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Abstract

The emergence of deep learning in the
medical field has popularized the devel-
opment of models to predict survival
outcomes from histopathology images
in precision oncology. Graph-based for-
malism has opened interesting perspec-
tives for generating informative repre-
sentations, as they can be context-aware
and model local and global topological
structures in the tumor’s microenviron-
ment. However, the critical issue in us-
ing graph representations lies in their
generalizability. They can suffer from
overfitting due to their large sizes or
high discrepancies between nodes due
to random sampling from WSI. In ad-
dition, standard graph formulations are
limited to pairwise interactions, which
can sometimes fail to represent the real-

AdaC, an adaptive clustering-based hy-
pergraph representation to model high-
order correlations among different re-
gions of the WSIs while being com-
pact enough to help graph neural net-
works generalize in the case of sur-
vival prediction. We evaluate our ap-
proach on 5 different public available
cancer datasets. Our method outper-
forms most state-of-the-art graph-based
methods for survival prediction with
WSIs, creating a more efficient and ro-
bust alternative to other graph repre-
sentations. Moreover, due to our formu-
lation, attention maps are depicted at
different resolutions depending on the
tissue characteristics of each WSI. The
code is available at: https://github.
com/HakimBenkirane/Hyper-adaC.

ity observed in histopathology and hin-
der the interpretability of those interac-
tions. In this work, we present Hyper-

Keywords: Histopathology, Hyper-
graphs, Survival Analysis, Representa-
tion Learning, Interpretability.
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1. Introduction

Computational Pathology has rapidly devel-
oped over the past decade due to the de-
velopment of whole-slide image (WSI) scan-
ners that digitize histopathology, immuno-
histochemistry, or cytology slides into high-
resolution images (Zhang, 2019; Lin, 2019).
Indeed, their use for cancer diagnosis and
prognosis has increased, relying on massive
progress in gigapixel image analysis with
statistical learning. In this perspective,
WSIs have been used for numerous predic-
tion tasks, one of the most challenging being
survival prediction (Zhu et al., 2016, 2017),
which models the survival function until the
occurrence of a particular event (e.g., death,
relapse). For this purpose, multiple ap-
proaches were adopted in the literature to
deal with the challenge of processing large
images to obtain survival models.

One of the most popular methods, Mul-
tiple Instance Learning (MIL), performs
weakly-supervised learning on WSIs by ex-
tracting small image patches as indepen-
dent instances and aggregating them in bags
of unordered instances (Sudharshan et al.,
2019). However, even if this approach has
performed well for some tasks like cancer
grading (Zhou et al., 2019) and subtyping
(Anand et al., 2020), its adaptation to sur-
vival prediction is not straightforward as it
should rely on local, as well as global-level
characteristics of the WSI. Standard MIL
approaches only consider bags of instances
as independent and thus do not incorporate
context information, failing to learn general
associations in the tumor or its environment
to assess patient mortality risk (Saltz et al.,
2018). To alleviate this issue, graph repre-
sentations have known a growing interest as
they can embed global interactions between
patches in a network that allows communi-
cation between them (Adnan et al., 2020; Li
et al., 2018; Chen et al., 2021). However, ex-

isting works on this subject either consider
huge graphs that can hinder Graph Neural
Networks’ (GNNs) generalizability (Yehudai
et al., 2021) or involve sampling, which cov-
ers only part of the WSI and neglects lots of
pathological tissues. Moreover, graph repre-
sentations being limited to pairwise associa-
tions can sometimes fail to model local struc-
tures when there are significant discrepancies
between instances (Garg et al., 2020).

In this work, we propose a novel hyper-
graph representation (Hyper-AdaC) based
on adaptive clustering (Miillner, 2011) for
accurate survival prediction. The contribu-
tion of this model to the representation of gi-
gapixel WSIs is threefold. First, we deal with
the limitations of the graph size by using
hierarchical clustering based on both mor-
phological similarity and spatial proximity
to summarize WSIs information efficiently.
This method is easy to adapt and does not
rely on constraining hypotheses, like the
number of clusters to consider. This method
can also be seen as a way to efficiently bypass
the limitations of random patch sampling
as it filters the most relevant patches from
the WSI, resulting in less loss of informa-
tion. Secondly, we overcome the constraints
induced by the local structures thanks to
our hypergraph representations of those clus-
tered instances depending on morphological
and spatial features. Finally, our method
succeeds at generating high-resolution atten-
tion maps that adapt to the morphology of
the tissue thanks to agglomerative clustering,
providing more insights into specific elements
of the WSI like immunological response and
directly linking it to survival. To bench-
mark the performance of our method, we
quantitatively evaluate it on 5 different can-
cer datasets from The Cancer Genome Atlas
(TCGA) and compare it to several state-of-
the-art methods for survival outcome predic-
tion, illustrating its better performance.
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2. Related Work

Several methods have been developed for sur-
vival analysis in computational pathology,
mainly using MIL approaches (Mobadersany
et al.,, 2018; Lu et al., 2021; Yao et al.,
2020). Those methods rely on sampling
a limited number of patches to deal with
the large size of WSIs, suffering from cov-
erage and generalization issues, as shown
in multiple studies (Ciga et al., 2021; Di
et al., 2022). To overcome those limitations,
multiple approaches have been proposed, in
which patches are grouped using clustering
algorithms such as K-Means algorithm be-
fore sampling (Zhu et al., 2017; Yao et al.,
2020) to identify morphological phenotypes
in WSIs and reduce the dimensionality.

Recently, different studies (Chen et al.,
2021; Shao et al., 2021) started taking an
interest in correlations between small in-
stances of gigapixel images, which is ne-
glected by the initial hypothesis of the MIL
approach (Carbonneau et al., 2018). Fol-
lowing this idea, graph-based representations
have become an excellent alternative for ro-
bust context-aware representations (Li et al.,
2018; Zheng et al., 2021). To alleviate the is-
sue of limited sampling, (Chen et al., 2021)
proposed a way to model interactions be-
tween features of adjacent patches using a
k-nearest neighbors (k-nn) graph. As clas-
sical graph representations can only model
pairwise interactions between image patches,
new methods are considering broader rep-
resentations by trying to lift the i.i.d. hy-
pothesis from standard MIL (Shao et al.,
2021), or by switching to hypergraph repre-
sentations (Di et al., 2020, 2022). Contrary
to these methods, Hyper-AdaC relies on hy-
pergraphs to capture interesting spatial and
morphological features from WSIs, harvest-
ing informative global and local WSI depen-
dencies for survival models.

3. Method

Within the scope of this study, we design,
implement and evaluate a hypergraph-based
survival network for survival outcome predic-
tion. For 1 <14 < N, let us denote by W, the
WSI of a patient, T; its event time, and C;
its censoring status. The goal of this study is
to build and train a survival neural network
S and to determine a function ¢ that maps
the WSI into a hypergraph representation,
such that S(¢(W;),®) = r;, with © a set of
trainable parameters and r; the hazard rate
of the time-to-event outcome of interest.

3.1. Hypergraph Construction

We denote by G; a hypergraph representa-
tion of W; such that ¢(W;) = G;. Before
the construction of the hypergraph, we first
performed automatic tissue and background
separation using (Lu et al., 2021). We then
extract non-overlapping 256 x 256 patches at
20x magnification that are fed to a ResNet-
18 trained using the same contrastive learn-
ing strategy (SimCLR) as in (Ciga et al.,
2022) that represents a 1024-dimensional fea-
ture vector h € R19%* each patch. The set
of (hj)i<j<n, associated to a W; with n,
patches will be stacked into a feature ma-
trix X; € R™>*1024 Each patch xj is charac-
terized by its ResNet-18 feature representa-
tion h; that embeds the morphological prop-
erties of the patch and a set of coordinates
9i = (9,5,9y,;) that represents the spatial
position of the center of the patch. Since the
hypergraph should not be too large for the
generalizability of the GNN (Yehudai et al.,
2021), we perform a first step of Adaptive
Agglomerative Clustering on the different
patches. For that, we compute two similar-
ity matrices Kj € R"*" and K, € R"*"»
such that K, = (/ﬁ;h(a}i, xj))lgi’jgnp and
Ky = (rg(2i,25))1<i j<n, where kp(zi,25) =
e~ nllhi=hill* i o morphological similarity
metric and kg(z;, ) = e~ allai=9ill* s a spa-
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Figure 1: Overview of the Hyper-AdaC pipeline. We first perform a feature extraction step
using SImCLR trained on TCGA images. Then the features are processed into
a clustering step that performs agglomerative clustering based on a similarity
metric k. The clustered features serve as nodes to construct a hypergraph fed to
a Graph Neural Network (GNN) optimized by hazard-based loss function. The
GNN is composed of multiple hypergraph convolutions and attention modules,
followed by an FC-block (Fully-Connected block) and a global pooling layer.

tial proximity metric. Following the ideas
presented in (Lu et al., 2022), we use the
kernel wk(x;,xj) = kp(hi, hj)rg(gi,g5) as a
similarity kernel for agglomerative cluster-
ing. This kernel will be computed for each
pair of patches from the same WSI. All
patches for which similarity will be greater
than a threshold ¢ will be considered to be-
long to the same cluster Cy and merged hier-
archically into a single patch representation
pr = (hg, gr) where hy = ﬁ Zjeck h; and

~ _ 1 .
Ik = 1Ci] Zjeck 9j-

Now that we have a reduced set of
points P;, a hypergraph denoted by G; =<

Vi, E;, X; > is constructed. For a single
WSI, we consider each clustered patch as
a vertex of the hypergraph such that V; =
[pjljer,- Each hyperedge is associated to
the neighbourhood of each node V;. This
neighborhood is defined as v(p;) = {px €
Pi; kn(Pk,pj) > On}, where dp is a thresh-
old value to fine-tune. Those hyperedges
are indicated by an incidence matrix H €
RIPilxIEil guch that,

1 if pj € v(pk)
0 else

ki) = 1)

The interesting aspect about a hypergraph
compared to a regular graph is that the
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neighborhood of each node is depicted as a
single hyperedge. This allows us to train our
model with fewer parameters and thus de-
crease the time complexity of the convolu-
tion. In addition to this, it creates a commu-
nity effect that gives more importance to big-
ger hyperedges, which will represent denser
regions of our WSI.

3.2. Construction of the Graph
Neural Network

Network’s Architecture: The GNN we
propose (Fig. 1) consists of a series of hyper-
graph convolutions and attentions as defined
in (Bai et al., 2021), with each layer using
a multi-layer perceptron to generate embed-
ding of nodes based on the features of the
node itself and its neighbors. Each layer con-
sists of batch normalization and dropout lay-
ers to avoid instability during training. We
also use the idea introduced in (Lu et al.,
2022) of accumulating the feature represen-
tations of the convolution layers in the GNN.
Those node-level representations are then
pooled to generate a graph-level representa-
tion. This representation is then fed to a sur-
vival network composed of multi-layer per-
ceptrons that predict the hazard rate used
for survival outcome prediction.

Network’s Loss Function: The entire
network is trained using the Cox propor-
tional hazard loss introduced in (Ching et al.,
2018), it uses the partial log-likelihood as the
cost function, defined as follows:

PI(©) = i I3 2 [s(60v).8)
—log Y exp(S((W;),©))]
T,>T;

(2)

where ¢ is a neural network modelling the
hazard ratio and ©® are the network’s param-
eters. The cost function to train the model

is therefore defined by:

L(©) = pl(©) + A|©|3

4. Experimental Setup
4.1. Dataset

For this study, we performed extensive ex-
periments using five different cohorts from
The Cancer Genome Atlas (TCGA) detailed
in Table 1. We chose those five datasets
based on size and censoring rate. On aver-
age, each WSI contains approximately 12691
patches at 20x magnification that are then
reduced by hierarchical clustering to around
3147 points.

4.2. Implementation Details

The architecture of the GNN is constructed
using three hypergraph convolution layers of
256 neurons each followed by a three layers
survival network of respectively 256, 128, and
64 neurons with ReLU activation that out-
puts the hazard ratio using a sigmoid activa-
tion function in the output layer. The entire
architecture is built using fully-connected
blocks. For each layer, we use a batch nor-
malization layer to address the problem of
internal covariate shift. Also, to avoid over-
fitting problems, we use dropout with a rate
of 0.2. For the graph construction, we select
a similarity threshold of 80% with A, = 3,
to give more importance to morphological
features during the clustering. This choice
of hyperparameters has been validated with
the experiments presented in Appendix A.
To train Hyper-AdaC, we used Adam opti-
mization with a learning rate of 1073 with
an exponential scheduler, a weight decay of
1072, and 20 epochs. All models were trained
using an Nvidia Tesla V100S with 32 GB of
memory.
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Table 1: A detailed description of the cohorts used for the study. The table includes the
different cancer types, as well as the number of patients and WSIs per type.

’ Cancer Type

‘ # of Patients ‘ # of WSIs

Bladder Urothelial Carcinoma (BLCA)
Breast Invasive Carcinoma (BRCA)

Lung Adenocarcinoma (LUAD)

Glioblastoma & Lower Grade Glioma (GBMLGG)

Ulterine Corpus Endometrial Carcinoma (UCEC)

437 457
1022 1133
1011 1704
515 541
538 566

4.3. Evaluation

To evaluate Hyper-AdaC, we perform 5-
fold cross-validation for each cancer type.
We compute the concordance index (C-
index) (Uno et al., 2011) across all the val-
idation folds to measure the predictive per-
formance of the method. We also compare
our proposed method to multiple other state-
of-the-art methods for the same task. For
all our experiments and for a fair compar-
ison, we used the same survival loss func-
tion, the exact SimCLR feature embeddings,
and training hyperparameters for all meth-
ods. The basis of comparison we consider is
the following:

e DeepAttnMISL (Yao et al., 2020):
standard Multiple-Instance
Learning by first applying K-Means al-
gorithm to cluster instance-level fea-
tures and then process each cluster using
Siamese networks.

Performs

e DeepGraphSurv (Li et al., 2018):
A graph-based representation over sam-
pled patches, which uses spectral graph
convolution (Chung, 1997) to consider
the topological relationships between
them. We also integrate K-Means before
sampling in another setup, presented as
C.DeepGraphSurv on the result session.

e Patch-GCN (Chen et al., 2021): Cur-
rent state-of-the-art for GNN for the

survival task. It performs graph multi-
ple instance learning by considering the
WSI as a 2D-point cloud, building a k-
nearest neighbors graph.

e knn-hypergraph (Di et al., 2020): k-
nearest neighbors hypergraph construc-
tion using sampling of patches. We use
the same pipeline as Hyper-AdaC.

5. Results & Discussion

When comparing our approach to other
methods, we note that Hyper-AdaC outper-
forms most of these in terms of C-index
(Table 2 and Figure 2). In general,
our approach outperforms by at least 1.6%
the overall C-index on all datasets and,
more specifically, in most of the individual
datasets (except for BLCA and GBMLGG).
When comparing with the results of Deep-
GraphSurv, we can immediately identify the
limitations of sampling patches from WSIs,
as this method is the weakest in these com-
parisons. It only covers around 20% of the
WSI and fails to train GNNs due to signifi-
cant discrepancies between sampled patches.
We also witness a clear improvement by
adding context information, as almost all
the graph representations outperform the
multiple-instance learning method DeepAt-
tnMISL.

Except for the superiority in performance,
our method reports better robustness, high-
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Table 2: Survival prediction of state-of-the-art methods using the concordance index (C-
index) on 5 TCGA cohorts: Bladder Urothelial Carcinoma (BLCA), Breast Inva-
sive Carcinoma (BRCA), Glioblastoma & Lower Grade Glioma (GBMLGG), Lung
Adenocarcinoma (LUAD) and Ulterine Corpus Endometrial Carcinoma (UCEC).

[Model [ BLCA [ BRCA [GBMLGG | LUAD [UCEC
DeepAttnMISL (Yao et al., 2020) 0.514 + 0.052 0.564 + 0.050 0.781 £ 0.037 0.558 £+ 0.060 0.595 +0.067
DeepGraphSurv (L et al., 2018) 0.495 + 0.045 0.551 £ 0.077 | 0.816 = 0.031 0.563 = 0.050 0.614 + 0.052
C.DeepGraphSurv (Li et al., 2018) | 0.504 £ 0.042 0.564 + 0.043 0.787 £ 0.028 0.559 + 0.036 0.625 £ 0.057
Patch-GCN (Chen et al., 2021) 0.561 4+ 0.042 0.587 +0.043 0.834 £0.029 | 0.570 + 0.050 0.632 £ 0.059
k-nn Hypergraph (Di et al., 2020) | 0.611 +0.049 | 0.545 +0.071 | 0.805+0.044 | 0.584 +0.061 | 0.615 % 0.020
Hyper-AdaC (ours) 0.564 + 0.034 0.592 £ 0.025 | 0.778 £ 0.024 0.595 +£0.012 | 0.667 + 0.022

Overall Survival Performances across datasets

0.700
0.675
0.650

0.625

Y0575
0.550
0.525

0.500
DeepAttnMISL

DeepGraphSurv C.DeepGraphSurv

%'?,‘Q'

Patch-GCN
Methods

knn-Hyperpergraph Hyper-adaC

Figure 2: Survival prediction performances across all datasets. They are computed by tak-
ing the C-indices on all folds of the evaluation, for all datasets.

lighted by the standard deviation between
the C-index values across the 5 folds. One
can observe that Hyper-AdaC reports the
lowest standard deviation, suggesting a more
robust model due to the compact form of its
representation. Moreover, as the representa-
tion is smaller on Hyper-AdaC, the comput-
ing time is lower than considering the entire
WSI graph since the graph convolution has
in the worst-case complexity of O(n3) where
n is the number of nodes. However, this

reduction comes with a trade-off since the
graph construction part is heavier due to the
hierarchical clustering step that comes with
the additional complexity of O(kn?), where
k is the final number of clusters and n is
the initial number of patches. In practice,
our method is about 30% slower than graphs
constructed using the whole WSI like Patch-
GCN or random sampling like DeepGraph-
Surv. On the other hand, we are almost 20%
faster during training due to more compact
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Figure 3: Comparison between the model attention heatmaps and manual annotations of
tumor regions for three different patients from the TCGA-LUAD dataset (blue
for low-risk patients and red for high-risk patients). First column: annotations of
tumor regions (in red) are superimposed in the WSI. Second column: attention
heatmaps. Third column: sampled patches from 3 different attention regions;
high attention (red border), medium attention (green border), and low attention

(blue Border).

representations and fewer parameters. Fi-
nally, when we compare the adaptive cluster-
ing to k-means through C.DeepGraphSurv,
we observe that the adaptive property of the
hierarchical clustering compared to K-means
provides us with more information as it sums

up quite well the discrepancies in the tissue
without having to include the number of clus-
ters as it can be adapted one slide to another,
depending on the depicting texture.

Our experiments indicate lower perfor-
mances on BLCA and GBMLGG datasets.
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To analyze this point more, we performed
some additional experiments detailed in Ap-
pendix B. In fact, for the BLCA the num-
ber of elements conserved after the agglom-
erative clustering is still too high, resulting
in a bigger graph and, therefore weaker per-
formances. This reasoning can be inverted
for GBMLGG for which agglomerative clus-
tering conserves only very little information,
meaning that the morphological structure of
this particular cancer is more homogeneous
than others, and we lose a lot of informa-
tion as this clustering disregards local vari-
ability. To alleviate these issues, dataset-
specific hyperparameter tuning can be per-
formed (while we originally preferred com-
mon hyperparameters for all datasets to en-
hance the generalizability of our model). In
practice, we add more constraints on the
graph construction for BLCA dataset by set-
ting the similarity threshold § to 85% and
relax them on the GBMLGG dataset where
d was set to 70%. We also set A\, = 2\,
for the GBMLGG dataset to focus less on
morphological properties since the tissue is
generally highly homogeneous and the clus-
tering will be more uniform across the WSI.
By doing this, we can witness a spike in per-
formance as the C-index for our method in
the BLCA dataset gets to 0.619 + 0.037 and
to 0.812 4+ 0.025 for the GBMLGG dataset,
similar to the state-of-the-art results.

Examples of WSIs annotated by a pathol-
ogist and the corresponding model attention
heatmaps are presented in Figure 3. We can
observe that our model succeeds in discrim-
inating zones based on their morphological
and spatial features. Agglomerative cluster-
ing, by being able to adapt the number of
clusters to the WSI, enables us to output
attention maps that adapt well to the mor-
phology of the slide, focusing on more rel-
evant information and thus providing more
precise information on important local re-
gions. Moreover, the tumoral zone indicated

by the pathologist in the first column of Fig-
ure 3 matches the regions where attention
is at its highest. In addition, the model fo-
cused on dense inflammatory cell regions for
patients with low predicted risk, which are
signs of good immunity response. The multi-
ple purple dots highlight those inflammatory
cell regions in high-attention regions for the
two low-risk patients (third column of Figure
3 showing a zoom of the attended patches).
For high-risk patients, regions of tumor cells
contain more attention due to their density.
This is where the hypergraph construction
presents its advantage: it creates a commu-
nity behavior with hyperedges. It can assess
the density of small regions through their
weights. Thanks to message passing between
hyperedges, areas with more significant com-
munities have a more decisive influence on
survival prediction.

6. Conclusion

Computational Pathology has made tremen-
dous progress when dealing with WSI global
representations. However, many approaches
still suffer from generalizability problems and
do not properly model the whole tumor’s mi-
croenvironment.
troduced a compact hypergraph representa-
tion, Hyper-AdaC, that solves the size issue
of graphs for GNNs without losing important
and patient-specific information from whole-
slide images. We showed through our exper-
imentation that Hyper-AdaC creates an effi-
cient and robust representation for training
GNNs and allows broader associations be-
tween patches. In the future, we aim to ex-
plore the efficiency of this representation in
the promising context of multi-modal learn-
ing for survival outcome prediction, combin-
ing WSIs with multi-omics and clinical data.

In this work, we have in-
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Appendix A. Patch Clustering

We compute the average number of elements
remaining after the hierarchical clustering
step for each dataset separately, the results
along with the ratio between initial and fil-
tered patches are represented in Table 3. We
observe that, in general, approximately 14%
of the WSI is used (see 3), and as shown
in Figure 3, those elements are well spread
across the WSI. However, we can see that
both BLCA and GBMLGG datasets behave
differently from the others. For BLCA, the
ratio of remaining elements over the total
number of patches is higher than all the other
datasets, whereas for GBMLGG it is the op-
posite. Our method does not perform well
for those particular test cases.

Appendix B. Ablation Studies

We perform an ablation study on the dif-
ferent graph hyperparameters to justify our

Ablation Study for the similarity threshold
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Figure 4: Ablation Study for the similarity
threshold § used in the hierar-
chical clustering step. We evalu-
ate for each hyperparameter the 5-
fold cross-validated C-index on the
overall 5 TCGA datasets used in
this study.

construction choices. In Figure 4, we can see
the effect of the similarity threshold d;, on the
survival performances. The stricter the con-
straint, the better the performance, indicat-
ing that larger graphs fail at learning general-
izable properties. This idea is also supported
by the standard deviation across the 5-folds
that decreases, suggesting that the model is
less robust with larger graphs. A similar-
ity threshold of 80% achieves the peak per-
formance; past that point, the performances
start to decrease again because we tend to
oversimplify the WSI and start neglecting in-
formation.

Figure 5 highlights the relationship be-
tween morphological features and geograph-
ical properties with respect to the survival
prediction performance. We see that, in
general, focusing on morphological proper-
ties is more beneficial to the performances
than spatial properties as they hold more in-
formation about the structure of the tissue
(including, to a certain extent, spatial infor-
mation because similar patches tend to be
close). However, focusing too much on mor-
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Table 3: Average number of nodes after the hierarchical clustering step for each dataset.
Due to our selection criteria, the GBMLGG dataset had a significantly lower num-
ber of nodes (as the ratio is also lower, it may indicate higher homogeneity among

tissues), which may explain the lower

performance with respect to the other cancer

types. In this study, we selected the same hyperparameters for all the cancer types
to prove the generalizability of our method, outperforming the other state-of-the-
art methods. Some specific hyperparameters tuning for the GBMLGG and BLCA

may resolve this issue.

Cancer Type ‘ # of patches ‘ # of nodes %
Bladder Urothelial Carcinoma (BLCA) 58586 9187 0.16
Breast Invasive Carcinoma (BRCA) 38107 5304 0.14
Glioblastoma & Lower Grade Glioma (GBMLGG) 15855 961 0.06
Lung Adenocarcinoma (LUAD) 43445 6003 0.14
Ulterine Corpus Endometrial Carcinoma (UCEC) 56162 7748 0.14

Ablation study for the kernel parameter

Cross-validated c-index

2 3 4
Ratio of lambda_h over lambda_g

An

Figure 5: Ablation study for » used in the
hierarchical clustering step. We
evaluate for each hyperparameter
the 5-fold cross-validated C-index
on the overall 5 TCGA datasets.

phological features can hinder the accuracy
of our survival predictions, as sometimes the
homogeneity of specific tissues can make the
filtering biased and overlook chunks of WSIs
that may hold vital information.

Appendix C. About Hypergraphs

A Hypergraph is a generalization of the
graph structure that extends the interaction

between instances to a higher level. To de-
scribe this complex relationship where an
edge can connect to more than two nodes,
we define a hypergraph G = (V, E) as a hy-
pergraph with M vertices and N hyperedges.
The hypergraph can then be generated us-
ing an incidence matrix H € RV*M_ For
each vertex i, the vertex degree is defined as
Di; = Y .cp Hie and the hyperedge degree
will be Bee = > iy Hie.

C.1. Hypergraph Convolution

This hypergraph can be associated to a fea-
ture matrix X € RV*F where F is the fea-
ture dimension of one node. In the context of
our study, this node feature will represent the
aggregated Resnet-18 features of one cluster.
A step of this convolution is defined in (Bai
et al., 2021) as follows:

XD = 5D :HWB'H’D :X"P)
(4)
where W is the weight matrix, ¢ a non-
linear transformation and P is the weight
matrix between layer | and 14-1.
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C.2. Hypergraph Attention

To build the attention visualization, we use
an attention mechanism for hypergraphs de-
scribed in Bai et al. (2021) as:

exp(o(sim(z;P,x;P)))
> ke, exp(o(sim(ziP, 2, P)))

(5)

Oéij =

where the similarity function computes
similarity between two vertices as follows:

sim(z;, ¢5) = a’ [wil|a;] (6)
where a is a weight vector and [.||.] denotes
concatenation.
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