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Abstract: The rise of metasurfaces to manipulate the polarization states of light motivates
the development of versatile numerical methods able to model and analyze their polarimetric
properties. Here we make use of a scattered-field formulation well suited to the Finite Element
Method (FEM) to compute the Stokes-Mueller matrix of metasurfaces. The major advantage of
the FEM lies in its versatility and its ability to compute the optical properties of structures with
arbitrary and realistic shapes, and rounded edges and corners. We benefit from this method to
design achiral, pseudo-chiral, and chiral metasurfaces with specific polarimetric properties. We
compute and analyze their Mueller matrices. The accuracy of this method is assessed for both
dielectric and metallic scatterers hosting Mie and plasmonic resonances.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Optical metasurfaces have drawn significant attention in recent years due to their ability to control
various properties of light [1,2]. They have especially proved to be very efficient in tailoring
the polarization states of light [3–7]. Changes in the polarization states are governed by the
polarimetric properties of the metasurface that can be modeled through different formalisms.
In particular, the Jones matrix, coherency matrix, Poincaré sphere, and Stokes-Mueller matrix
formalism have been developed to define these polarization properties. The Stokes-Mueller
matrix offers an unambiguous and complete representation of the polarimetric properties of
optical systems, especially for rough or heterogeneous metasurfaces [8–10]. This powerful
technique can deal with polarized, non-polarized, or partially polarized light and allows for
a complete characterization of the polarization properties of optical systems [11,12]. While
Mueller matrix spectroscopy has played an important role in the experimental measurement of
polarimetric properties of metasurfaces [13], the numerical computations of the Stokes-Mueller
matrix elements of metasurfaces remain relatively limited [14,15].

In recent years, several numerical and experimental studies have explored the azimuth-resolved
polarimetric properties of achiral metasurfaces when illuminated at specific polar angles of
incidence [14,16]. The polarimetric properties of pseudo-chiral metasurfaces under specific
polar and azimuthal angles of illumination have also been investigated [17,18]. On the other
hand, Arteaga et al. have conducted several studies on the Mueller matrices of anisotropic and
bianisotropic materials and their symmetries [19,20]. However, a comprehensive study of optical
metasurfaces with specific macroscopic chiral properties illuminated across a full range of polar
and azimuthal incidence angles, and a comparative analysis of corresponding symmetries of
their Mueller matrices remains unexplored. In 2010, Demésy et al. presented a scattered field
formulation using the Finite Element Method to calculate the diffracted vector amplitudes for
arbitrarily shaped two-dimensional (or crossed or bi-periodic) gratings [21,22]. The advantage
of this numerical method lies in its complete independence from the geometry, material, number
of resonators, and illumination conditions. In this work, we benefit from this versatile approach
to model the polarimetric properties of achiral, pseudo-chiral, and chiral metasurfaces through
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the calculation of their Mueller matrices. As the chiral metasurface, we introduce a novel design
using achiral building blocks.

The resulting model, based on open-source finite element codes [23,24] is available online as a
template model [25,26]. In this formulation, the metasurface is considered as a two-dimensional
periodic structure composed of nano-resonators bearing on a substrate. The diffraction problem is
treated as a radiation problem whose sources are localized within the diffracting resonators. The
work presented here extends the model to rigorously calculate the complex Rayleigh coefficients
in reflection and transmission, for both linear and circularly polarized light, followed by the
rigorous calculation of every Mueller matrix element from the specularly reflected order. We take
advantage of a parallelization technique to compute the polarimetric properties for illumination
conditions across a wide range of polar and azimuthal angles of incidence. We also assess and
compare the polarization-control capabilities of these three metasurfaces using the Poincaré
sphere representation.

1. Computation of the Mueller matrix with the finite element method

A monochromatic light beam incident on a sample surface is conventionally represented by its
electric field vector given by

E(t) = [Epp + Ess] exp(−iωt), (1)

where p and s are the directions of polarization parallel and perpendicular to the plane of
incidence, respectively (see the conventions in Fig. 1(a), where p = k+/|k+ | × s, k+ being the
incident wavevector). The transfer function between the outgoing and incoming polarization
states upon reflection from a non-depolarizing sample surface can be expressed by the 2 × 2
Jones matrix, consisting of four complex reflection coefficients [27]:

⎛⎜⎝
E′
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E′
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Fig. 1. (a) 3D configuration of the unit cell of a metasurface. (b) 3D configuration of the
semi-infinite metasurface with directions of orientation of the incident wave vector and
the electric field. The green plane corresponds to the plane of incidence containing the
metasurface normal along the z-axis, and the incident wavevector k+, and the wavevector is
orthogonal to the red plane. (c) Schematic description of the numerical formulation.

The objective of this work is to calculate the complete Jones and Mueller matrices of meta-
surfaces with various shapes of scatterers using full-wave simulations (see Numerical code).
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This formulation has been able to accurately calculate the electromagnetic fields diffracted
by bi-periodically arranged scatterers of arbitrary shape, embedded in multilayered structures,
illuminated by a plane wave with arbitrary polar and azimuthal angles of incidence and arbitrary
polarization [21]. We extend this model to post-process the reflection amplitudes constituting the
Jones matrix, followed by the calculation of the Mueller matrix.

Figure 1(a) depicts a schematic configuration of the addressed unit cell in the Cartesian
coordinate system. It consists of two homogeneous, isotropic, lossless layers called the substrate
(z<0), and the superstrate (z>0). The unit cell is extended into the semi-finite metasurface shown
in Fig. 1(b) by applying Bloch periodic conditions on the lateral surfaces x1, x2, y1 and y2. The
size of the unit cell in the x and y directions, Px and Py, define the periodicity of the metasurface.
To truncate the infinite superstrate and substrate regions, they are extended by a set of Perfectly
Matched Layers (PML) along the z-axis. Therefore, the diffracted field decays exponentially
within the PMLs along the z-axis and propagates in the infinite Oxy plane. The superstrate,
substrate, and scatterers are characterized by their complex-valued relative permittivities and
relative permeabilities ϵ+, µ+, ϵ−, µ−, ϵscat and µscat, respectively. The metasurface is illuminated
from the superstrate, with an incident field given by

Einc = A eik+.r, (3)

where the incident wavevector k+ = [α0, β0, γ0] = k+[− sin θ cos ϕ,− sin θ sin ϕ,− cos θ] and A
is the vector amplitude. The diffraction problem at hand is to find the quasi-bi-periodic electric
field E, unique solution of the Helmholtz equation in the time-harmonic regime:

−∇ × (µ−1
r ∇ × E) + k2

0 ϵr E = 0. (4)

In this expression, k0 =
ω
c is the incident wave vector in free space while ϵr and µr represent

the relative permittivity and permeability functions (of space and the driving frequency ω) that
entirely define the opto-geometric parameters of the metasurface. The wavenumbers in the
superstrate and substrate are given by k+ = k0

√
ϵ+µ+ and k− = k0

√
ϵ−µ−, respectively. A scattered

field formulation [21] is used to convert the vector diffraction problem with faraway sources into a
radiation problem with localized sources, the latter being more compliant with the bounded nature
of the finite element computational box. The numerical approach is described in Fig. 1(c) with a
simple schematic block diagram and the working principle is recalled hereafter. The problem of
diffraction in the metasurface is carried out by addressing separately the configurations with and
without resonators. The total field can indeed be expressed as :

E = E1 + U, (5)

where U is the unknown field and E1 is the unique solution of the annex problem consisting
of the mere superstrate/substrate interface illuminated by the plane wave Einc. In this annex
problem, the total field E1 satisfies:

−∇ × (µ−1
± ∇ × E1) + k2

0 ϵ± E1 = 0, (6)

where ϵ± and µ± are two functions defined by part as

ϵ±(x, y, z), µ±(x, y, z) =

{︄
ϵ+, µ+, in the superstrate
ϵ−, µ−, in the substrate

. (7)

Equation 6 can be readily solved analytically since it relies on the Fresnel coefficients of
the interface. More precisely, the annex field is the superposition of two plane waves in the
superstrate (the incident field Einc, the reflected field Er

1) and the transmitted field denoted Et
1 in

the substrate.
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Now, making use of the linearity of Eqs. (4,6) together with Eq. (5) allows to establish the
propagation equation for the unknown field U :

−∇ × (µ−1
r ∇ × U) + k2

0 ϵr U = −[−∇ × ((µr − µ±)
−1∇ × E1) + k2

0 (ϵr − ϵ±)E1] (8)

The right-hand side of the above equation can be interpreted as sources localized in the
scatterers, since outside the scatterers ϵr = ϵ± and µr = µ±. The problem of diffraction has
now essentially changed to a problem of radiation. Equation (8) can be solved through its weak
formulation as elaborated in Ref. [28] using periodic conditions in its lateral sides and perfectly
matched layers along with boundary conditions on its top and bottom sides.

From the numerical point of view, all geometries and conformal meshes are performed with the
Gmsh software [23], and the finite element computations are implemented thanks to the flexibility
of the finite element software GetDP [24]. Open-source models used in this study are provided
in [25,26] (see Numerical code). The size of each edge element is determined by λ0/(N

√︁
Re(ϵr)),

where N is the number of tetrahedral elements per wavelength of the electromagnetic field inside
a given material (λ0/

√︁
Re(ϵr)), characterized as the mesh refinement factor, which will allow

performing convergence tests reported in the next sections. The unknown field U is discretized on
the tetrahedral mesh using high-order Webb hierarchical edge elements [29–31] with 26 Degrees
Of Freedom (DOFs) per tetrahedron (3 DOFs per edge, 2 DOFs per face). The FEM sparse
matrix inversion is carried out by the direct solver MUMPs [32] which is natively interfaced in
the finite element software GetDP [24].

Finally, in order to define the Rayleigh coefficients let us call the total diffracted field Ed such
that

Ed =

{︄
E − Einc, in the superstrate
E, in the substrate

. (9)

In other words, the field diffracted by the metasurface is a summation of the outgoing
reflected and transmitted fields from the annex problem, and the outgoing unknown field U, i.e.,
Ed = E − Einc = U + Er

1 in the superstrate and Ed = E = U + Et
1 in the substrate. Once the

diffracted field is computed, the vector amplitudes e±i,j, known as Rayleigh coefficients, of the
reflected (superscript +) and transmitted (superscript −) diffraction orders can be computed by
integrating cuts of the diffracted field in the superstrate and substrate [21] :

e±i,j(z) =
1

PxPy

∫ Px/2

−Px/2

∫ Py/2

−Py/2
Ed(x, y, z) e−i(αix+βjy) dx dy (10)

where subscripts (i, j) ∈ Z2 index the ijth diffraction order, αi = α0 + i 2π
Px

and βj = β0 + j 2π
Py

are
the transverse components of its propagation vector. The wavevectors of the ijth reflected (resp.
transmitted) diffraction orders are denoted by k±

i,j = [αi, βj,±γ±i,j] with γ±i,j =
√︂

k2
0ϵ± − α2

i − β2
j .

The calculation of these quantities allows for the determination of the reflected and transmitted
diffraction efficiencies defined as:

Ri,j =
1

|A|2
γ+i,j

γ0
|e+i,j(z)|

2, with z in the superstrate

Ti,j =
1

|A|2
γ−i,j

γ0
|e−i,j(z)|

2, with z in the substrate
(11)

For the specular orders, whose wavevectors remain in the plane of incidence, the unit vector s
normal to the plane of incidence and defined as [sin(ϕ0),− cos(ϕ0), 0] = ẑ × k+/|ẑ × k+ | remains
unchanged. However, the unit vector p takes different directions for the transmitted and reflected
specular orders, owing to the different wavevectors for these two cases, and are defined as
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p±
0,0 = k±/|k± | × s. Note that the non-specular orders lie outside the plane of incidence and the

unit vector s loses its meaning. A workaround could be to define extra “outgoing planes” with
the wavevector of the considered order and the normal to the surface: s±i,j = ẑ× k±

i,j/|ẑ× k±
i,j |, then

p±
i,j = k±

i,j/|k
±
i,j | × s±i,j.

In this paper, we focus on the reflected specular order, and the simulations are performed
for both s and p-polarized incident plane waves. For a specific illumination condition, the
specular reflection Rayleigh coefficient e+0,0 is calculated at the top surface of the superstrate
(i.e. the interface with the PML) and projected on the s and p basis (scalar product with s or
p+0,0), constituting the elements of the Jones matrix labeled by rmn. For the sake of clarity, if the
incident beam is for instance p-polarized (n = p), the reflection coefficient along the direction of
s-polarization (m = s) will be given by rsp. Finally, all the elements of the Mueller matrix are
deduced from the Jones matrix, using the theoretical framework provided in Ref. [14], given by:

M11 =
1
2
[|rpp |

2 + |rsp |
2 + |rps |

2 + |rss |
2], M12 =

1
2
[|rpp |

2 + |rsp |
2 − |rps |

2 − |rss |
2],

M13 = Re[rpp r∗ps + rsp r∗ss], M14 = Im[rpp r∗ps + rsp r∗ss],

M21 =
1
2
[|rpp |

2 − |rsp |
2 + |rps |

2 − |rss |
2], M22 =

1
2
[|rpp |

2 − |rsp |
2 − |rps |

2 + |rss |
2],

M23 = Re[rpp r∗ps − rsp r∗ss], M24 = Im[rpp r∗ps − rsp r∗ss],
M31 = Re[rpp r∗sp + rps r∗ss], M32 = Re[rpp r∗sp − rps r∗ss],
M33 = Re[rpp r∗ss + rps r∗sp], M34 = Im[rpp r∗ss − rps r∗sp],
M41 = −Im[rpp r∗sp + rps r∗ss], M42 = −Im[rpp r∗sp − rps r∗ss],
M43 = −Im[rpp r∗ss + rps r∗sp], M44 = Re[rpp r∗ss − rps r∗sp]

(12)

2. Design of metasurfaces and analysis of their polarimetric properties

We now illustrate the generality and relevance of the presented numerical model by designing
three kinds of metasurfaces with specific polarimetric properties. The accuracy of this approach
is assessed for both Mie-resonant and plasmonic scatterers. The numerical method presented
in the previous section is implemented to characterize the polarimetric properties of achiral,
pseudo-chiral, and chiral metasurfaces. More precisely, we consider (i) an achiral metasurface
composed of Si-based nano-disks, (ii) a plasmonic metasurface composed of gold U-shaped
resonators, and (iii) the case of a chiral structure composed of four Mie-resonant scatterers per
cell with heights varying on left or right circular directions. In the latter case, we benefit from
the versatility of the numerical approach to design left or right-handed Si-based quadrumers
exhibiting strong circular dichroism.

2.1. Achiral metasurface with Mie-resonant Si nano-disks

The first metasurface consists of an array of dielectric nano-disks composed of silicon (see
Fig. 2(a)). The building blocks of this metasurface have proven to exhibit chiral density in their
nearfield but no circular dichroism of their own [33–36]. The radius, height, and periodicity of
the pillars are given by r = 80nm, h = 130nm and Px = Py = 420nm. The pillars are bearing on
a glass substrate (ϵ− = 2.25) while the superstrate is made of air (ϵ+ = 1). The metasurface is
illuminated by s and p polarized incident plane waves with an incidence defined by the angles θ
and ϕ.

2.1.1. Convergence test

The Finite Element Method is of high interest for modeling the polarization properties of
metasurfaces since the mesh can be very easily adapted to scatterers of arbitrary shape. The
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Fig. 2. (a) Top view of the metasurface with Si nano-disks (top) with the top view of the
3D mesh (right) and 3D view of the unit cell (bottom) comprising one nano-disk bearing on
the substrate. (b) Computation accuracy with respect to the mesh refinement by calculating
and plotting the relative differential error mD for non-zero Mueller matrix elements M11,
M12, M33 and M34 in logarithmic scale (top) and the global energy balance for s and p
polarization (bottom) as a function of N. The frequency-dependent dielectric parameters of
Si in the mentioned wavelength range have been taken from the data by Schinke et al. [37].
(c) Polar plots of the Mueller matrix elements for ϕ = 90◦ and θ varying from 0◦ − 45◦ for
the wavelength range 400 − 800nm. (d) Azimuthal plots of the Mueller matrix elements for
θ = 45◦ and ϕ = 0◦ − 360◦ in the same spectral range.

crucial point is to assess its convergence when refining the mesh size. In order to identify an
appropriate value of the mesh refinement parameter N, a convergence test is performed for
oblique incidence (θ = 45◦) at λ = 600nm for a range N = {2, . . . , 12}. A parameter was defined
to quantify the relative differential error of the Mueller matrix elements, as mD = |

MN−MN−1
MNmax

|,
where MN is an element of the Mueller matrix Mij for a particular value of the mesh refinement
parameter N. Figure 2(b) represents the convergence of mD for the non-zero elements M11, M12,
M33 and M34 in logarithmic scale (top) and the global energy balance for s and p polarization
(bottom) as a function of N. The total energy efficiency for both s and p polarizations tends toward
1 as the mesh refinement parameter N increases. As, for example, the |M12 | element obtained
for N = 7 (0.0370) and N = 12 (0.0368) leads to a relative difference of 0.5% only, a trade-off
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between accuracy and computation time is found by taking N = 7 for all calculations. However,
in order to maintain a uniform meshing throughout the spectrum, the mesh parameter was fixed
at λmin/(N

√︁
Re(ϵr)) instead of λ0/(N

√︁
Re(ϵr)) for the dielectric parts of all three systems.

2.1.2. Dependence on θ, φ and λ

To compute the Mueller matrix elements, numerical simulations are performed by varying two of
the three illumination parameters (θ, ϕ, and λ) while keeping the third one (θ or ϕ) fixed. All the
elements are normalized with respect to M11. Figure 2(c) displays the polar plot spectra for the
16 elements (mij = Mij/M11) of the normalized Mueller matrix, with m11 replaced by a diagram
showing the varying parameters. The spectra are obtained by illuminating the metasurface in
the wavelength range of λ = 400−800nm, at a fixed azimuthal angle of incidence ϕ = 90◦ and
varying polar angles from θ = 0◦−45◦. The plots have a clockwise angle increment, where the
wavelength increases radially from the inner circle of 400nm to the outer circle of 800nm. It can
be observed that at normal incidence, the matrix is diagonal, and consists of two distinct non-zero
elements, m22 and m33. On the other hand, as the incidence becomes oblique, two other non-zero
unique elements, m12 and m34, are introduced, and the matrix transforms into a block-diagonal
form for each θ,

m =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 m12 0 0

m12 1 0 0

0 0 m33 m34

0 0 −m34 m33

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(13)

This characteristic can be traced back to a diagonal Jones matrix (rps = rsp = 0), that results
from the isotropic, achiral nature of the resonators, and the mirror symmetry of the metasurface
with respect to the plane of incidence [19,38]. Among these elements, m12, m33, and m34 tend to
display a dispersive signature with the angle of incidence deviating from normal, while the others
remain unchanged at zero. The azimuthal plots of the metasurface, obtained by varying ϕ from
0◦−360◦ at θ = 45◦ are shown in Fig. 2(d). It is interesting to note that the matrix symmetry for
each ϕ has changed and now appears in the form:

m =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 m12 m13 m14

m12 m22 m23 m24

−m13 −m23 m33 m34

m14 m24 −m34 m44

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(14)

The off-block-diagonal elements of the matrix exhibit significant non-zero values for all
azimuthal angles except at multiples of 45◦. These non-zero values arise due to the oblique
incidence on the metasurface which leads to cross-polarization conversion (p-s or s-p). As
a result, the Jones matrix becomes non-diagonal but antisymmetric (rps = −rsp) [38]. Under
oblique incidence, the metasurface satisfies only one symmetry condition which is the 180◦
rotational symmetry around its normal, for any ϕ except multiples of 45◦. For those specific
angles, the metasurface satisfies an additional mirror symmetry condition with respect to the
incidence plane, due to the 45◦ symmetry of the square lattice. Therefore, the matrix simplifies
at these points and retains the same form as in Eq. (14). Furthermore, it can be observed that
under oblique incidence, the off-block-diagonal elements display a 180◦ change of phase every
45◦ interval of rotation, which comes from the π phase transition of rps and rsp at these angles.
So, with respect to an axis cutting through them every 45◦ interval, the off-block-diagonal
elements are antisymmetric, whereas the block-diagonal elements are symmetric. This has
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Fig. 3. Azimuthal variation (first quadrant) of the elements (a) m14 associated with circular
dichroism and (b) m23 associated with circular birefringence, and (c) the corresponding
optical rotation extracted via Lu-Chipman decomposition.

been observed previously in plasmonic metasurfaces, where the overlapping between LSPR and
Rayleigh anomalies played an important role [14,16,39], but not in dielectric metasurfaces.

Element m14 is often attributed to the presence of circular dichroism (CD) generated by the
metasurface. However, there should be no CD observed in the case of Si nanodisks. It has
been established that the element m14 could also contain information about linear dichroism
and birefringence which could be mistaken for CD [40,41]. In the case of a Mueller matrix
determined in reflection at oblique incidence, the so-called polar decomposition [42] allows
for the determination of the different polarimetric contributions to the Mueller matrix. In our
calculation, there is no depolarization, so the analysis was performed by assuming that the
Mueller matrix of the Si nanodisks could be represented as the product of a pure retardance and
a pure diattenuation matrix. The retardance matrix was then decomposed as the product of a
pure retardator followed by a pure optical rotator [43]. The optical rotator would describe the
contribution of CD to the Mueller matrix of the nanodisks. The parameters of the retardator
(retardance and fast axis orientation) and of the optical rotator (rotation angle) were fitted to the
Mueller matrix of Fig. 2(d). Figure 3(c) presents the rotation angle associated with the optical
rotator extracted from the fitting. It can be seen that except for a few numerical noises, the optical
rotation was zero indicating that the non-zero values of the elements m14 and m23 presented in
Figs. 3(a) and (b) were arising from linear dichroism and birefringence.

2.2. Pseudo-chiral metasurface with U-shaped resonators

Let us now investigate a more complex shape associated with a dispersive and metallic material.
The metasurface under study is a pseudo-chiral metasurface composed of a two-dimensional
square array of U-shaped gold resonators on a glass substrate. In recent years, they have emerged
as a unique class of metasurfaces in exhibiting optical activity. The term ’Pseudo-chirality’ refers
to the optical activity observed in metasurfaces that leverage simple achiral building blocks to
achieve polarization-sensitive responses that closely resemble those of their chiral counterparts.
This form of chiral behavior is referred to as extrinsic chirality, first reported by Verbiest et al.
[44]. Over the past decades, several studies have numerically and experimentally confirmed the
presence of circular dichroism in individual and arrays of U-shaped nanostructures arising from
magneto-electric coupling [17,45–48].
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The dimensions of the structure, shown in Fig. 4(a), are set to Px = Py = 400nm, Lx = Ly =

200nm, dx = dy = 70nm, and dz = 40nm, respectively. The sharp corners were rounded with a
radius of 20nm in order to make the design more realistic. The frequency-dependent dielectric
parameters of gold were taken from Rakic et. al. [49]. The meshing parameter was set to N = 7
for the substrate and superstrate. However, due to the metallic nature of gold, the size of the
tetrahedral element for the scatterer was fixed at 15nm instead of λ0/(N

√︁
Re(ϵscat)) to effectively

capture the decaying electric field within the skin depth.
The polar plots of the 16 elements mij are illustrated in Fig. 4(b) and Fig. 4(c) for polar angles

ranging from θ = 0◦ − 45◦ at increments of 3◦, where the azimuthal angle is fixed at ϕ = 90◦
and for an azimuthal angle ranging from ϕ = 0◦ − 360◦ at 5◦ intervals, where the polar angle
is fixed at θ = 45◦, respectively. For both cases, each angle was swept in the wavelength range
400 − 1200nm by 5nm intervals. It can be observed from Fig. 4(b) that at normal incidence, the
metasurface behaves like an isotropic and achiral photonic component, with its Mueller matrix
satisfying the same symmetry conditions seen in Eq. (14). However, for oblique incidence at

400

12000°

270° 90°

180°

400

( ) ( )

( ) ( )

Fig. 4. (a) 3D configuration of the metasurface with U-shaped scatterers (top) and an
individual scatterer from a top angular view with the directions of orientation of the incident
light beam. The inset shows the geometry of the U-shape scatterer in a top view. (b)
Polar plots of the Mueller matrix elements as functions of wavelength varying from 400
to 1200nm and polar angle θ from 0◦ − 45◦. The azimuthal angle of illumination is set to
ϕ = 90◦. (c) Azimuthal plots of the Mueller matrix elements as functions of the azimuthal
angle ϕ = 0◦ − 360◦ in the same spectral range. The polar angle of illumination is fixed at
θ = 45◦. (d) The azimuthal plots of the real parts of the Jones matrix elements in the same
configuration. The blue-filled spectra show the spectral variation of rsp and rps at 90◦ and
270◦, respectively.
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ϕ = 90◦, i.e. along the (Oyz) plane, unlike the isotropic case, the matrix exhibits a different type
of symmetry of the following form:

m =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 m12 m13 m14

m12 m22 m23 m24

m13 m23 m33 m34

−m14 −m24 −m34 m44

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

This property results from the symmetry of the Jones matrix at this angle ϕ = 90◦ [17] and for
ϕ = 270◦ (rps = rsp, see Fig. 4(d)). It can be attributed to the mirror symmetry of the metasurface
with respect to the plane (Oxz) perpendicular to the plane of incidence (Oyz) [38]. Contrary to
the isotropic disks, magneto-electric coupling plays an important role in this resonator geometry,
giving rise to a cross-polarization conversion [17,45,47]. On the other hand, even in oblique
incidence, all the off-block-diagonal elements are null for ϕ = 0◦ as shown in Fig 4(c), and
the Mueller matrix again follows the symmetry of Eq. (14). It hints towards the absence of
cross-polarization conversion at ϕ = 0, which can be confirmed from the azimuthal polar plots
of the Jones matrix, shown in Fig 4(d). For all other azimuthal angles, any mirror symmetry is
broken and the Mueller matrix takes the general form:

m =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(16)

However, in general, all the elements demonstrate a symmetry condition of mij(ϕ) = ±mji(ϕ+π),
regardless of the azimuthal angles. Figure 4(d) also reveals that the diagonal elements of the
Jones matrix (rpp and rss) are symmetric with respect to the vertical axis connecting ϕ = 0◦−180◦
(Oxz plane), whereas the off-diagonal elements are antisymmetric. This feature translates to the
phenomenon that the signs of circular and ±45◦ linear dichroism (birefringence) are reversed as
the incidence plane is rotated by 180◦, whereas linear dichroism (birefringence) remains the same.
Since all the elements are non-zero, the specific linear and circular polarimetric properties can be
extracted by employing one of the several decomposition methods, such as polar decomposition
[42], reverse decomposition [50], symmetric polar decomposition [51] etc.

2.3. Height-modulated chiral quadrumer metasurface

Achiral dielectric resonators exhibiting strong chiral nearfields have already proven to be important
building blocks to create chiral metasurfaces [52–55]. We now benefit from the versatility of
the FEM formulation to design an all-dielectric chiral metasurface composed of height-varying
nano-discs exhibiting strong circular dichroism. The configuration is illustrated in Fig. 5(a). The
metasurface features four nano-disks per unit cell, with gradually decreasing heights in clockwise
and counterclockwise orientations. The disks have a fixed radius of 60nm and are arranged in a
two-dimensional array along the x and y directions with a fixed periodicity of Px = Py = 420nm.
The height of disk-1 is constant at 130nm, while the heights of the neighboring disks decrease
by hd in the right-circular (RC) or left-circular (LC) direction compared to their respective
previous disks. The distances between neighboring pillars in the x and y directions are fixed at
dx = dy = 40nm. The objective is to maximize the circular dichroism of the metasurface by
optimizing the m14 elements as a function of the height difference hd.
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Fig. 5. (a) Configuration of the unit cell of a metasurface with four nano-pillars of decreasing
height in a right-circular (top-left) and left-circular orientation (bottom-left), top view of
the metasurface with the unit cell highlighted with a black square (top-right), and side-view
of the right-circular (RC) metasurface showing the height difference between three disks
(bottom-right). (b) Normalized spectra of the Mueller matrix elements for the LC (orange)
and RC (green) metasurfaces, and with equally tall disks (red) at normal incidence. (c) Polar
plots of the Mueller matrix elements for LC metasurface as functions of the polar angle
θ = 0◦ − 45◦ in the spectral range 400 − 1000nm, with the azimuthal angle fixed at ϕ = 0◦.
(d) Full azimuthal polar plots of the off-block-diagonal Matrix elements for LC metasurface
at normal incidence in the spectral range 400 − 800nm. The black dotted circles correspond
to Rayleigh anomalies.

Figure 5(a) illustrates the schematic design of the metasurfaces of opposite handedness with
top and side views of the unit cell. Figure 5(b) showcases the Mueller matrix spectra of these
two metasurfaces (with hd = 15nm) along with the case of self-similar disks (hd = 0). The
metasurface with uniformly tall multi-disks mimics similar behavior to the achiral metasurface
with a single disk in normal incidence discussed in subsection 2.1, whereas, significant changes
can be observed when modifying the heights of the disks. It can also be noted that m12 (m34), m14
(m23) elements, representing linear and circular dichroism (birefringence) respectively, exhibit
exact and opposite responses upon reversing the handedness of the metasurface. On the other
hand, the m13 (m24) element, associated with 45◦ dichroism (birefringence), is the same for both
right- and left-handed circular (RC and LC) metasurfaces. This phenomenon can be explained
by the fact that when the handedness is reversed, disks 2 and 4 exchange positions, while disks 1
and 3 remain in the same place. As a result, the effective ratio of matter-volume encountered by
horizontal and vertical polarization components on both sides of the unit cell center changes
from RC to LC. However, the ±45◦ components encounter the same volume distribution, leading
to similar dichroism for both handednesses. The opposite circular dichroism results from the



Research Article Vol. 31, No. 26 / 18 Dec 2023 / Optics Express 43158

( )

=

=

=

=

=

=

( )

( )

=

=

d op miza on( )

( )

=

=

=

Op mized 14

2

4

3

1

2

4

3

1

2

4

43

4

2

1

3

4

2

1

4

3

1

2

4

3

1

2

Fig. 6. (a) Variation of the m14 element as a function of dx = dy and wavelength, with
hd fixed at 15nm. The white dotted line corresponds to Rayleigh anomaly. (b) Spectral
dependence of m14 with dx and (c) dy while the inter-pillar distances in the respective
orthogonal directions are kept fixed at d = 50nm. (d) m14 variation with the height
modulation hd . (e) The optimized m14 spectra associated with circular dichroism. The
Rayleigh line is shown with the black dotted line.

inherent chirality present in the twist that interacts with the chirality of circular polarization
components. The polar angle-resolved Mueller matrix of the LC metasurface is shown in Fig. 5(c).
It can be observed that while at normal incidence the matrix takes the form of Eq. (15), it tends to
lose symmetry as the incidence becomes oblique. The multiple lines visible in the block-diagonal
elements as compared to the case of a single disk in oblique incidence result from the coupling
effect between the disks. Figure 5(d) presents the ϕ-resolved polar plots of the off-block-diagonal
elements. All the elements obey mij = ±mij(ϕ + π), which is true for all the block-diagonal
elements as well. It can be observed that the circular dichroism and birefringence responses are
very close to the Rayleigh anomalies shown in black dotted lines. Note that circular dichroism is
constant for any value of ϕ, whereas circular birefringence changes phase after every 45◦ interval.
This phenomenon can be explained by the changing phase difference between rsp and rps at
different ϕ locations. It is interesting to note that the m13, m23, m24 elements and their symmetric
counterparts exhibit antisymmetry with respect to the axes which are about ∼ 10◦ rotated from
the vertical and horizontal axes. A possible explanation could come from the symmetry breaking
introduced by the height modulation, which results in the rotation of this axis.

The circular dichroism can be maximized through parametric optimization, in particular in
terms of the inter-pillar distances dx, dy, and the height modulation hd. The dependence of m14,
associated with the circular dichroism, is shown in Fig. 6(a)-(c). Figure 6(a) depicts the influence
of the inter-pillar distance on the m14 element, with dx = dy = d varying between 10 − 170nm.
The plots reveal that significant resonances occur within a narrow range of inter-pillar distances,
specifically between dx = dy = d = 40 − 60nm, with a pronounced peak resonance observed at
d = 50nm. This indicates that the coupling effect between the disks within a single unit cell



Research Article Vol. 31, No. 26 / 18 Dec 2023 / Optics Express 43159

Pseudo-chiral

Input Achiral

LCP

RCP

ChiralPseudo-chiral Chiral

QWP

1000

900

800

700

400

600

500

Fig. 7. Poincaré sphere representing the (a) incident left-circular polarization, (b) the
wavelength-resolved polarization trajectory of the light reflected from the achiral metasurface
with single nanodisk (Subsection 2.1), (c) pseudo chiral metasurface with U-shaped resonators
(Subsection 2.2), and (d) 3D chiral metasurface with height modulated multi-nanodisks
at normal incidence (Subsection 2.3). The color bar represents the wavelengths of the
trajectory.

reaches its maximum at this distance, subsequently decreasing as the inter-pillar distance is
further increased. However, interestingly, when d is further increased, m14 experiences another
enhancement, reaching its highest value at d = 130nm. This can be attributed to the coupling
between disks in neighboring cells, which form a unit cell (marked with a black box) of the
same handedness. As a result, the resonances in the m14 spectra exhibit a symmetric pattern
about d = 90nm, representing the distance at which coupling between the disks is minimized.
Figure 6(b) and 6(c) illustrate the dependence of m14 on dx and dy, respectively, while keeping the
other one fixed at d = 50nm. Figure 6(b) reveals that as dx increases, the peaks suffer redshifts
and eventually go through a sign change near the Rayleigh line. For further increase of dx beyond
90nm, the peaks get reversed. This arises from the coupling between disks of the neighboring
cells in the x-direction which now effectively form a cell of opposite-handedness. The highest
magnitude of m14 is achieved for dx = 50nm and 130nm. A similar sign-reversal phenomenon
can be observed for dy variation as well, except for a smaller redshift of peaks. The highest m14
is achieved for dy = 60nm and 120nm.

Figure 6(d) illustrates the dependence of m14 on the height modulation hd. It is evident that
the intrinsic chirality resulting from the arrangement of the unit cell intensifies as hd increases,
reaching its highest point at hd = 15nm, and then diminishes as hd continues to increase. The
Rayleigh anomaly close to the resonance is shown with the white dotted line. Figure 6(e) shows
the m14 spectrum corresponding to the optimized dx, dy and hd parameters. The peak of the
spectrum is observed at 619.5nm, while the Rayleigh line is at 630nm.
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2.3.1. Analysis of polarization-modulation using the Poincaré sphere

It is worth integrating the Stokes-Mueller matrix representation with the Poincaré sphere to
extract the polarization states of the output beam for the aforementioned metasurfaces. Poincaré
sphere is a well-established approach to portray polarization states as points on its surface, with
their coordinates corresponding to the Stokes parameters S1, S2, and S3 in the Cartesian system
[56].

The wavelength-resolved trajectory of the reflected polarization for the three metasurfaces
under study illuminated in normal incidence with a left-circular polarization is shown in Fig. 7.
The associated wavelength for the trajectory is indicated by the color bar. It can be observed
that the achiral Si-based metasurface maintains the incident polarization across all wavelengths,
and induces a π phase shift, resulting in a right-circularly polarized reflected beam. In contrast,
the gold U-shaped metasurface transforms the incident circular polarization into an elliptical
polarization that depends on the wavelength. The resulting trajectory is confined to the upper
section of the sphere, suggesting a small degree of polarization modulation. The chiral multi-disk
metasurface, on the other hand, has a much broader polarization trajectory. The reflected
polarization trajectory is not only confined to the upper half but rather crosses the equatorial line
twice to reach the lower half, meaning that the metasurface behaves as a quarter waveplate at
those two wavelengths.

3. Conclusion

To conclude, we presented a numerical method based on open-source modules developed to
compute the polarimetric properties of periodic metasurfaces with the Finite Element Method.
The versatility and capability to model intricate shapes and rounded edges serve as the driving
factors behind the adoption of the finite element method. We benefit from this numerical method
to model and analyze the polarimetric properties of achiral, pseudo-chiral, and chiral metasurfaces.
The computation of the complete Mueller matrices reveals the polarimetric properties of the
associated metasurfaces under normal and oblique incidences. Additionally, the symmetries
of the Mueller matrix elements are explained in relation to the metasurfaces’ symmetries. We
designed and optimized the element representing the circular dichroism of a chiral metasurface
composed of 4 silicon nanodiscs of varying height per cell. The circular dichroism is optimized
in normal incidence with respect to the interparticle distance and twist of the 4 Si pillars. The
spectral distribution around the Poincaré sphere shows that this Si-based metasurface exhibits the
properties of a quarter waveplate at two different frequencies. We conclude our study with a
comparison between the trajectories of the reflected polarizations retrieved from the metasurfaces.

Numerical code
We provide a bash script [26] allowing to reproduce the polar plots (cf. Figures 4(b) and

4(c)) given for the U-shaped resonator array. This script successively calls Gmsh [23] for the
geometry definition and meshing, GetDP [24] for solving the electromagnetic problem for a
specific (λ, θ, ϕ,ψ) incident plane wave, and Python for plotting the spectrally and angularly
resolved Mueller matrix elements. For computational efficiency, looping over the angles and
wavelengths is performed in an embarrassingly parallel way using the “GNU parallel” library
[57]. This script has been successfully tested on various Linux and macOS machines.
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0010).
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