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Abstract

We propose a passivity-preserving energy-tank-based framework for the analysis and control design of multi-mode multi-
dimensional switched systems. We present a new design of hybrid energy tank that is modeled as an impulsive switched system
and that allows to account for the sudden (and possibly non-passive) jumps in energy of the system due to the change of
dimension of the state at the switching instants. Under this framework we establish passivity of the plant-plus-tank system
via an energy-based condition for the switching signal. To demonstrate the utility of our framework we apply the methodology
to a case-study of growing importance and interest of its own: open multi-robot systems with arbitrary addition and removal
of agents in an autonomous energy-aware and passive way.

Key words: Hybrid systems, passivity, multi-robot systems, distributed control.

1 Introduction

The framework of hybrid systems and, more specifically,
switched systems is an important tool for analysis and
control design of systems that abruptly change between
different operational modes with different dynamics [15].
In the same way, passivity theory, or dissipativity the-
ory in general, is a useful tool for analyzing and de-
signing controllers for dynamical systems from the input
and output perspective and to study the interaction of a
physical system with its environment. Moreover, passiv-
ity provides an important framework for stability anal-
ysis since a passive system without input is Lyapunov
stable [30].
Several works in the literature have studied the passiv-
ity of switched systems—see e.g. [11, 28, 40] to mention
a few. The representative work [40] proposes a frame-
work for dissipativity of switched systems and estab-
lishes passivity by introducing the concept of “cross-
supply rates”. A common point between the latter and
most works in the literature, however, is that it is as-
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sumed that all the switching modes share the same state
dimension. This enables one to represent the systems us-
ing a single state space entity and facilitates the analy-
sis and design procedures. Keeping the dimension of the
state constant, however, may not be realistic to charac-
terize different physical plants or a plant in the differ-
ent modes of operation. Indeed, many kinds of complex
physical systems are more accurately modeled as hy-
brid systems that switch between multiple operational
modes, each with a different dynamic behavior. Exam-
ples of these are aircraft landing gears [13], the Brown-
ian motor (nanoscale motion of myosin) [2], or switched
formation control of spacecrafts [39], to mention a few.
Some basic notions tailored for these kind of systems
are presented in [34,35], where also the termmulti-mode
multi-dimensional (M3D) switched systems is coined to
refer to such systems. Nonetheless, M3D switched sys-
tems have been considerably less studied than other
kinds of hybrid systems, especially in terms of stability
and passivity. Indeed, analyzing the passivity (and sta-
bility) of an M3D switched system is not trivial since the
total energy of the system can suddenly increase due to
the impulsive change in dimension of the state between
different operational modes. This sudden injection of en-
ergy into the system may be considered as a non-passive
behavior that can render the system unstable. The lat-
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ter may occur in practical applications, even if the pas-
sivity of the system is not lost, when the increase in en-
ergy is relatively large. Therefore, additional considera-
tions need to be taken into account in order to deal with
the impulsive behavior of the system and guarantee the
preservation of passivity (stability) between switching
instants.
A framework is developed in [17, 18] for studying, re-
spectively, the stability and dissipativity of switched sys-
tems whose dynamic modes are described by systems
of higher-order linear differential equations not neces-
sarily sharing the same state space but where the dif-
ferent modes share the same variables of interest. More
recently, the works [14] and [38] have studied, respec-
tively, the passivity and stability of M3D switched sys-
tems. More specifically, in [38] the (practical) stability of
M3D systems is studied relying on the concept of transi-
tion dependent average dwell time. Similarly, the same
concept is used in [14] to establish passivity. However,
the system is assumed to be exponentially passive at
each mode, which is quite a strong assumption since it
implies that the autonomous system without inputs is
exponentially stable.
In this paper we propose an “energy-aware” framework
for analysis and design of M3D switched systems based
on the concept of energy-tanks. The latter, introduced
in [29], leverages a passive interconnection between the
system and a virtual reservoir of energy in order to apply
non-passive control actions on the plant in an energy-
aware way. It establishes an “energy budget” for the sys-
tem in order to implement any desired (possibly non-
passive) control according to the available stored energy,
while preserving passivity. In light of this, our first con-
tribution is to propose a design methodology using a hy-
brid energy tank, modeled as an impulsive switched sys-
tem, that instantaneously fills in or depletes in order to
account for the sudden jump in energy of the system at
switching instants, thereby preserving the passivity (and
stability) of the systems. Moreover, in our design, the
continuous dynamics of the energy tank between switch-
ing times is left as a free control input that can be used
to account for other task-dependent actions to be imple-
mented in a passive way, thus increasing the versatility
of the approach. In contrast to [14] we only assume pas-
sivity of the dynamical system during the operational
modes, which is a weaker assumption and a more general
property than exponential passivity. Moreover, we pro-
vide an energy-based (state-dependent) switching con-
dition which increases the autonomy of the system and,
hence, the practical applicability of our approach. In-
deed, unlike the time-dependent conditions such as in,
e.g., [14, 38], with an energy-based switching condition
it is not necessary to specify the switching instants in
advance, which is clearly an advantage of the proposed
methodology.
To demonstrate the utility of our proposed framework,
we apply our design to a problem with increasing engi-
neering applications: multi-robot systems. Several works

in the literature have proposed general frameworks for
the coordination of multiple robots based on, e.g., con-
trol barrier functions [37], generalized connectivity [8],
potential functions [20], to mention a few. While, under
such frameworks, fixed number of cooperative robotic
agents may be capable of performing “simple” short-
term tasks such as, e.g., formation tracking, flocking, or
area coverage—see [3] for a survey—it may prove limit-
ing in many practical scenarios. Indeed, as the field ad-
vances, applications of multi-robot systems are starting
to shift from such relatively simple tasks to more com-
plex long-term and persistent missions that require the
robots to be deployed for longer periods of time, usu-
ally surpassing the battery-charge duration of the de-
vices, forcing individual robots to leave the network for
recharging. Moreover, as tasks get more complex and are
designed for dynamic and, often, antagonistic environ-
ments, failure of individual robots due to malfunction-
ing or attacks cannot always be prevented. Equivalently,
when addressing tasks in uncertain or unknown environ-
ments, in order to successfully accomplish the mission,
new robots may be required to join the system dynami-
cally as the task specification or the environment evolve.
When in such systems there is a non-fixed number of
agents, they are referred to as open multi-robot systems
(OMRS), or more generally, open multi-agent system
(OMAS). Both the addition and removal of agents lead
naturally to representing OMAS as evolving in multiple
modes with different state dimension, and may therefore
be modeled as an M3D switched system.
OMAS have been studied mainly in the context of social
networks or distributed computation—see e.g. [4,23,33,
36]. In a more general context, the authors in [38] ap-
ply the M3D framework to study the stability of OMAS
by imposing a transition-dependent average-dwell-time
condition on the switching signal, whereas in [6] a new
notion of “open distance” is used for defining the sta-
bility of open multi-agent systems. However, passivity
is not considered, nor are the constraints usually en-
countered in multi-robot systems such as, e.g., limited-
range communication. In the context of multi-robot sys-
tems, although someworks have dealt with fault-tolerant
control—see e.g. [7,10,21] to mention a few—where the
network is robust to node or edge removals, there are
few results on OMRS. Some architectures have been pro-
posed to accommodate for dynamic teams but offer no
performance guarantees [19, 22]. The stability of a re-
configurable formation of spacecrafts is studied in [39]
where the number of agents for each formation may vary
changing the dimension of the state. In [24] stability (not
passivity) of an OMRS with connectivity maintenance
and collision avoidance is established, albeit only consid-
ering the addition of new agents. Therefore, as a second
contribution we use the proposed framework for design-
ing a distributed energy-tank-based strategy that guar-
antees the preservation of passivity of a general OMRS
as agents arbitrarily leave or join the network. As a result
of our approach, an energy-based switching condition re-
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sults for the OMRS so that it can handle the addition
and removal of agents (or groups thereof) autonomously
in a passive and energy-aware way. Our proposed ap-
proach can therefore be thought of also generalizing the
passivity-based generalized-connectivity framework pro-
posed in [8] to the (more challenging) setting of OMRS.
The rest of this paper is organized as follows. In Section
2 some preliminaries on passivity and energy tanks are
recalled. The energy-aware design and passivity analysis
of M3D switched systems is presented in Section 3. In
Section 4 is addressed the case-study of openmulti-robot
systems along with a numerical example. Finally, some
concluding remarks are included in Section5.
Notations: A continuous function α : R≥0 → R≥0 is of
class K (α ∈ K), if it is strictly increasing and α(0) =
0; α ∈ K∞ if, in addition, α(s) → ∞ as s → ∞. A
continuous function σ : R≥0 → R≥0 is of class L if
it is decreasing and σ(s) → 0 as s → ∞. A function
β : R≥0×R≥0 → R≥0 is of classKL if, β(·, t) ∈ K for any
t ∈ R≥0, and β(s, ·) ∈ L for any s ∈ R≥0. For a function
f : Rn → Rm, s(t) 7→ f(s(t)) we use, with a slight abuse
of notation, f(s(t)), f(s), and f(t) interchangeably when
clear from the context. We use |·| for the Euclidean norm
of vectors and the induced L2 norm of matrices.

2 Preliminaries

2.1 Passivity and Port-Hamiltonian systems

Consider the following nonlinear system

ẋ(t) =f(x(t)) + g(x(t))u(t) (1)

y(t) =h(x(t)) (2)

where x ∈ Rn is the state of the system and (u, y) ∈
Rm × Rm is the input-output pair.

Definition 1 (Passivity [32]) The system (1)-(2) is
passive with respect to the pair (u, y) if there exists a func-
tion of the state, called storage function, V : Rp → R≥0

such that the following balance holds for all tf ≥ t0 ≥ 0:∫ tf

t0

u(s)⊤y(s)ds ≥ V (x(tf ))− V (x(t0)) ≥ −V (x(t0)).

(3)

The pair (u, y) is called power port, or simply port, of
the system. The product u⊤y is the power crossing the
power port. More precisely, under the passivity frame-
work, the storage function can be interpreted as a (gen-
eralized) energy function and the product y⊤u as a (gen-
eralized) power flow. Therefore, input and output are
called power conjugated variables. Moreover, the passiv-
ity property in Definition 1 can be used for establishing
stability properties. Indeed, for the autonomous system
without inputs (u(t) = 0) the equilibrium points corre-
sponding to the (local) minima of the storage function
are (locally) asymptotically stable. If the storage func-
tion is positive definite with a single global minimum
(V (x) > 0, for all x ̸= 0) and is radially unbounded
(V (x) → ∞ as x → ∞), Definition 1 implies that the

equilibrium point is globally asymptotically stable.
Considering (1)-(2) as a port-Hamiltonian (pH) system,
its input-state-output formulation is given by

ẋ = [J(x)−R(x)]∇H(x) + g(x)u (4)

y =g⊤(x)∇H(x) (5)

where ∇H := ∂H
∂x is the gradient of the Hamiltonian

H which maps the state variables to the total energy
of the system, R ∈ Rn×n is a positive-definite con-
tinuous matrix representing the energy-dissipating ele-
ments, and J ∈ Rn×n is a skew-symmetric continuous
matrix representing the internal interconnection struc-
ture along which energy is distributed and generalizing
the Symplectic/Poisson structures of analytic mechan-
ics. We refer the reader to [5] for an introduction to port-
Hamiltonian modeling and control of robotic systems.
An immediate property of pH systems (4)-(5) is that
they are passive with respect to the Hamiltonian as stor-
age function and the input-output pair (y, u). Indeed,
for all tf ≥ t0 ≥ 0 we have that

Ḣ(x(t)) =−∇H⊤(x(t))R(x(t))∇H(x(t)) + y⊤(t)u(t)

≤y⊤(t)u(t).
(6)

Then, integrating (6) over the interval [t0, tf ], we obtain
the passivity condition

H(x(tf ))−H(x(t0)) ≤
∫ tf

t0

y(s)⊤u(s)ds. (7)

2.2 Energy-tanks

The concept of energy tank, initially proposed in [29]
allows to establish an “energy budget” for the pH system
(4)-(5) in order to implement any desired control action
according to the available stored energy while preserving
passivity [31].
Mathematically an energy tank is a dynamical system
which constitutes an atomic energy storing element. De-
noting xt ∈ R as the state variable of the tank system
and using a pH formulation, the dynamics of the tank
can be represented as

ẋt =ut (8)

yt =
∂T (xt)

∂xt
, (9)

where T is the non-negative energy function of the tank.
By implementing a suitable power-preserving intercon-
nection between the tank and the pH system, it is pos-
sible to implement a desired control action while pre-
serving the passivity of the system. Let us distinguish
between the interaction port (with input ue) and the
control port (with input uc), and set u = uc + ue. As a
consequence, both the control and the interaction input
are conjugated to the same original output yc = ye = y.
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Then, the power preserving interconnection between the
plant (4)-(5) and the tank (8)-(9) reads formally

[
uc

ut

]
=

 0 w
∂T/∂xt

− w
∂T/∂xt

0

[
yc

yt

]
(10)

where w is the desired task-dependent control action to
be passively implemented. Notice that due to its skew-
symmetry, the interconnection (10) is a power preserving
interconnection. In fact, it can be easily seen that u⊤

c yc =
−utyt. This interconnection produces two key effects,
whose combination embodies the role of energy tanks.
First, it correctly implements the desired action, i.e.,
from the side of the plant, one obtains

ẋ = [J(x)−R(x)]∇H(x) + g(x)w + g(x)ue. (11)

Secondly, the interconnection is power-preserving, which
can be inferred from the skew-symmetry of the matrix
in (10). This power-preserving interconnection implies
that the plant-plus-tank system is passive. Indeed, the
closed-loop system reads[
ẋ

ẋt

]
=

 J(x)−R(x) g(x) w
∂T/∂xt

− w
∂T/∂xt

g⊤(x) 0

[ ∂H
∂x

∂H
∂xt

]
+

[
g(x)

0

]
ue

(12)

ye =
[
g⊤(x) 0

] [ ∂H
∂x

∂H
∂xt

]
. (13)

Then, evaluating the variation of the closed-loop Hamil-
tonian, given by H := H + T , along the system trajec-
tories one obtains

Ḣ =
∂H
∂x

⊤
R(x)

∂H
∂x

+ y⊤e ue ≤ y⊤e ue,

which proves passivity of the closed-loop system with
respect to the interaction port (ue, ye), with H as stor-
age function, and with the same dissipation rate of the
original system. This means that the (undefined in sign)
power y⊤w flowing on the port of the original system
is at any time exchanged with the tank without being
dissipated or generated.
The advantage of the energy-tank framework is that the
action w is free to be chosen arbitrarily without neces-
sarily fulfilling a passivity requirement. In this context
the energy in the tank T (xt) denotes the amount of en-
ergy available to implement w before the overall passiv-
ity is lost. Indeed, note that (10) and (12) become sin-
gular when ∂T/∂xt = 0, which marks the instant when
it is no longer possible to passively apply the action w.
Considering the common choice of energy-tank func-
tion T (xt) = 0.5x2

t , in order to avoid singularities
and preserve passivity, it is then necessary to initialize

∂T/∂xt = xt such that T (xt(t0)) ≥ ε and guarantee
that T (xt(t)) ≥ ε, where ε > 0 is a lower bound for the
energy stored in the tank. Similarly, in order to avoid
practically unfeasible behaviors one should impose an
upper bound on the energy that can be stored in the
tank, that is, T (xt(t)) ≤ ε̄ for all t ≥ t0 In this case, one
could implement the action ςw, instead of w—cf. [26],
where

ς =

{
0, if (T < ϵ) or (T = ε̄ ∧ ẋt > 0)

1, otherwise.
(14)

The purpose of the parameter ς is to “disconnect” the
tank when the available energy goes below a threshold
or when the energy reaches the upper bound and the
system is trying to convey more energy into the tank.
The former ensures that singularities are avoided and
the latter prevents too much energy to be stored so that
passivity is preserved.

3 Energy-tank-based design for multi-mode
multi-dimensional switched systems

3.1 Modeling of M 3D switched systems

As mentioned in the Introduction, in numerous practical
applications a plant can be modeled as an M3D switched
system, that is, a hybrid system switching into differ-
ent operational modes where the dynamic evolution of
the system at each mode is determined by a state space
of different dimension. Given the switching signal σ(t),
where σ : R≥0 → S is a piece-wise constant function and
S := {1, 2, . . . , S} is the set of S ∈ N possible subsys-
tems (or modes), a general nonlinear control-affine M3D
switched system is given by

ẋσ(t)(t) =fσ(t)(xσ(t)(t)) + gσ(t)(xσ(t)(t))uσ(t)(t) (15)

yσ(t)(t) =hσ(t)(xσ(t)(t)) (16)

where xσ(t) ∈ Rnσ(t) is the state of the system and
(uσ(t), yσ(t)) ∈ Rmσ(t) ×Rmσ(t) is the input-output pair.

Equations (15)-(16) represent the dynamic evolution of
the system at time t. However, for an M3D switched sys-
tem the state and input-output dimensions, respectively,
nσ(t) and mσ(t), may change at the switching instants.
This naturally leads to an impulsive switched system
representation. Let ϕ ∈ S denote a mode of the system,
that is, ϕ = σ(τ), where τ ∈ [tl, tl+1) and tl, tl+1 are

switching instants. Moreover, let ϕ, ϕ̂ ∈ S denote two

consecutive modes where ϕ̂ precedes ϕ. Then, we have
that at the switching instant tl the state transition is
formulated as

xϕ(tl) = Ξϕ,ϕ̂xϕ̂(t
−
l ) + Φl (17)

where Ξϕ,ϕ̂ ∈ Bnϕ×nϕ̂ is a 0-1 rectangular matrix indicat-

ing the dimension variation of the state at instant tl, and
Φl ∈ Rnϕ is a real vector indicating the value changes
of the state at tl. Specifically, Ξϕ,ϕ̂ can be obtained by
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removing rows from (dimension reduction) or by adding
zero rows to (dimension expansion) specific positions of
an identity matrix Iϕ̂. On the other hand, Φl indicates

the value changes of xσ(t) at any tl. It yields two types
of changes, i.e., the changes caused by initial value as-
signment for the new expanded state components and
the changes caused by instant jumps of the intact state
components.
In this paper we assume that, for every mode ϕ ∈ S,
the M3D switched system (15)-(16) and (17) can be set
in an input-state-output port-Hamiltonian formulation
akin to (4)-(5). Therefore we rewrite (15)-(16) and (17)
as

ẋϕ(t) = [Jϕ(xϕ(t))−Rϕ(xϕ(t))]∇Hϕ(xϕ(t)) (18)

+ gϕ(xϕ(t))uϕ(t)

yϕ(t) = g⊤ϕ (xϕ(t))∇Hϕ(xϕ(t)) (19)

xϕ(tl) = Ξϕ,ϕ̂xϕ̂(t
−
l ) + Φl (20)

where Hϕ denotes the Hamiltonian of the system for
each mode ϕ ∈ S. Using this formulation, akin to (6)
and (7), the system (18)-(19) is passive with respect to
the Hamiltonian as a storage function. Indeed, for every
activated mode ϕ = σ(t) with t ∈ [tl, tl+1), we have

Ḣϕ(xϕ(t)) =−∇H⊤
ϕ (xϕ(t))Rϕ(xϕ(t))∇Hϕ(xϕ(t))

+ y⊤ϕ (t)uϕ(t)

≤y⊤ϕ (t)uϕ(t).
(21)

Then, integrating (21) over the interval
[
tl, t

−
l+1

]
, we

have that

Hϕ(xϕ(t
−
l+1))−Hϕ(xϕ(tl)) ≤

∫ t−
l+1

tl

yϕ(s)
⊤uϕ(s)ds.

(22)
Due to the switching and impulsive nature of the system,
establishing passivity (stability) at each activated mode
does not guarantee passivity (stability) of the switched
system. To see this let α1ϕ and α2ϕ be classK∞ functions
for every mode ϕ ∈ S such that

α1ϕ(|xϕ(t)|) ≤ Hϕ(xϕ(t)) ≤ α2ϕ(|xϕ(t)|). (23)

Then, from (23) and using (20), we have that the Hamil-
tonian at a switching instant satisfies

Hϕ(xϕ(tl)) ≤α2ϕ(|Ξϕ,ϕ̂xϕ̂(t
−
l ) + Φl|)

≤α2ϕ(|Ξϕ,ϕ̂xϕ̂(t
−
l )|+ |Φl|)

≤α2ϕ(2|xϕ̂(t
−
l )|) + α2ϕ(2|Φl|)

≤α2ϕ ◦ (2α−1

1ϕ̂
)(Hϕ̂(xϕ̂(t

−
l ))) + α2ϕ(2|Φl|),

(24)
where the second inequality is a consequence of the non-
decreasing nature of class-K functions and the third is

the (weak) triangle inequality [12]. Adding and subtract-
ing Hϕ̂(xϕ̂(t

−
l )) on the right-hand side of (24) we have

Hϕ(xϕ(tl)) ≤Hϕ̂(xϕ̂(t
−
l )) + α2ϕ(2|Φl|)

+ α2ϕ ◦ (2α−1

1ϕ̂
− id)(Hϕ̂(xϕ̂(t

−
l ))). (25)

Denoting ∆Hϕ,ϕ̂(xϕ̂(t
−
l )) the last two terms on the right-

hand side of (24), we can write

Hϕ(xϕ(tl)) ≤ Hϕ̂(xϕ̂(t
−
l )) + ∆Hϕ,ϕ̂(xϕ̂(t

−
l )). (26)

In (26), ∆Hϕ,ϕ̂ denotes the variation of the total in-

ternal energy of the system between two consecutive
modes at the switching instant tl due to the impulsive
and switching nature of the system. Specifically, when
∆Hϕ,ϕ̂(xϕ̂(t

−
l )) > 0 we have that the energy of the sys-

tem increases. The sudden injection of energy into the
system due to an impulsive jump of the state may be
considered as a non-passive behavior that can render
the system unstable. The latter may occur in practical
applications, even if the (weak) passivity of the system
is not lost, if the increase in energy is relatively large.
Therefore, additional considerations need to be taken
into account in order to deal with the impulsive behav-
ior of the system and guarantee the preservation of pas-
sivity (stability) between switching instants over a long
enough time horizon.
The framework for dissipativity of switched systems in-
troduced in [40] establishes passivity of the whole sys-
tems by introducing the concept of “cross-supply rates”.
The authors show that if an additional condition is set
on the “cross-supply rates”, mainly that the (virtual)
energy transfer from an activated mode ϕ to the other
modes during the activation interval of ϕ remains finite,
the switched system is passive. However, in [40] it is as-
sumed that the state is everywhere continuous, therefore
the results are not applicable to the present case where
impulsive behavior is induced due to the change in di-
mension of the state. Weak passivity is established for
M3D switched systems in [14] given that the switching
signal satisfies a “transition-dependent average dwell-
time” condition. However, the system is assumed to be
exponentially passive at each mode. Note that, in con-
trast, using the pH framework we only assume passiv-
ity (or output strict passivity). In light of this, we next
propose a new design of energy tank in order to deal
with the non-passive instantaneous injection of energy
for M3D switched and passive systems in pH form.

3.2 Switched energy-tank design

As exposed in the Preliminaries section, one of the
main advantages of the energy-tank-based formulation
is the possibility of dealing with (and implementing)
non-passive control actions by using the energy stored
in the tank. Such property is well suited to the prob-
lem at hand. Indeed, as mentioned before, the sudden
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increase in energy, denoted ∆Hϕ,ϕ̂ in (26), may be con-

sidered as a non-passive behavior, which can be dealt
with exploiting the passivity-preserving advantages of
the energy tank-based design.
Note, however, that the usual formulation of energy
tanks exposed in Section 2.2, which deals with non-
passive input actions in the continuous dynamics of the
system, cannot be directly applied since, in the context
of this paper, the non-passive behavior comes from the
impulsive jumps of the state (and its dimension) at the
discrete switching instants. In light of this, we propose
a new energy-tank-based approach where the energy-
tank system is designed as an impulsive hybrid system
of the form:

ẋtϕ(t) =utϕ(t) (27)

ytϕ(t) =xtϕ(t) (28)

xtϕ(tl) =µϕ,ϕ̂xtϕ̂(t
−
l ) (29)

where µϕ,ϕ̂ > 0 is a value to be designed.

The main idea behind the impulsive switching formula-
tion in (29) with the design parameter µϕ,ϕ̂ is to allow

the tank to instantaneously deplete (µϕ,ϕ̂ < 1) of its

stored energy in order to cope with the impulse of energy
in (26) due to the switching. Similarly, if ∆Hϕ,ϕ̂(xϕ̂(t

−
l ))

in (26) is negative, the impulsive dissipated energy can
be instantaneously stored in the energy tank (µϕ,ϕ̂ > 1)

for future use. More precisely, set the tank energy to
Tϕ = 0.5x2

tϕ. Then, using (29), at a switching instant we
have

Tϕ(xtϕ(tl)) =
1

2
x2
tϕ(tl)

=
1

2
x2
tϕ̂
(t−l ) +

1

2

(
µ2
ϕ,ϕ̂

− 1
)
x2
tϕ̂
(t−l ). (30)

Akin to (26), denoting ∆Tϕ,ϕ̂(xtϕ̂(t
−
l )) := (1/2)(µ2

ϕ,ϕ̂
−

1)x2
tϕ̂
(t−l ), we rewrite (30) as

Tϕ(xtϕ(tl)) ≤ Tϕ̂(xtϕ̂(t
−
l )) + ∆Tϕ,ϕ̂(xtϕ̂(t

−
l )). (31)

Now, let us define the total energy function

Hϕ(ξϕ) := Hϕ(xϕ) + Tϕ(xtϕ), (32)

where ξ⊤ϕ :=
[
x⊤
ϕ xtϕ

]
∈ Rnϕ+1. Using (26) and (31) we

obtain

Hϕ(ξϕ(tl)) ≤Hϕ̂(xϕ(t
−
l )) + Tϕ̂(xtϕ(t

−
l ))

+ ∆Hϕ,ϕ̂(xϕ̂(t
−
l )) + ∆Tϕ,ϕ̂(xtϕ̂(t

−
l ))

≤Hϕ̂(ξϕ(t
−
l ))

+ ∆Hϕ,ϕ̂(xϕ̂(t
−
l )) + ∆Tϕ,ϕ̂(xtϕ̂(t

−
l )).

(33)

Recall that from (26) the non-passive behavior occurs
because of the sudden jump in energy at a switching
instant, denoted by ∆Hϕ,ϕ̂, which can be significantly

large. Therefore, the objective here is to choose the pa-
rameter µϕ,ϕ̂ in (30) so that the jump in energy of the

system is instantaneously compensated by the energy
stored in the tank, thus preventing large energy inputs
that could destabilize the system. In other words, we
want that

∆Hϕ,ϕ̂(xϕ̂(t
−
l )) + ∆Tϕ,ϕ̂(xtϕ̂(t

−
l )) ≤ β (34)

where β is a (relatively small) positive design constant
to be defined. Substituting (30), the condition (34) can
be transformed into a bound on µϕ,ϕ̂:

1

2
µ2
ϕ,ϕ̂

x2
tϕ̂
(t−l ) ≤Tϕ̂(xtϕ(t

−
l ))−∆Hϕ,ϕ̂(xϕ̂(t

−
l )) + β

µϕ,ϕ̂ ≤

√√√√Tϕ̂(xtϕ(t
−
l ))−∆Hϕ,ϕ̂(xϕ̂(t

−
l )) + β

Tϕ̂(xtϕ(t
−
l ))

.

(35)
It is evident that if µϕ,ϕ̂ satisfies (35) at a switching

instant tl the energy-compensation requirement (34) is
satisfied. Then, letting

ϖϕ,ϕ̂ := Tϕ̂(xtϕ(t
−
l ))−∆Hϕ,ϕ̂(xϕ̂(t

−
l )) + β

we may set µϕ,ϕ̂ =
√

ϖϕ,ϕ̂/Tϕ̂(xtϕ(t
−
l )).

Note that for µϕ,ϕ̂ to be well defined, ϖϕ,ϕ̂ must be

greater than zero. On one hand, in case that the energy
decreases at a switching instant due to the change of
dimension of the state, that is, when ∆Hϕ,ϕ̂(xϕ̂(t

−
l )) <

0, ϖϕ,ϕ̂ is positive and µϕ,ϕ̂ is well-defined. However,

as mentioned in Section 2.2, there should be an upper
bound on the amount of energy that is stored in order
to avoid practically unfeasible behaviors. Therefore, de-
noting by ε̄ the upper limit for the energy stored in the
tank, we let µϕ,ϕ̂ be instead given by

µϕ,ϕ̂ :=


√

ε̄/Tϕ̂(xtϕ(t
−
l )), if ϖϕ,ϕ̂ ≥ ε̄√

ϖϕ,ϕ̂/Tϕ̂(xtϕ(t
−
l )), otherwise.

(36)

Definition (36) guarantees that the tanks does not fill
more than the maximum limit at any switching instant.
On the other hand, when ∆Hϕ,ϕ̂(xϕ̂(t

−
l )) > 0, that is,

when the energy increases at a switching instant, the
energy available in the tank just before the switching,
i.e., Tϕ̂(xtϕ(t

−
l )), should be enough to account for such

an increase. Moreover, in order to avoid singularities,
the tank must not empty completely. More precisely, it
should hold that

Tϕ̂(xtϕ(t
−
l ))−∆Hϕ,ϕ̂(xϕ̂(t

−
l )) + β ≥ ε > 0, (37)

6



where ε is the lower limit for the energy stored in the
tank. Inequality (35) imposes an energy-based switch-
ing condition for M3D switched system. Indeed, in or-
der for µϕ,ϕ̂ to be well-defined and to avoid singularities,

the switching signal σ(t) should be such that, at every
switching instant tl, the energy condition (37) is satis-
fied.
The switching condition (37) on the switching signal
is not unlike those normally found in the literature of
switching systems. Due to the energy-based switching
condition (37), the switching signal may be considered
as being state dependent, i.e., σ(ξϕ(t)), since the energy
functions Tϕ and Hϕ are defined in terms of the state of
the system. Therefore, the energy-based condition (37)
may be considered as a state-dependent counterpart to
the time-dependent conditions such as, e.g., the transi-
tion dependent average dwell time introduced in [38]. Fol-
lowing a stability (passivity) analysis of a hybrid system,
it is usually shown in the literature that if the switch-
ing signal satisfies a particular dwell-time condition, a
specific stability (passivity) property is established for
the hybrid system. In a similar way, with our switched
energy-tank design, in Theorem 4 below, we show that if
the switching signal σ(ξϕ(t)) satisfies the energy-based
switching condition (37) the system is guaranteed to be
(weakly) passive. Moreover, note that if the switching
signal is such that (37) is satisfied at every jump, it also
guarantees that the tank is not completely depleted, thus
avoiding singularities.
Remark 1 Note that at the switching times tl when the
energy decreases, i.e., ∆Hϕ,ϕ̂(xϕ̂(t

−
l )) < 0, the energy-

based switching condition (37) always holds. This can
be intuitively explained since only a sudden injection of
energy into the system would cause it to become unstable.
Therefore, the system is always allowed to jump from a

mode ϕ̂ to a mode ϕ where ∆Hϕ,ϕ̂(xϕ̂(t
−
l )) < 0. •

Remark 2 The filling of the tank, apart from the (pos-
sible) switching instances when ∆Hϕ,ϕ̂(xϕ̂(t

−
l )) < 0, is

carried out by the continuous dynamics between switch-
ing instants by properly designing the continuous time
dynamics of the tank (27). A possible choice, commonly
found in the literature—see e.g. [1, 8], is:

ẋtϕ =
ς

xtϕ
[D(xϕ(t))− utϕ] , (38)

where ς is as in (14),D ≥ 0 is the power dissipated by the
system (15)-(16), and utϕ is an additional control that
may be used to passively implement other task-dependent
actions between switching instants without affecting the
passivity of the whole system, as it is normally the case
in energy-tank-based approaches. •
Remark 3 One advantage of the energy-based (state-
dependent) switching strategy, compared to other time-
dependent approaches, is the increased autonomy since
switching instants are not required to be known in ad-
vance. Indeed, the switching signal σ(t) could be provided

by a “supervisor” that detects, based on some condition,
that a switching can (or should) take place. Then, the
system would autonomously switch whenever condition
(37) is fulfilled, thus determining autonomously and at
runtime the suitable switching time (not decided in ad-
vance). Note that, as mentioned in Remark 2, since the
tanks (are allowed to) fill/empty during the continuous
evolution of the system between switching instants, it is
possible that the supervisor would detect that a switch-
ing could take place but the amount of energy in the tank
may not be enough for (37) to hold. In such a case, the
system could wait until the tank fills with enough energy
and once (37) is satisfied the system effectively switches.
An example of this behavior is presented for the case of
open multi-agent systems in Section 4. •
3.3 Closed-loop system and passivity analysis

Now, akin to (10), distinguishing between an interaction
port ueϕ and a control port ucϕ at each mode ϕ ∈ S, i.e.,
uϕ = ucϕ + ueϕ, we set the power preserving intercon-
nection to [

ucϕ

utϕ

]
=

 0
ςwϕ

xtϕ

− ςwϕ

xtϕ
0

[
ycϕ

ytϕ

]
, (39)

where wϕ is a task-dependent action to be passively im-
plemented. Then, using (18)-(20), (38) and (28)-(29) we
write the the complete closed-loop M3D switched sys-
tem in the pH form

ξ̇ϕ(t)=
[
J̄ϕ(ξϕ(t))−R̄ϕ(ξϕ(t))

]
∇Hϕ(ξϕ(t)) (40)

+ḡϕ(ξϕ(t))ueϕ(t)

yeϕ(t)=ḡ⊤ϕ (xϕ(t))∇Hϕ(ξϕ(t)) (41)

ξϕ(tl)=Ξ̄ϕ,ϕ̂ξϕ(t
−
l ) + Φ̄l (42)

where

∇Hϕ(ξϕ) :=

[
∂H
∂xϕ

⊤ ∂H
∂xtϕ

⊤
]⊤

(43)

J̄(ξϕ(t)) :=

 Jϕ(xϕ(t)) gϕ(xϕ(t))
ςwϕ(t)
xtϕ(t)

− ςwϕ(t)
xtϕ(t)

g⊤ϕ (xϕ(t)) 0

 (44)

R̄(ξϕ(t)) :=

[
Rϕ(xϕ(t)) 0

−D̄ϕ(ξϕ(t)) 0

]
, (45)

ḡϕ(ξϕ(t)) :=

[
gϕ(xϕ(t))

0

]
(46)

Ξ̄ϕ,ϕ̂ :=

[
Ξϕ,ϕ̂ 0

0 µϕ,ϕ̂

]
, Φ̄l :=

[
Φl

0

]
, (47)

and D̄ϕ(ξϕ(t)) := ς
xtϕ

∂H
∂xϕ

⊤
Rϕ(xϕ(t)), due to the fact

that D(xϕ(t)) is the dissipated energy of the system by
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definition, that is, D(xϕ(t)) :=
∂H
∂xϕ

⊤
Rϕ(xϕ(t))

∂H
∂xϕ

.

Now, we state the following result.
Theorem 4 Consider themulti-modemulti-dimensional
switched port-Hamiltonian system (40)-(42), where for

every transition from mode ϕ̂ ∈ S to its consecutive
mode ϕ ∈ S, the factor µϕ,ϕ̂ in (29) is chosen accord-

ing to (36). Then, if the (state-dependent) switching
signal σ(ξϕ(t)) is such that the energy-based switching
condition (37) is satisfied with β = 0 (β > 0), the sys-
tem is (weakly) passive with respect to the power port
(ueσ(t)(t), yeσ(t)(t)).
Proof. Let us consider the multiple storage functionsHϕ.
We know, from (40)-(41) and from (33)-(34), that for ev-

ery mode ϕ ∈ S, with previous mode ϕ̂ ∈ S, the storage
functions satisfy

Ḣϕ(ξϕ(t)) ≤yeϕ(t)
⊤ueϕ(t) (48)

Hϕ(ξϕ(tl)) ≤Hϕ̂(ξϕ̂(t
−
l )) + β. (49)

Integrating (48) over the interval
[
tl, t

−
l+1

)
, where t0 ≤

tl ≤ tl+1 ≤ tf , yields

Hσ(t−
l+1

)(ξϕ(t
−
l+1)) ≤Hσ(tl)(ξϕ(tl))

+

∫ t−
l+1

tl

yeσ(s)(s)
⊤ueσ(s)(s)ds.

(50)
Then, applying (49) and (50) recursively we have

Hσ(t−
l+1

)(ξϕ(t
−
l+1))

≤ Hσ(t−
l
)(ξϕ(t

−
l )) +

∫ t−
l+1

tl

yeσ(s)(s)
⊤ueσ(s)(s)ds+ β

≤ Hσ(tl−1)(ξϕ(tl−1)) +

∫ t−
l+1

tl

yeσ(s)(s)
⊤ueσ(s)(s)ds

+

∫ t−
l

tl−1

yeσ(s)(s)
⊤ueσ(s)(s)ds+ 2β

...

≤ Hσ(t0)(ξϕ(t0)) +

l∑
j=0

∫ t−
j+1

tj

yeσ(s)(s)
⊤ueσ(s)(s)ds+ lβ.

(51)
Furthermore, setting tf = t−l+1 and from the non-
negativity of Hσ(t), we obtain

l∑
j=0

∫ t−
j+1

tj

yeσ(s)(s)
⊤ueσ(s)(s)ds ≥Hσ(t−

l+1
)(ξϕ(t

−
l+1))

−Hσ(t0)(ξϕ(t0))− lβ∫ tf

t0

yeσ(s)(s)
⊤ueσ(s)(s)ds ≥− γ

(52)

where γ := Hσ(t0)(ξϕ(t0)) + lβ ≥ 0, which implies that

the M3D switched system (40)-(42) is weakly passive. If
β = 0, (52) implies that the system is passive. ■

4 Application to open multi-robot systems

In an OMRS, agents may arbitrarily leave or join the
system due to failure, secondary tasks, human action,
etc. This naturally leads to their representation as an
M3D switched system, where the state of the network,
collecting the state variables of the agents present in
the group, increases or decreases in dimension as robots
leave or new ones join the system. In this section we use
the previously-presented energy-tank-based framework
so that the OMRS, subject to a proximity-based sensing
model, can deal with the addition and removal of agents
in an autonomous way while preserving passivity.

4.1 Modeling of the multi-robot system

The agents are modeled as floating masses in R3 coupled
by means of inter-agent forces. We use the pH formalism
to represent each agent as an element storing kinetic
energy with a dynamic model given by

ṗi =Fλ
i + F e

i −BiM
−1
i pi, i = 1, . . . , nϕ

vi =
∂Ki

∂pi
= M−1

i pi

(53)

where pi ∈ R3 and Mi ∈ R3×3 are, respectively, the mo-
mentum and the positive-definite inertia matrix of agent
i, Ki(pi) := 1

2p
⊤
i M

−1
i pi is the kinetic energy stored by

the agent during its motion, andBi ∈ R3×3 is a positive-
definite matrix representing a velocity damping term.
The force Fλ

i ∈ R3 represents a potential force that is
used for cooperative behavior such as, e.g., generalized
connectivity maintenance—see below—and F e

i ∈ R3 is
an additional input that can be exploited for implement-
ing other tasks of interest. vi ∈ R3 is the velocity of the
agent and xi ∈ R3 its position, with ẋi = vi.
With respect to the interaction between the agents, we
assume that they communicate over a dynamic topology
described by an undirected graph Gϕ(Vϕ, Eϕ(t)) where
the set of nodes Vϕ := {1, 2, . . . , nϕ} corresponds to the
labels of the agents and the set of edges, Eϕ ⊆ V2

ϕ repre-
sents the communication between a pair of nodes, that is,
an edge ek := (i, j) ∈ Eϕ, is an unordered pair indicating
that agent j has access to information from node i and
vice-versa. We assume that the communication between
the agents is proximity-based, that is, and edge ek con-
necting agents i and j exists if and only if ||pi−pj || ≤ R,
with R denoting the upper-bound on the distance for
below which the communication is reliable. Hence, we
define the set of neighbors of agent i as

Nϕ,i := {j ∈ Vϕ, | j ̸= i and ||pi − pj || < R}. (54)

To model this proximity-based communication we use
the adjacency matrix Aϕ ∈ Rnϕ×nϕ , where the element
aij , represents the weight of edge ek. Namely, aij > 0
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if and only if j ∈ Nϕ,i, and aij = 0 otherwise. More
precisely, given r < R and denoting dij := ||pi− pj ||, we
let

aij =


1, if dij ≤ r
1
2

(
1 + cos

(
π(dij−r)

R−r

))
, if r < dij ≤ R

0, R < dij .

(55)

Another useful graph-related notion in the incidence ma-
trix of the graph which maps the nodes the edges. Here
we define the incidence matrix in a non-standard way.
First, note that since Gϕ(t) is undirected, it follows that
aij = aji. Now, let

E∗
ϕ = {(1, 2), (1, 3), . . . , (1, nϕ), . . . , (nϕ − 1, nϕ)}
=
{
e1, e2, . . . , enϕ−1, . . . , enϕ(nϕ−1)/2

}
(56)

be the set of all possible edges in Gϕ(t), that is, all the
pairs (i, j) such that i < j, sorted in lexicographical

order. Then, we define Eϕ ∈ Rnϕ×|E∗
ϕ| such that, ∀ek =

(i, j) ∈ E∗
ϕ, [Eϕ]ik = −1 and [Eϕ]jk = 1, if ek ∈ Eϕ, and

[Eϕ]ik = [Eϕ]jk = 0 otherwise.
The Laplacian matrix Lϕ ∈ Rnϕ×nϕ is a symmetric posi-
tive semi-definite matrix given byLϕ = diag{Aϕ1}−Aϕ,
with 1 ∈ Rnϕ the vector of all ones, or, equivalently,
Lϕ = EϕE

⊤
ϕ . It is well known that some fundamental

properties of the graph are associated with the Laplacian
matrix. Specifically, denoting λ2,ϕ as the second small-
est eigenvalue of Lϕ, we have that λ2,ϕ > 0 if and only
if Gϕ(t) is connected and λ2,ϕ = 0 otherwise—see [9] for
more details on graph theory. Furthermore, we state the
following assumption.
Assumption 1 The graph Gσ(t) is connected for all t ≥
t0. Equivalently, λ2,σ(t)(t) > 0 for all t ≥ t0.

The interaction force Fλ
i can be taken as the gradient of

a potential function V λ
ϕ : D → R≥0, i.e.,

Fλ
i = −

∂V λ
ϕ (λ2,ϕ(x))

∂xi
, (57)

where V λ
ϕ is C1 over its domain and has the property that

V λ
ϕ (λ2,ϕ(x)) → ∞ as λ2,ϕ(x) → 0. The latter guarantees

that the connectivity of the network is preserved.
Remark 5 For ease of exposition, in this paper we con-
sider the proximity-based weights (55), which, coupled
with the gradient control (57) guarantees the mainte-
nance of connectivity, cf. [8]. However, note that by prop-
erly designing the weights aij of the adjacency matrix
so that λ2,ϕ(x) is a state-dependent measure of gener-
alized connectivity as in [8], the same interaction force
(57)may be used to guarantee the satisfaction of multiple
constraints such as collision avoidance, (bi)connectivity
maintenance, visibility maintenance, obstacle avoidance,
etc. •

Remark 6 Assumption 1 implies that at every switch-
ing instant tl, the “remaining graph,” that is, the graph
that is left after the (possible) removal of agents and
their incident edges, is connected. This is not guaranteed
even if the connectivity of the graph is preserved between
switching instants, that is, for all t ∈ [tl, tl+1), using a
connectivity-maintenance algorithm such as in, e.g., [8].
If, instead, a biconnectivity-preserving algorithm as the
one proposed [25] is used, Assumption 1 is reasonable. In-
deed, a biconnected graph is robust to node removal and,
using the approach presented in [25] the graph is guaran-
teed to become and stay biconnected in finite time, thereby
ensuring that the remaining graph stays connected. •
Remark 7 It is important to mention that although the
formulation in (57) requires knowledge of the algebraic
connectivity λ2,ϕ, which is a global parameter, there ex-
ist numerous algorithms in the literature for estimat-
ing the algebraic connectivity in a distributed manner
with a specified error bound—see e.g. [27]—or even with
prescribed convergence and a non-constant number of
agents—see [16]. Therefore, in this paper we consider
that the algebraic connectivity (or at least a good enough
estimation) is known to the agents at all times. •
Due to the open nature of the system, the dimension
of the state is not constant for all switching modes ϕ ∈
S. Indeed, as robots are allowed to leave and join the
system, the dimension of the state decreases or increases,
respectively, at each mode. Therefore, akin to (18)-(20),
the OMRS is represented as an M3D switched system.

Define p⊤ϕ =
[
p⊤1 · · · p⊤nϕ

]
∈ R3nϕ , Bϕ = diag(Bi) ∈

R3nϕ×3nϕ , F e⊤
ϕ =

[
F e⊤
1 · · ·F e⊤

nϕ

]
∈ R3nϕ . Furthermore,

let zk = xi−xj represent the relative position of agent i
with respect to agent j. Then, replicating the order used
for E∗

ϕ all the possible |E∗
ϕ| relative positions are collected

in the vector of varying dimension

z⊤ϕ =
[
z1, . . . , z3nϕ(nϕ−1)/2

]
∈ R3nϕ(nϕ−1)/2.

Note that, with ∂zk/∂xi = I3, (57) may be expressed as

Fλ
i = −

3nϕ(nϕ−1)/2∑
k=1

∂V λ
ϕ (λ2,ϕ)

∂zk
. (58)

and that żk = vi − vj .
Now, let the energy of the system be given by

Hϕ(pϕ, zϕ) =

nϕ∑
i=1

Ki(pi) + V λ
ϕ (λ2,ϕ(zϕ)) ≥ 0. (59)

Then, we have[
ṗϕ(t)

żϕ(t)

]
=−

[
Bϕ −Eϕ

E⊤
ϕ 0

]
∇Hϕ(t) +GϕF

e
ϕ(t) (60)
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vϕ(t) =G⊤
ϕ∇Hϕ(t) (61)[

pϕ(tl)

zϕ(tl)

]
=

Ξp

ϕ,ϕ̂
0

0 Ξz
ϕ,ϕ̂

[
pϕ̂(t

−
l )

zϕ̂(t
−
l )

]
+

[
Φp

l

Φz
l

]
(62)

where

∇H⊤
ϕ =

[
∂⊤Hϕ

∂pϕ

∂⊤Hϕ

∂zϕ

]
,

Ξp

ϕ,ϕ̂
∈ Bnϕ×nϕ̂ and Ξz

ϕ,ϕ̂
∈ BMϕ×Mϕ̂ are 0-1 rectangular

matrices indicating the dimension variation of the state
at tl, and Φl,p ∈ Rnϕ and Φl,z ∈ RMϕ are the real vectors
indicating the value changes of pϕ̂ and zϕ̂ , respectively,

at any tl. Moreover, Eϕ = Eϕ ⊗ I3, G
⊤
ϕ =

[
Inϕ

⊗ I3 0
]
,

with ‘⊗’ denoting the Kronecker product, and vϕ ∈ R3nϕ

is the conjugate power variable associated with F e
ϕ .

The derivative of (59) along (60)-(61) for every mode
ϕ ∈ S satisfies

Ḣϕ(pϕ, zϕ) =−∇H⊤
ϕ (t)Bϕ∇Hϕ(t) +∇H⊤

ϕ (t)GϕF
e
ϕ(t)

≤vϕ(t)
⊤F e

ϕ(t),
(63)

implying that the multi-robot system is passive during
each active mode.
Following the analysis exposed in the previous section,
at the switching instant we have

Hϕ(tl) ≤ Hϕ̂(t
−
l ) + ∆Hϕ,ϕ̂(t

−
l ). (64)

In the context of OMRS, the instantaneous change in
energy,∆Hϕ,ϕ̂, comes primarily from the fact that agents

join and/or leave at switching instants. For a transition

from mode ϕ̂ ∈ S to ϕ ∈ S, let Rϕ,ϕ̂ ⊆ Vϕ̂ denote the

set of agents that are part of the system in both modes,
i.e., all

Rϕ,ϕ̂ := {i ∈ N : i ∈ Vϕ̂

⋂
Vϕ}. (65)

Similarly, let Jϕ,ϕ̂ ⊂ Vϕ, and Lϕ,ϕ̂ ⊂ Vϕ̂ be, respectively,

the sets of joining and leaving agents, i.e.,

Jϕ,ϕ̂ := {i ∈ Vϕ : i /∈ Vϕ̂}, Lϕ,ϕ̂ := {i ∈ Vϕ̂ : i /∈ Vϕ}.
(66)

Then, from the definition of the Hamiltonian in (59) and
the sets (65)-(66), we have that

Hϕ(tl)

=
∑

i∈Rϕ,ϕ̂

Ki(pi(tl)) +
∑

i∈Jϕ,ϕ̂

Ki(pi(tl)) + V λ
ϕ (λ̂2,ϕ(zϕ(tl)))

=
∑

i∈Rϕ,ϕ̂

Ki(pi(t
−
l )) +

∑
i∈Jϕ,ϕ̂

Ki(pi(tl))±
∑

i∈Lϕ,ϕ̂

Ki(pi(t
−
l ))

+ V λ
ϕ (λ2,ϕ(zϕ(tl)))± V λ

ϕ̂
(λ2,ϕ̂(zϕ̂(t

−
l )))

= Hϕ̂(t
−
l ) + ∆Kϕ,ϕ̂(t

−
l ) + ∆V λ

ϕ,ϕ̂
(t−l ),

where

∆Kϕ,ϕ̂(t
−
l ) :=

∑
i∈Jϕ,ϕ̂

Ki(pi(tl))−
∑

i∈Lϕ,ϕ̂

Ki(pi(t
−
l )) (67)

is the variation in total kinetic energy due to agents
leaving/joining and

∆Vϕ,ϕ̂(t
−
l ) := V λ

ϕ (λ2,ϕ(zϕ(tl)))− V λ
ϕ̂
(λ2,ϕ̂(zϕ̂(t

−
l )))

(68)
is the variation in the total potential energy. Denoting
∆Hϕ,ϕ̂(t

−
l ) := ∆Kϕ,ϕ̂(t

−
l ) + ∆V λ

ϕ,ϕ̂
(t−l ), we obtain (64).

4.2 Distributed energy tanks

In order to account for the sudden change in total energy
of the OMRS in a distributed way, instead of considering
a single tank for the switched system as in Section 3.2,
in this section for the energy-based design we define nϕ

individual tanks forming an OMRS. That is, we consider
that each robot in the network possesses an energy tank
and it is able to communicate the current state of its
tank with its neighbors.
For each i ∈ Vϕ, let the continuous evolution of the
energy-tank state be given by

ẋti(t) = ςi

 κ

xti(t)
Di(pi(t))− c

∑
j∈Ni

(xti(t)− xtj(t))

+
w⊤

i (t)yi(t)

xti(t)

]
.

(69)
The first term in the right-hand side of (69), where

Di(pi(t)) = pi(t)
⊤M−⊤

i BiM
−1
i pi(t) denotes the dissi-

pated energy by robot i which serves as a way to fill in
the tank. The second term in the right-hand side of (62)
is an agreement protocol designed so that the agents con-
tinuously reach consensus on the energy in the individ-
ual tanks. This allows for the total energy in the tanks to
be distributed equivalently over the whole multi-robot
system, thereby making the individual tanks behave as
a single energy-tank for the OMRS. The last term is a
free task-dependent action to be implemented in a pas-
sive way. Finally, ςi is defined, for each agent, as in (14),
i.e.,

ς =

{
0, if (Ti < ϵ) or (Ti = ε̄ ∧ ẋti > 0)

1, otherwise,
(70)

in order to prevent the tank from filling more than the
specified upper limit.
Now, recall the sets Rϕ,ϕ̂, Jϕ,ϕ̂, and Lϕ,ϕ̂, defined pre-

viously in (65)-(66), and denote as MJ
ϕ,ϕ̂

⊆ Rϕ,ϕ̂ and

ML
ϕ,ϕ̂

⊆ Rϕ,ϕ̂ the sets of remaining agents that are

neighbors to the joining and leaving robots, respectively,

10



i.e.,

MJ
ϕ,ϕ̂

:={i ∈ Rϕ,ϕ̂ : (i, j) ∈ Eϕ(t+l ), ∀j ∈ Jϕ,ϕ̂} (71)

ML
ϕ,ϕ̂

:={i ∈ Rϕ,ϕ̂ : (i, j) ∈ Eϕ̂(t−l ), ∀j ∈ Lϕ,ϕ̂}, (72)

and let MJL
ϕ,ϕ̂

:= MJ
ϕ,ϕ̂

⋃ML
ϕ,ϕ̂

. Then, the state transi-

tion of the tanks of the remaining agents at the switching
time tl is given by

xti(tl) =

{
µixti(t

−
l ), if i ∈ MJL

ϕ,ϕ̂

xti(t
−
l ), otherwise,

(73)

The transition law (73) guarantees that only those nodes
that are neighbors to joining or leaving agents at the
switching instants tl will update their energy-tank state
in order to compensate for the increase or decrease in
total energy, making the approach distributed since only
local interactions are required.

Defining x⊤
tϕ =

[
x⊤
t1 · · ·x⊤

tnϕ

]
∈ Rnϕ , D̃ϕ(pϕ(t))

⊤ =[
ςiκ

xt1(t)
D1(p1(t)) · · · ςiκ

xtnϕ
(t)Dnϕ

(pnϕ
(t))

]
, and W̃ϕ(t) =

diag
{
ςi

wi(t)
⊤

xti(t)

}
, and considering, without loss of gener-

ality, that the states of the agents leaving are removed
from the end and new states are appended to the end,
the impulsive switching multiple tanks may be written
in compact form as

ẋtϕ(t) =D̃ϕ(pϕ(t))− Lϕxtϕ(t) + W̃ϕ(t)yϕ(t) (74)

xtϕ(tl) =Ξt
ϕ,ϕ̂

Λϕ,ϕ̂xtϕ̂(t
−
l ) + Φt

l (75)

where Φl,t is a real valued vector with the values of

the new states, Ξt
ϕ,ϕ̂

∈ Rnϕ×nϕ̂ is a 0-1 rectangular

matrix indicating the dimension variation of the state
at tl, and Λϕ,ϕ̂ ∈ Rnϕ̂×nϕ̂ is a diagonal matrix with

entries
[
Λϕ,ϕ̂

]
ii

= µi if i ∈ MJL
ϕ,ϕ̂

,
[
Λϕ,ϕ̂

]
ii

= 1 if

i ∈ Rϕ,ϕ̂\MJL
ϕ,ϕ̂

, and
[
Λϕ,ϕ̂

]
ii
= 0 otherwise.

For every mode ϕ ∈ S, let the energy function of the
tanks be

Tϕ(t) =
1

2

nϕ∑
i=1

x2
ti(t). (76)

Then, at a switching instant tl, the energy in the tanks
is the (updated) energy of the remaining agents plus the

energy of the joining robots. More precisely, we have

Tϕ(tl) =
1

2

∑
i∈Vϕ

x2
ti(tl)

=
1

2

 ∑
i∈Rϕ,ϕ̂

x2
ti(tl) +

∑
i∈Jϕ,ϕ̂

x2
ti(tl)


=
1

2

 ∑
i∈Vϕ\MJL

ϕ,ϕ̂

x2
ti(tl) +

∑
i∈MJL

ϕ,ϕ̂

x2
ti(tl) +

∑
i∈Jϕ,ϕ̂

x2
ti(tl)


=
1

2

 ∑
i∈Vϕ̂\M

JL
ϕ,ϕ̂

x2
ti(t

−
l ) +

∑
i∈MJL

ϕ,ϕ̂

µ2
ix

2
ti(t

−
l ) +

∑
i∈Jϕ,ϕ̂

x2
ti(tl)


=Tϕ̂(t

−
l ) +

1

2

 ∑
i∈MJL

ϕ,ϕ̂

(µ2
i − 1)x2

ti(t
−
l ) +

∑
i∈Jϕ,ϕ̂

x2
ti(tl)

−
∑

i∈Lϕ,ϕ̂

x2
ti(t

−
l )

 .

(77)
Letting ∆Tϕ,ϕ̂(tl) denote the second term on the right-

hand side of (77), we have

Tϕ(tl) = Tϕ̂(t
−
l ) + ∆Tϕ,ϕ̂(tl). (78)

Now, following the development is Section 3.2 and letting
the total energy of the OMRS be

Hϕ(pϕ, zϕ, xtϕ) := Hϕ(pϕ, zϕ) + Tϕ(xtϕ), (79)

we have that

Hϕ(tl) ≤Hϕ̂(t
−
l ) + Tϕ̂(t

−
l ) + ∆Hϕ,ϕ̂(tl) + ∆Tϕ,ϕ̂(tl)

≤Hϕ̂(t
−
l ) + ∆Hϕ,ϕ̂(tl) + ∆Tϕ,ϕ̂(tl).

(80)
Therefore, as in (34), we want to choose µi, ∀i ∈ Rϕ,ϕ̂,

such that, for a small positive constant β it holds that

∆Hϕ,ϕ̂(tl) + ∆Tϕ,ϕ̂(tl) ≤ β. (81)

In order to choose the proper values for the parameters
µi, let us first define the following sets. Let NJ

i ⊆ Nϕ,i

and NL
i ⊆ Nϕ̂,i denote the sets of joining and leaving

agents that are neighbors to robot i ∈ Rϕ,ϕ̂ at tl and t−l ,

respectively. More precisely

NJ
i ={j ∈ Jϕ,ϕ̂ : (i, j) ∈ E(t+l ), ∀i ∈ Rϕ,ϕ̂}, (82)

NL
i ={j ∈ Lϕ,ϕ̂ : (i, j) ∈ E(t−l ), ∀i ∈ Rϕ,ϕ̂}. (83)

Moreover at a switching instant tl we set the following
protocol:
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• Every leaving robot, i.e. i ∈ Lϕ,ϕ̂, sends to its neigh-

bors at t−l its tank energy and its kinetic energy di-
vided by its number of neighbors.

• Every joining robot, i.e. i ∈ Jϕ,ϕ̂, sends to its neigh-

bors at t+l its tank energy and its kinetic energy di-
vided by its number of neighbors.

Then, using (77) and (81), we obtain∑
i∈MJL

ϕ,ϕ̂

(µ2
i − 1)x2

ti(t
−
l ) +

∑
i∈Jϕ,ϕ̂

x2
ti(tl)−

∑
i∈Lϕ,ϕ̂

x2
ti(t

−
l )

≤ −2∆Hϕ,ϕ̂ + 2β.

(84)
Then, for every agent i ∈ Rϕ,ϕ̂, we set the values of µi to

µi =

{
ε̄/xti(t

−
l ), if x∗

ti ≥ ε̄

x∗
ti/xti(t

−
l ), otherwise,

(85)

where

x∗
ti =

2
Ti(t

−
l )−

 ∑
j∈NJ

i

Tj(t
+
l )

|Nϕ,j |
−

∑
j∈NL

i

Tj(t
−
l )

|Nϕ̂,j |


−

 ∑
j∈NJ

i

Kj(t
+
l )

|Nϕ,j |
−

∑
j∈NL

i

Kj(t
−
l )

|Nϕ̂,j |

− υi

 1
2

(86)
and Ti and Ki are, respectively, the tank energy and the
kinetic energy of robot i and υi is a value to account for
the change in the potential (generalized connectivity)
energy, which is chosen so that the following holds:∑

i∈NJ
ϕ,ϕ̂

⋃
NL

ϕ,ϕ̂

υi +∆V λ
ϕ,ϕ̂

≤ β. (87)

Remark 8 Recalling Remark 7, in this paper we assume
that the algebraic connectivity at mode ϕ, λ2,ϕ, is known
by all the agents. Under this assumption one could sim-
ply choose υi = ∆V λ

ϕ,ϕ̂
for every i. However, in prac-

tice, the knowledge of λ2,ϕ, that is, the algebraic connec-
tivity at the next mode ϕ is not necessarily known and
should be estimated. For this, one could consider multi-
ple solutions. On the one hand, one could leverage the

delay between the change in topology (jump from mode ϕ̂
to ϕ) and consider ∆V λ

ϕ,ϕ̂
= 0 at the switching instant.

Indeed, as in [16], the estimated value of λ2,ϕ does not
instantly change when an agent is added/removed and
rather manifests a transient before it stabilizes to the new
value in mode ϕ. In this case one could simply set υi to be
a positive small constant. On the other hand, one could
consider, e.g., that a joining agent is able to communi-
cate with the would-be neighbors in the network before
joining the system, at which point an additional estima-
tion of λ2,ϕ at the next mode ϕ could be performed “in

the background” and hence calculate ∆V λ
ϕ,ϕ̂

. A solution

to this implementation-related problem is, however, an
open problem which will be investigated in future work. •
Akin to (37), it is now possible to deduce from (85) an
energy-based switching condition for the OMRS. Indeed,
we have that a switching can take place as long as for
every i ∈ Rϕ,ϕ̂ the following holds:

Ti(t
−
l )−

 ∑
j∈NJ

i

Tj(t
+
l )

|Nϕ,j |
−

∑
j∈NL

i

Tj(t
−
l )

|Nϕ̂,j |


−

 ∑
j∈NJ

i

Kj(t
+
l )

|Nϕ,j |
−

∑
j∈NL

i

Kj(t
−
l )

|Nϕ̂,j |

− υi ≥ ε > 0

(88)
In other words, each “remaining” agent uses the energy
in its own tank and some of the energy of its leaving
neighbors to compensate for the increase of energy due
to the joining/leaving agents.
Besides preserving passivity, one of the main advantages
of the (state-dependent) energy-based switching condi-
tion (88) resulting from our approach, with respect to,
e.g. approaches considering time-dependent switching
signal, is that the protocol for adding or removing agents
into the network becomes completely autonomous and
distributed. Indeed, based on the energy condition (88)
any individual agent i ∈ Rϕ,ϕ̂ can decide autonomously

whether to let a (potential) neighbor (join) leave. Hence,
in this context, recalling Remark 3, if a potentially join-
ing agent is detected, e.g., via embedded sensors, but
the energy in the concerned tanks is not enough to sat-
isfy (88), the agent will not be added to the system and
it will continue with its evolution until the energy-based
condition is satisfied due to, e.g., the tanks filling fur-
ther or more of the robots already in the group detect-
ing the new agent. The latter is explicitly presented in
the numerical example in Section 4.4 below. Moreover,
the condition (88) is distributed, therefore scalable, as
it only depends on local information. These two prop-
erties make our approach well suited for implementa-
tion in autonomous long-term multi-robot missions in
dynamic environments where the addition and removal
of agents via, e.g., a human supervisor or the design on
a time-dependent switching signal is impractical or even
unfeasible.

4.3 Passivity of the OMRS

From (60)-(62) and (74)-(75) the complete multi-mode
multi-dimensional system can be written in the form


ṗϕ(t)

żϕ(t)

ẋtϕ(t)

 =




0 Eϕ 0

−Eϕ 0 W̃ϕ(t)

0 −W̃ϕ(t) 0

 (89)
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−


Bϕ 0 0

0 0 0

−Pϕ(t)Bϕ 0 Lϕ





∂Hϕ(t)
∂pϕ

∂Hϕ(t)
∂zϕ

∂Hϕ(t)
∂xtϕ

+GϕF
e
ϕ(t)

vϕ(t) =G⊤
ϕ


∂Hϕ(t)
∂pϕ

∂Hϕ(t)
∂zϕ

∂Hϕ(t)
∂xtϕ

 (90)


pϕ(tl)

zϕ(tl)

xtϕ(tl)

 =


Ξp

ϕ,ϕ̂
pϕ̂(t

−
l )

Ξz
ϕ,ϕ̂

zϕ̂(t
−
l )

Ξt
ϕ,ϕ̂

Mϕ,ϕ̂xtϕ̂(t
−
l )

+


Φp

l

Φz
l

Φt
l

 (91)

where Pϕ(t) := diag{ςi p
⊤
i M−⊤

i

xti
}.

Now, we state the following result:
Proposition 9 Consider the open multi-robot system
(89)-(91) in port-Hamiltonian form, where for every

mode transition from ϕ̂ ∈ S to ϕ ∈ S, and for every
i ∈ Rϕ,ϕ̂ the factor µi is chosen as in (85). Then, under

Assumption 1 if the (state-dependent) switching signal
σ(ξϕ(t)) is such that at every switching instant tl the
energy-based switching condition (88) holds with β = 0
(β > 0), the system is (weakly) passive with respect to
the power port (F e

σ(t)(t), vσ(t)(t)). □

Proof. Consider the multiple storage functions Hϕ. For
every mode ϕ ∈ S, the derivative ofHϕ along (89) yields

Ḣϕ =−
∂H⊤

ϕ (t)

∂pϕ
Bϕ

∂Hϕ(t)

∂pϕ
− x⊤

tϕPϕ(t)Bϕ
∂Hϕ(t)

∂pϕ

− ςx⊤
tϕ(t)Lϕxtϕ(t) +

∂H⊤
ϕ (t)

∂pϕ
G⊤

ϕ F
e
ϕ(t)

≤v⊤ϕ F
e
ϕ(t).

(92)
Moreover, from (80)-(81), for every mode ϕ ∈ S, with
previous mode ϕ̂ ∈ S, the storage functions satisfy

Hϕ(tl) ≤ Hϕ̂(t
−
l ) + β. (93)

Integrating (92) over the interval
[
tl, t

−
l+1

)
, where t0 ≤

tl ≤ tl+1 ≤ tf , yields

Hσ(t−
l+1

)(t
−
l+1) ≤ Hσ(tl)(tl) +

∫ t−
l+1

tl

vσ(s)(s)
⊤F e

σ(s)(s)ds.

(94)

Then, applying (93) and (94) recursively we have

Hσ(t−
l+1

)(t
−
l+1)

≤ Hσ(t−
l
)(t

−
l ) +

∫ t−
l+1

tl

vσ(s)(s)
⊤F e

σ(s)(s)ds+ β

≤ Hσ(tl−1)(tl−1) +

∫ t−
l+1

tl

vσ(s)(s)
⊤F e

σ(s)(s)ds

+

∫ t−
l

tl−1

vσ(s)(s)
⊤F e

σ(s)(s)ds+ 2β

...

≤ Hσ(t0)(t0) +

l∑
j=0

∫ t−
j+1

tj

vσ(s)(s)
⊤F e

eσ(s)(s)ds+ lβ.

(95)
Furthermore, setting tf = t−l+1 and from the non-
negativity of Hσ(t), we obtain

l∑
j=0

∫ t−
j+1

tj

vσ(s)(s)
⊤F e

σ(s)(s)ds ≥Hσ(t−
l+1

)(t
−
l+1)

−Hσ(t0)(t0)− lβ∫ tf

t0

vσ(s)(s)
⊤F e

σ(s)(s)ds ≥− γ

(96)
where γ := Hσ(t0)(t0) + lβ ≥ 0. Eq. (96) with β = 0
(β > 0) implies that the OMRS is (weakly) passive. ■

4.4 A numerical example

We consider a multi-agent-plus-distributed-energy-
tanks system modeled as in (89)-(91), where the initial
positions and the initial interaction graph are presented
in Fig. 1. The initial network is composed of 21 agents
starting at rest (vi(0) = 0 m/s) with their individual
tanks initialized at xti(0) = 2. The lower and upper lim-
its of the energy tanks are set, respectively, to ε = 0.125
and ε̄ = 12.5.
Instead of using the interconnection weights presented
in (55), we use the generalized connectivity framework
presented in [8], which, on top of connectivity mainte-
nance, also allows to guarantee collision avoidance be-
tween the agents. Then, the interaction forces, Fλ

i , are
designed as in (57). However, recalling Remark 6, in-
stead of using the algebraic connectivity of the graph,
i.e., λ2,ϕ, as a measure of (generalized) connectivity for
the potential function V λ

ϕ , we use the so-called perturbed

algebraic connectivity λ̂2,ϕ in order to guarantee that
the graph becomes and remains biconnected (robust to
the removal of nodes)—cf. [25]. For the external forces
F e
ϕ,i we use an input in order to achieve flocking of the

agents and convergence to a circular path, as can be seen
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in Fig. 2. More precisely we set

F e
ϕ,i = −

∑
j∈Nϕ,i

aij(vi − vj)− (vi − v̄),

where v̄ = [−0.24 cos(0.0096t) 0.24 sin(0.0096t)]
⊤
.

In this simulation scenario, as the agents move in the
workspace they encounter some other agents that are
scattered over the path of the multi-agent system. An
animation of the simulation is available at https://
youtu.be/EdS22EO-UpE.
In the simulation, as a new agent is detected the energy-
based condition (88) is checked and, if it holds, the new
agent joins the network and the tank states of the re-
maining agents are updated following (73) with (85). If
an agent is detected but the energy in the tank is not
enough to compensate for the increase in energy, that
is, if (88) does not hold, the agent does not join and the
system waits until the energy requirement is satisfied in
order to add the agent. This can be seen in the anima-
tion where the agent labeled #24 is detected by #10 at
t = 4.77s but it is only added to the system once the en-
ergy condition is satisfied at t = 5.34s. Similarly, at some
time instants some of the agents present in the network
decide to leave. Then again, if the condition (88) is satis-
fied, the agents effectively leave the systems and the tank
states are updated as (73) with (85). The evolution of
the number of agents in time is presented in Fig. 3. Also
in Fig. 4 is presented the evolution of the tank states.
There it can be seen that when there are agents joining
or leaving the network the energy-tanks of the concerned
agents deplete in order to account for the sudden jump
in energy, so that the variation in total energy, depicted
in Fig. 5, satisfies (81) with β = 10. Also it can be seen
in Fig. 6 that throughout the simulation, the connectiv-
ity and collision-avoidance constraints, represented by
the dashed red lines, are always respected.

−10 −6 22 6 10 14
−12

−8

−4

0

4

8

x [m]

y
[m

]

Fig. 1. Initial configuration.

5 Conclusions

We presented new energy-aware framework based on
hybrid energy tanks for the analysis and passivity-
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Fig. 2. Trajectories of the agents and final configuration and
graph.

0 100 200 300 400 500
19

20

21

22

23

24

25

t [s]

n
ϕ

0 5 10 15
20
22
24

Fig. 3. Variation of the number of agents in the network.
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Fig. 4. Evolution of the tank states.
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Fig. 5. Evolution of the total energy of the OMAS.

14

https://youtu.be/EdS22EO-UpE
https://youtu.be/EdS22EO-UpE


0 100 200 300 400 500
0

1

2

3

4

5

t [s]

|z k
|[
m
]

Fig. 6. Distances between the connected agents. The dashed
lines represent the allowed maximum and minimum dis-
tances.

preserving control design ofmulti-modemulti-dimensional
switched systems. The hybrid energy tank is modeled as
an impulsive switched system in order to account for the
sudden jumps in energy of the system due to the change
of dimension of the state at switching instants. Under
our proposed framework we provide an energy-based
condition for the switching signal that allows us to estab-
lish (weak) passivity of the plant-plus-tank system. We
demonstrate the utility of our framework by applying
the methodology to the case-study of open multi-robot
systems subject to a proximity-based interaction model.
With our energy-aware design we show how the multi-
robot system can autonomously manage the arbitrary
addition and removal of agents in a distributed and
passive way. We believe that this autonomous and dis-
tributed management of the additions/removals result-
ing from the energy-based switching condition makes
our proposed energy-aware and passivity-preserving
framework well suited for implementation of complex
long-term or persistent missions involving multi-robot
systems and interactions with the environment or hu-
man subjects. Current research focuses on considering
antagonistic and non-cooperative interactions as well as
testing the results in an experimental setup.
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