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Abstract

Introduction: Three years into the pandemic, there remains significant uncertainty about the true 
infection and mortality burden of COVID-19 in the World Health Organization Africa region. High 
quality, population-representative studies in Africa are rare and tend to be conducted in national 
capitals or large cities, leaving a substantial gap in our understanding of the impact of COVID-19 in 
rural, low-resource settings. Here, we estimated the spatio-temporal morbidity and mortality burden 
associated with COVID-19 in a rural health district of Madagascar until the first half of 2021.

Methods: We integrated a nested seroprevalence study within a pre-existing longitudinal cohort 
conducted in a representative sample of 1600 households in Ifanadiana District, Madagascar. Socio-
demographic and health information was collected in combination with dried blood spots for about 
6500 individuals of all ages, which were analysed to detect IgG and IgM antibodies against four specific 
proteins of SARS-CoV2 in bead-based multiplex immunoassay. We evaluated spatio-temporal patterns 
in COVID-19 infection history and its associations with several geographic, socio-economic and 
demographic factors via logistic regressions.

Results: Eighteen percent of people had been infected by April-June 2021, with seroprevalence 
increasing with individuals’ age. COVID-19 primarily spread along the only paved road and in major 
towns during the first epidemic wave, subsequently spreading along secondary roads during the 
second wave to more remote areas. Wealthier individuals and those with occupations such as 
commerce and formal employment were at higher risk of being infected in the first wave. Adult 
mortality increased in 2020, particularly for older men for whom it nearly doubled up to nearly 40 
deaths per 1000. Less than 10% of mortality in this period would be directly attributed to COVID-19 
deaths if known infection fatality ratios are applied to observed seroprevalence in the district.

Conclusion: Our study provides a very granular understanding on COVID-19 transmission and mortality 
in a rural population of sub-Saharan Africa and suggests that the disease burden in these areas may 
have been substantially underestimated.

Keywords: SARS-CoV-2 seroprevalence; COVID-19 risk factors; COVID-19 mortality; sub-Saharan Africa

Key messages

 Three years after the start of the COVID-19 pandemic, the disease burden in areas that are 
traditionally most vulnerable - rural populations in the developing world - is still unclear. 

 Despite low density and connectivity, about 1 in 5 people were infected by the period of 
April-June 2021 in a rural district of Madagascar. COVID-19 primarily spread along the 
transportation network and transmission was shaped by socio-economic level.

 Adult mortality substantially increased in 2020, particularly for older men, but the majority of 
excess mortality during this period could not be directly attributed to COVID-19 death.

 The true burden of COVID-19 in poor rural areas of sub-Saharan Africa may be larger than 
recognized 
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Introduction

Soon after the initial outbreak of COVID-19 in Wuhan, China, scientists estimated the key 

epidemiological properties that determined the spread and impact of the disease 1–3 and, as the 

pandemic progressed, the role of age, gender, and comorbidities as risk factors became clearer 4. 

However, key aspects of the epidemic remained uncertain for areas of the world where high-quality 

data was not available, leading to considerable debate about the expected burden in these areas 5,6. 

This was especially pronounced in the World Health Organization (WHO) Africa region. At the onset of 

the pandemic, there was substantial concern that the region could be especially vulnerable for the 

same reasons it suffers from high burdens of other infectious diseases, low access to health care and 

limited capacity for treatment 7,8. As the pandemic continued, low rates of reported cases and deaths 

corresponded to a growing chorus suggesting that perhaps Africa was at lower risk for COVID-19 

morbidity and mortality due to genetic, environmental, or immunological differences 9,10.  

Three years on, there remains significant uncertainty about the true infection and mortality 

burden of COVID-19 in Africa. Low capacity for routine testing has undermined the use of government 

statistics for understanding COVID-19 spread. Recent seroprevalence studies have demonstrated that 

patterns of infection in Africa are consistent with patterns observed elsewhere, ranging between 40 

and 60% positivity by mid-2021 11. In fact, sub-Saharan Africa could be the region with the highest 

infection rates globally 12. However, high quality, representative studies in Africa continue to be rare.  

Studies tend to rely on opportunistic data collection, such as from blood donors 13–18, healthcare 

workers 19–24, or patients coming to health facilities for reasons other than COVID-19 25–30, none of 

which are representative of the general population. Where population-representative studies do exist, 

they tend to be conducted in national capitals or large cities 11. 

A second challenge is estimating the mortality burden associated with COVID-19 in Africa from 

existing sources. Indeed, the limited availability of vital registration records means that deaths are not 

systematically reported 31, and higher rates of background mortality in these populations can obscure 

the characterization of excess deaths from COVID-19 32. In addition, the indirect death toll of an 

epidemic can be substantial due to health system disruptions, lower access to healthcare and other 

factors, as observed during the 2014-2015 Ebola epidemic 33,34. Consequently, estimates of the COVID-

19 mortality burden for the African Region vary widely: while the WHO estimates that less than 

500,000 died from COVID-19 in 2020-2021 35, other studies suggest this number could be three to four 

times higher 12,36,37. All these challenges are exacerbated in poor, rural areas of sub-Saharan Africa, 

where there is virtually no population-representative information on COVID-19.
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Here, we take advantage of a pre-existing longitudinal cohort study in a representative sample 

of a rural district of Madagascar to estimate the morbidity and mortality burden associated with 

COVID-19 in this population until April-June of 2021. We evaluated patterns in SARS-CoV-2 infection 

history across space and time in the context of several socio-economic and demographic factors. This 

resulted in the most granular data on COVID-19 for a rural population of the WHO Africa Region that 

we are aware of.

Methods

Survey data collection and serological analyses

The study was conducted in Ifanadiana, a rural health district of approximately 200,000 people in 

South-eastern Madagascar (see the Supplementary material, Section S1 for details). A seroprevalence 

survey was added to an existing longitudinal cohort study initiated in 2014 (the Ifanadiana Health 

Outcomes and Prosperity longitudinal Evaluation, or IHOPE) 38 to obtain demographic, health and 

socio-economic information from a representative sample of 1,600 households in Ifanadiana District 

over time. Questionnaires in the cohort were mostly adapted from the Demographic and Health Survey 
39. The Madagascar National Institute of Statistics (INSTAT) was responsible for data collection, survey 

coordination, training and oversight. A two-stage sample stratified the district by the HSS 

intervention’s initial catchment area. Eighty clusters, half from each stratum, were selected at random 

from enumeration areas mapped during the 2009 census, and households were then mapped within 

each cluster. Twenty households were selected at random from each cluster. 

Four waves of data collection have been conducted in 2014, 2016, 2018 and 2021, in which 

the original 1600 households were revisited. Response rates were about 95% for each wave 38. 

Individual face-to-face interviews were conducted with all women aged 15 to 49 years and men aged 

15 to 59 years (usual residents or visitors). Data collected in the questionnaires included, among 

others, household composition (size, genders, age); indicators of socio-economic status (education, 

employment, household durable assets); adult, maternal and child mortality. To learn more about the 

impact of COVID-19, the 2021 wave of data collection (April 22nd to June 20th) included, for each 

household member, questions on COVID-related symptoms in the previous 6 months. For all 

consenting individuals of all ages, a dried blood spot (DBS) was obtained by finger prick using a single-

use lancet needle by trained nurses, with 1–5 DBS collected on Whatman 903 Protein Caver Card filter 

papers. To ensure the safety and avoid transmission of COVID-19 during the survey, field protocols 

were adapted based on guidance from the SMART initiative 40. This included frequent testing of survey 

teams before, during and after the survey; initial quarantine of all teams on site before beginning the 
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survey; immediate quarantine of any COVID-positive staff from the survey; use of masks and other 

protective equipment for survey teams and participants during interviews.

Using methods previously described 41, DBS samples were processed using a multiplex bead 

assay on the Luminex platform (MagpixTM) for antibodies against 4 antigens of SARS-CoV2: Spike S1, 

Spike S2, Spike RBD and NP. Magnetic beads (Luminex, MagplexTM MC100XX-01) were coupled to 

these four antigens using xMAP Antibody coupling kit (Luminex, 40-50016). Cut-off limits for 

determining positive antibodies for SARS-CoV-2 were estimated based on receiver operator 

characteristics (ROC) for the median fluorescence intensity. Further details on serological analyses are 

available in the Supplementary material, Section S1.

Data analyses 

Seroprevalence of recent and past SARS-CoV2 infections

To obtain seroprevalence estimates, we carried out two sets of analyses. First, normalised and protein-

corrected values of mean fluorescence intensity (MFI) for each of the eight SARS-CoV2 antibodies were 

compared with their corresponding positivity threshold 42 to determine whether the sample was 

positive for that particular antibody. Second, to reduce the number of dimensions of the serological 

data and obtain discrete consistent groups we used k-means clustering to classify individuals’ sero-

positivity. Data were visually inspected for outliers, and 134 individuals (outside the range of mean + 

3 sd) were removed. We preconditioned the data via a principal components analysis (PCA) to reduce 

its dimensionality 43, and used the first two principal components, which explained over 60% of the 

variance, in the subsequent cluster analysis. We then estimated the optimal number of clusters via the 

average silhouette width. We used the Hartigan-Wong algorithm to perform k-means clustering using 

999 starting sets of centroids. 

Clusters were assigned meaningful sero-positivity labels based on the component loadings of 

the initial PCA and the clusters’ locations relative to these loadings (Figure 1). IgG and IgM antibodies 

had a strong positive effect on the first principal component (PC1), representing the gradient between 

overall positive and negative sero-positivity. The second principal component had strong positive 

loadings for IgM antibodies, which are indicative of recent infection 44, and therefore represented the 

difference between past and recent infections. 

Trends and factors associated with SARS-CoV2 seroprevalence

Statistical analyses were carried out to understand local patterns of COVID-19 seroprevalence, 

including geographic trends and associations with socio-economic and demographic factors (see the 

Supplementary material Section S1 for details). Associations were modelled individually using 
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univariate and multivariate logistic regressions in generalized linear models. Sampling weights that 

adjusted for unequal probability of selection due to stratification and non-response were calculated. 

Estimates (totals, proportions, odds ratios) were obtained using survey commands available in R-

package survey and applicable sampling weights 45. All analyses were done for each individual 

serological marker and for the composite indicators. All analyses were performed with R software, 

version 4.2.1 46, and R packages “survey”, “gstat”, “rgdal”, “stats”, and “ggplot2”.

Excess mortality and infection fatality rates associated with SARS-CoV2

Adult mortality was estimated from the IHOPE cohort using the synthetic life-table method for DHS 

surveys 47. First, six-year averages of adult mortality per 1000 population, split by age group and sex, 

were estimated for each wave of the cohort in order to obtain robust estimates over time that are 

comparable to standard DHS methods, before and after the COVID-19 epidemic. Because the period 

for these six-year estimates overlaps, mortality rates per year were then estimated from the 2021 

wave of the cohort only, for the ten years prior to the survey. From this, a ten-year average was 

estimated (2012-2021) and excess mortality occurring in the years 2020 and 2021 was estimated as 

the difference between these years’ mortality and the ten-year average. Not all excess mortality in 

2020-2021 can be assumed to be directly the result of COVID-19 deaths. To estimate expected excess 

mortality associated directly with SARS-CoV2 infections in our population, infection fatality rate (IFR) 

estimates per year of age (including lower and upper bounds for these estimates) were obtained from 

a recent study by the COVID-19 Forecasting Team 48. These age-specific IFR values were then combined 

with the observed age-specific number of SARS-CoV2 cases and age distribution in our population to 

obtain an expected excess mortality by age group. Observed excess mortality in our cohort was then 

compared with expected excess mortality.

Results 

SARS-CoV-2 seroprevalence trends and associated factors

Overall, 6496 individuals were included in the seroprevalence analyses, nearly half of whom were 

children under 15 years (Table 1). Only one out of ten individuals reported COVID-related symptoms 

in the 6 months prior to the survey (Table 2), with the most common symptoms being fever (6.5%) and 

respiratory problems (4.1%). District seroprevalence ranged from 5.1% (Spike RBD) to 43.8% (Spike S2) 

for IgG antibodies, and from 7.2% (Spike S1) to 17.9% (Spike S2) for IgM antibodies. Positivity to Spike 

S2 was higher than to any of the other markers, both for IgG and IgM antibodies. After clustering via 

PCA and k-means, overall seroprevalence was estimated to be 18%, with 10.1% having a predominantly 

IgG response suggestive of past infection and 7.9% having a predominantly IgM response suggestive 

of recent infection. 
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The spatial distribution of past infections suggests that COVID-19 cases during the first wave 

accumulated predominantly in proximity to the paved road, with the exception of a few clusters in 

remote areas in the north of the district where seroprevalence reached nearly 30% (Figure 2). In 

contrast, recent infections during the second wave were more evenly distributed, with lower 

prevalence in clusters located along the main road. Similarly, the factors associated with SARS-CoV-2 

seroprevalence varied substantially between past and recent infections (Figure 3 and Table 3). In both 

recent and past infections, seroprevalence was similar for males and females, increased with age and 

decreased with distance to a major town. However, seroprevalence for past infections was higher for 

individuals in the wealthiest household quantile and those whose occupation was not agriculture, with 

opposite associations for recent infections. In addition, seroprevalence of recent infections doubled 

for individuals reporting a COVID-19 symptom in the previous 6 months compared to those not 

reporting symptoms, while no association was observed for past infections. Spatial distributions and 

associations for each of the eight SARS-CoV-2 serological markers are available in the Supplementary 

material, Section S2.

Mortality and infection fatality rates associated with COVID-19 

Estimates of 6-year adult mortality in the 2021 wave of the IHOPE cohort collection were higher than 

in all previous waves of data collection (Figure 4). The largest increase was observed for older men (35-

49 years), who experienced a nearly 100% increase in mortality in reports from the 2021 cohort wave 

as compared to the 2018 cohort wave (from 10.6 to 19.3 per 1000). For women and young men, 

mortality had been declining in the previous three waves, and then increased by 20-50% in the 2021 

cohort wave to a level higher than baseline. Similar trends were observed using data from the 2021 

cohort wave only, where analyses of annual mortality rates showed that mortality in 2020 was 

substantially higher than average, especially for older men (Figure 4). However, these time series were 

more stochastic given lower sample sizes and, for women and young men, the peak in mortality 

observed in 2020 was not higher than other peaks observed in previous years. Overall, excess mortality 

for 2020-2021 was estimated at 1.61 per 1000 for individuals 15-34 years and 4.82 per 1000 for 

individuals 35-49 years. Given previously estimated COVID-19 IFRs 48 and observed seroprevalence by 

age group, expected excess mortality associated directly with COVID-19 infections in our cohort would 

be 0.05 (range 0.04-0.08) per 1000 for individuals 15-34 years and 0.54 (range 0.39-0.85) per 1000 for 

individuals 35-49 years (Table 4). This suggests that if IFRs in Ifanadiana were consistent with those 

previously estimated, only 3.1% (range 2.5-5.0%) and 8.9% (range 6.5-14.1%) of observed excess 

mortality for individuals 15-34 years and 35-49 years, respectively, would be directly associated with 

COVID-19 deaths.  

Discussion 
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Nearly three years after the start of the COVID-19 pandemic, the burden of the disease in areas that 

are traditionally most vulnerable - rural populations in the developing world - is still unclear. SARS-

CoV-2 seroprevalence surveys have been essential for understanding COVID-19 transmission, but 

quality studies have rarely focused on rural areas of sub-Saharan Africa 11,48. Using a population-

representative cohort and a nested seroprevalence survey of nearly 6500 people of all ages, we 

provide a fine-scale account of COVID-19 spread and burden in a rural district of Madagascar during 

its first two epidemic waves. Our results suggest that despite low density and connectivity in the 

majority of the district, about one in five people had been infected by April-June 2021. COVID-19 

primarily spread along the only paved road during the first wave, and then spread along secondary 

roads during the second wave to more remote areas. Adult mortality increased in 2020, particularly 

for older men, but the majority of excess mortality during this period could not be directly attributed 

to COVID-19 deaths given previously estimated IFRs. This suggests that for populations living in rural, 

low-resource settings, COVID-19 could have significant health impacts, either because of higher IFRs 

than previously estimated or because of substantial indirect impacts on health care.

Our results reveal that seroprevalence was lower in this rural district of Madagascar than in 

the nearby city of Fianarantsoa (1h30 drive), where seroprevalence was about 20% by November 2020 
14 and over 40% by February-June 2021 49. This is consistent with studies conducted in other African 

settings, which found that seroprevalence tends to be lower in rural populations 11,50–56. The lower 

seroprevalence in Ifanadiana could also be explained by delays in epidemic spread within Madagascar. 

While April-June 2021 was the middle of the second epidemic wave according to national data, the 

vast majority of reported cases come from Antananarivo due to diagnostic challenges in the rest of the 

country 8. Given that there was a lag of nearly two months between the first epidemic wave in 

Antananarivo and in other cities 14, it is possible that our data collection occurred at the beginning of 

the second wave in Ifanadiana, which could explain the low rates of IgM seroprevalence. However, our 

study revealed substantial heterogeneity in the spatio-temporal patterns of these rural infections. 

Populations in the district living within 5km to roads or large towns had comparable seroprevalence 

rates to those from urban Fianarantsoa 14,49, which highlights the major role played by population 

density and road connectivity in the spread of COVID-19 even in rural areas of the developing world, 

where both factors are significantly lower. 

Seroprevalence rates differed across demographic and socio-economic groups in our 

population. Seroprevalence in both epidemic waves increased with age, especially for those older than 

30, but risk did not differ between men and women. Although associations with demographic factors 

can be context-specific and vary across settings, a recent review of seroprevalence studies found 

similar average trends for Africa 11. Socio-economic factors also modified individuals’ risk of infection 

Page 8 of 27International Journal of Epidemiology



9

in this largely impoverished population, where the primary occupation is subsistence agriculture. 

Wealthier individuals and those with certain occupations such as commerce and formal employment 

were at higher risk of being infected in the first wave but at lower risk of being infected in the second. 

It is well known that individuals with high social connectivity are at higher risk of infection and can 

contribute disproportionately to the spread of diseases such as COVID-19 57–59. While research on at-

risk occupational activities in Africa has mostly focused on healthcare workers 24, a better 

understanding of the role played by other socio-economic groups with high mobility and social 

connections could open new possibilities for disease control 60. The inverse relationship found from 

the first wave to the second for some risk factors (geographic, socio-economic) was unexpected given 

low seroprevalence rates. We found that rates of cluster seroprevalence during the second wave were 

consistently lower when seroprevalence during the first wave was 30-50% (Supplementary Figure S10), 

which suggests that in this rural context with a potentially lower COVID-19 effective reproduction 

number, a seroprevalence level below 50% could have offered some level of protection, at least in the 

initial epidemic progression of the second wave.

In this poor rural setting where mortality rates were already high prior to the pandemic, our 

results suggest that the COVID-19 epidemic was associated with a substantial increase in adult 

mortality. The increase observed for Ifanadiana was similar to that found in Sudan’s capital 61, where 

a 67% rise was observed. However, about three quarters of deaths in the Sudan study were among 

individuals 50 years or older, a vulnerable population group that was not assessed here due to study 

design limitations. The excess mortality in individuals aged 15-49 years in Ifanadiana was substantially 

higher than what could have been expected based on observed seroprevalence and known infection 

fatality rates for these age groups in other parts of the world 48. COVID-19 is known to have indirect 

impacts on mortality, such as through the effects on healthcare access and health system disruptions 
62,63, and these effects could have been larger here than in other settings 64. Interestingly, the only 

other outlying year for mortality in this ten-year period was 2017, when Madagascar's largest plague 

epidemic in recent history occurred even though no plague deaths were reported from this area 65. For 

both 2017 and 2020, it is also possible that other factors unrelated to COVID-19 were associated with 

higher mortality in this period. For instance, lower precipitation in 2016 due to El Nino Southern 

Oscillation led to lower agricultural yields and higher rice prices in 2017, which could have impacted 

rural populations’ nutrition and illustrates the complexity of attributing excess mortality to specific 

events. Importantly, the lack of seroprevalence studies in rural areas of the developing world means 

that global age-specific IFRs used here as reference 48 could be substantially underestimated for our 

population given higher rates of poverty and lower rates of healthcare access. It is plausible that our 
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population had significantly higher IFRs than global estimates and that the direct contribution of 

COVID-19 to excess mortality was higher than reported here. 

Our study had several limitations. First, although we used robust clustering methods to classify 

infections into past and recent, there is uncertainty around such classification. For instance, IgM titres 

can remain high in past symptomatic infections and IgG NP titres can increase early in the infection 
41,66. However, the fact that the first epidemic wave occurred nearly a year prior and that results are 

consistent with known patterns of COVID-19 spread (e.g. initial spread along better connected 

populations) suggests that potential misclassification biases had little impact. It is also possible that 

lower sensitivity of the assay for IgM markers (Supplementary Table S1) could have resulted in a slight 

underestimation of recent infections, meaning that both the overall seroprevalence and the direct 

contribution of COVID-19 to excess mortality could have been higher than reported here. Second, low 

sample sizes for analyses of adult mortality could have impacted our estimates of excess mortality, 

especially because annual rates in the 10-year period were not stable and had considerable uncertainty 

(Supplementary Table S2). Despite this, results of these analyses were consistent with 6-year averages 

(which include a much larger sample size but overlap over time). Third, our survey mirrored a DHS 

design, where mortality estimates are based on information for siblings provided by men and women 

of reproductive age. As a result, even though individuals older than 50 years are the most likely to be 

affected, we could not assess the impact of COVID-19 on this age group due to low sample sizes. 

Fourth, the survey was conducted in the middle of the second wave of COVID-19, which prevented us 

from fully capturing the impact of this wave. This could also have affected the trends observed if the 

timing of the survey in different parts of the district had an impact on their corresponding 

seroprevalence, but complementary analyses suggest this was unlikely (Supplementary Figure S9). 

Fifth, fear and stigma around COVID-19 could have biased participants’ responses and resulted in an 

underestimation of COVID-19 symptoms in the previous 6 months. For instance, rates of illness 

reporting in children had been decreasing in previous survey years, but this decrease was particularly 

acute for respiratory infections in 2021 (Supplementary Figure S11). Finally, as is the case with any 

local-scale survey, the results of this study do not necessarily represent the COVID-19 situation in other 

parts of Madagascar or sub-Saharan Africa. 

In conclusion, our study provides an unusually detailed picture of COVID-19 morbidity and 

mortality in a poor rural setting of sub-Saharan Africa, with important implications for similar settings.  

It suggests that the disease burden in these areas may have been substantially underestimated. Given 

known vulnerabilities to other infectious diseases, combined with the fragility of their health systems, 

more attention and quality research is needed to better understand the true burden of COVID-19 in 
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poor rural areas of sub-Saharan Africa and to devise appropriate responses to this and future 

pandemics.
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FIGURE CAPTIONS

Figure 1. K-means clustering of SARS-CoV2 seroprevalence. 

Results are based on normalized mean fluorescence intensity values for eight antibodies against SARS-

CoV2 (names in white boxes). Colours represent the three clusters obtained, plotted along the axes of 

the first two components of a principal components analysis that explained over 60% of the variance 

in these antibodies.

PC1: First Principal Component; PC2: Second Principal Component; Var: Variance; RBD: Spike receptor-

binding domain protein; S1: Spike S1 Protein; S2: Spike S2 Protein; NP: Nucleocapsid protein. 

Figure 2. Spatial distribution of SARS-CoV-2 seroprevalence in Ifanadiana District. 

From left to right, maps show seroprevalence of all infections, past infections and recent infections 

based on k-clustering analyses, with colours ranging from light (low seroprevalence) to dark orange 

(high seroprevalence). Average seroprevalence and location of each of the 80 clusters in the survey 

are represented by circles, while the rest of the raster is based on inverse distance weighted 

interpolation. Location of major towns is represented by black points and the district capital is 

represented by a black square.

Figure 3. Factors associated with SARS-CoV-2 seroprevalence in Ifanadiana District. 

Horizontal bars show average seroprevalence per group, split into past infections (IgG, filled colour 

bars) and recent infections (IgM, translucent colour bars), with 95% confidence intervals as whiskers. 

Vertical lines represent average seroprevalence in Ifanadiana for past infections (dashed) and recent 

infections (dotted). Four confidence interval limits (Occupation variable) were removed to improve 

visualisation of results.

Figure 4. Trends in adult mortality rates in the IHOPE cohort, Ifanadiana District. 

Graphs show mortality per 1000 people before (green) and during (red) the COVID-19 pandemic. Left 

panels show changes in mortality rates across survey waves using the 6-year average prior to each 

survey wave. Right panels show changes in mortality rates per year in the 10 years prior to the 2021 

survey. Dashed lines are the 10-year average for the period for each age and sex group. Note that the 

2021 survey was conducted in April-June, so mortality estimates for this year only comprise part of the 

year. 
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MANUSCRIPT TABLES

Table 1. Characteristics of individuals included in the COVID-19 seroprevalence survey 
Variable Observations Percentage
Demographic factors   
Sex
Female 3323 51,2%
Male 3173 48,8%
Age (years)
[0,5] 1069 16,5%
(5,15] 2109 32,5%
(15,30] 1386 21,3%
(30,60] 1646 25,3%
(60,100] 285 4,4%
COVID-19 symptoms within previous 6 months1

Not reported 5837 89,9%
Reported 659 10,1%
Geographic factors  
Distance to main town (km)
(0,5] 2358 36,3%
(5,10] 2074 31,9%
(10,15] 2064 31,8%
Distance to main road
Less than 5km 1531 23,6%
Over 5km 4964 76,4%
Distance to secondary road
Less than 5km 1704 26,2%
Over 5km 4791 73,8%
Socio-economic factors  
Household wealth
Q1 (poorest) 1297 20,0%
Q2 1334 20,5%
Q3 1334 20,5%
Q4 1277 19,7%
Q5 (wealthiest) 1253 19,3%
Occupation (15+ years only)
Agriculture 2353 82,0%
Daily worker 177 6,2%
Commerce 156 5,4%
Formal employment 83 2,9%
Others 102 3,6%
Attends school (5-14 years only)
No 377 20,9%
Yes 1423 79,1%
TOTAL 6496 100,0%
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1 Includes any of the following symptoms: fever, cough or respiratory problems, headache, fatigue 
or pain in muscles/joints, diarrhea or nausea, loss of smell, sore throat. See Table 2 for details on 
each.
Table 2. Reported COVID-19 symptoms in the previous 6 months and estimated COVID-19 seroprevalence, all 
ages (N=6496)
COVID-19 symptom (last 6 months) Percentage (95% CI)
Fever 6.46 (5.3-7.6)
Cough or resp. problems 4.1 (3.2-5.0)
Headache 3.9 (2.9-4.8)
Fatigue or pain in muscles/joints 3.3 (2.5-4.0)
Diarrhea or nausea 1.1 (0.8-1.5)
Loss of smell 0.8 (0.4-1.2)
Sore throat 0.4 (0.2-0.6)

SARS Cov-2 serological marker Seroprevalence (95% CI)

IgG  

Spike S1 13.0 (10.6-15.4)

Spike S2 43.8 (40.9-46.7)

Spike RBD 5.1 (3.8-6.3)

Spike NP 16.4 (14.1-18.7)

IgM  

Spike S1 7.2 (6.3-8.2)

Spike S2 17.9 (15.8-19.9)

Spike RBD 9.1 (7.9-10.3)

Spike NP 9.1 (7.5-10.7)

Composite (k-means clustering)
Infected vs. healthy 18.0 (15.9-20.1)

IgG Predominance (past infection) 10.1 (8.3-11.9)

IgM Predominance (recent infection) 7.9 (6.5-9.2)
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Table 3. Logistic regression results for associations with SARS-CoV-2 seroprevalence in past and recent infections, 
based on IgG and IgM predominance

 IgG (Past infection) IgM (Recent infection)

Variable
Univariate

 Odds Ratio (95% CI)
Adjusted 

Odds Ratio (95% CI)
Univariate Odds 

Ratio (95% CI)
Adjusted 

Odds Ratio (95% CI)
Demographic factors     
Sex (ref. female)
Male 0.95 (0.79-1.14) - 0.82 (0.64-1.05) -
Age in years (ref. 0-5)
(5,15] 0.97 (0.74-1.28) - 2.17 (1.32-3.58)** 2.24 (1.36-3.71)**
(15,30] 0.94 (0.71-1.24) - 3.32 (1.97-5.59)*** 3.45 (2.04-5.85)***
(30,60] 1.21 (0.9-1.62) - 4.12 (2.51-6.75)*** 4.07 (2.48-6.68)***
(60,100] 1.25 (0.86-1.81) - 4.64 (2.38-9.04)*** 4.34 (2.22-8.48)***
COVID-19 symptoms 
(ref. not reported)
Reported 1.03 (0.75-1.42) - 2.05 (1.35-3.12)** 1.91 (1.26-2.91)**
Geographic factors     
Distance to health center 
(ref. 0-5km)
(5,10] 0.72 (0.44-1.17) - 1.12 (0.72-1.75) 1.21 (0.86-1.7)
(10,15] 0.74 (0.45-1.23) - 0.75 (0.47-1.18) 0.74 (0.52-1.05).
Distance to main road 
(ref. 0-5km)
Over 5km 0.55 (0.37-0.81)** 0.7 (0.49-1.02). 1.18 (0.64-2.19) -
Distance to secondary road 
(ref. 0-5km)
Over 5km 0.69 (0.43-1.11) - 0.67 (0.45-1). 0.62 (0.44-0.86)**
Socio-economic factors     
Household wealth 
(ref. Q1 - poorest)
Q2 1.07 (0.74-1.57) 1.04 (0.71-1.53) 0.84 (0.56-1.27) 0.79 (0.53-1.17)
Q3 1.03 (0.69-1.54) 0.97 (0.65-1.45) 0.93 (0.64-1.35) 0.84 (0.6-1.17)
Q4 1.37 (0.89-2.12) 1.23 (0.79-1.92) 1 (0.65-1.54) 0.83 (0.56-1.22)
Q5 (wealthiest) 2.14 (1.4-3.27)*** 1.69 (1.14-2.52)* 0.67 (0.31-1.44) 0.48 (0.26-0.88)*
Occupation, individuals 15+ 
years (ref. Agriculture)1

Daily worker 1.31 (0.78-2.18) - 0.71 (0.39-1.31) -
Commerce 2.03 (1.13-3.67)* - 1.14 (0.22-5.97) -
Formal employment 1.78 (1.04-3.07)* - 0.77 (0.36-1.65) -
Others 1.74 (0.87-3.47) - 0.35 (0.12-1.01). -
Attends school, children 5-
14 years (ref. No)1

Yes 1.29 (0.8-2.06) - 0.65 (0.44-0.97)* -
. P<0.1; *P<0.05; **P<0.01; ***P<0.001 
1 Variable only applicable to a population subgroup, not included in multivariate analyses 
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Table 4. Estimation of excess adult mortality and percentage that could be directly attributed to COVID-19 given 
observed seroprevalence and known infection fatality ratios by age.

Age Group
Seroprevalence 

(%)
Observed excess mortality 

2020-2021 (per 1000)

Expected excess mortality 
directly from COVID-19  

infections (per 1000)

% of excess mortality directly 
attributed to COVID-19 

infections

15-34 Years 32.7 1.61 0.05 (0.04-0.08) 3.1 (2.5-5.0)

35-49 Years 35.8 6.04 0.54 (0.39-0.85) 8.9 (6.5-14.1)
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