gov/wetlands/documents/classification-of-wetlands-and-deepwater-habitats-of-the-united-states.pdf
https://www.fws.gov/wetlands/documents/classification-of-wetlands-and-deepwater-habitats-of-the-united-states.pdf
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/j.isprsjprs.2018.09.008
https://doi.org/10.1016/j.isprsjprs.2018.09.008
https://doi.org/10.1080/01431161.2011.649864
https://doi.org/10.1080/01431161.2011.649864
https://doi.org/10.1007/s13157-016-0752-9
https://doi.org/10.1007/s13157-016-0752-9
https://doi.org/10.1080/17538947.2015.1026420
https://doi.org/10.1080/17538947.2015.1026420
https://doi.org/10.1016/j.rse.2013.08.029
https://doi.org/10.1016/j.rse.2015.12.055
https://doi.org/10.1016/j.rse.2015.12.055
https://doi.org/10.1016/S0034-4257(01)00295-4
https://doi.org/10.1016/S0034-4257(01)00295-4
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1109/LGRS.2018.2803259
https://doi.org/10.1109/LGRS.2018.2803259
https://doi.org/10.1016/j.isprsjprs.2020.07.013
https://doi.org/10.1016/j.isprsjprs.2020.07.013
https://doi.org/10.1080/01431161.2012.748992
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1111/gcb.13689
https://doi.org/10.1111/gcb.13689
https://doi.org/10.1109/JSTARS.2020.3006270
https://doi.org/10.1109/JSTARS.2020.3006270
https://doi.org/10.1016/j.rse.2016.02.040
https://doi.org/10.1016/0034-4257(95)00137-P
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/LGRS.2017.2728698
https://doi.org/10.1029/2018WR023060
https://doi.org/10.1016/j.rse.2021.112285
https://doi.org/10.1016/j.rse.2021.112285
https://doi.org/10.3390/rs10050755
https://www.ijcai.org/Proceedings/95-2/Papers/016.pdf
https://doi.org/10.3390/rs10060910
https://doi.org/10.17762/ijritcc.v4i3.1834
https://doi.org/10.17762/ijritcc.v4i3.1834
https://doi.org/10.1016/j.rse.2021.112680
https://doi.org/10.1016/j.rse.2021.112680
https://doi.org/10.1080/2150704X.2016.1260178
https://doi.org/10.1080/2150704X.2016.1260178


dataset. Sci. Data, 7, 174, https://doi.org/10.1038/s41597-020-
0517-4.

Mueller, N., and Coauthors, 2016: Water observations from space:
Mapping surface water from 25 years of Landsat imagery
across Australia. Remote Sens. Environ., 174, 341–352, https://
doi.org/10.1016/j.rse.2015.11.003.

Nguyen, T.-H., and F. Aires, 2023: A global topography- and
hydrography-based floodability index for the downscaling,
analysis, and data-fusion of surface water. J. Hydrol., 620,
129406, https://doi.org/10.1016/j.jhydrol.2023.129406.

Pal, M., 2006: Support vector machine-based feature selection for
land cover classification: A case study with DAIS hyperspec-
tral data. Int. J. Remote Sens., 27, 2877–2894, https://doi.org/
10.1080/01431160500242515.

}}, and P. M. Mather, 2003: An assessment of the effectiveness
of decision tree methods for land cover classification. Re-
mote Sens. Environ., 86, 554–565, https://doi.org/10.1016/
S0034-4257(03)00132-9.

Pekel, J.-F., A. Cottam, N. Gorelick, and A. S. Belward, 2016:
High-resolution mapping of global surface water and its long-
term changes. Nature, 540, 418–422, https://doi.org/10.1038/
nature20584.

Pickens, A. H., M. C. Hansen, M. Hancher, S. V. Stehman, A.
Tyukavina, P. Potapov, B. Marroquin, and Z. Sherani, 2020:
Mapping and sampling to characterize global inland water
dynamics from 1999 to 2018 with full Landsat time-series. Re-
mote Sens. Environ., 243, 111792, https://doi.org/10.1016/j.rse.
2020.111792.

Qiao, C., J. Luo, Y. Sheng, Z. Shen, Z. Zhu, and D. Ming, 2012:
An adaptive water extraction method from remote sensing
image based on NDWI. J. Indian Soc. Remote Sens., 40, 421–
433, https://doi.org/10.1007/s12524-011-0162-7.

Qu, B., Y. Zhang, S. Kang, and M. Sillanpää, 2019: Water quality
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