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Abstract

Positional Encodings (PEs) are used to inject
word-order information into transformer-based
language models. While they can significantly
enhance the quality of sentence representations,
their specific contribution to language models
is not fully understood, especially given recent
findings that various positional encodings are
insensitive to word order. In this work, we
conduct a systematic study of positional en-
codings in Bidirectional Masked Language
Models (BERT-style) , which complements ex-
isting work in three aspects: (1) We uncover the
core function of PEs by identifying two com-
mon properties, Locality and Symmetry; (2)
We show that the two properties are closely cor-
related with the performances of downstream
tasks; (3) We quantify the weakness of current
PEs by introducing two new probing tasks, on
which current PEs perform poorly. We believe
that these results are the basis for developing
better PEs for transformer-based language mod-
els. The code is available at � https://github.

com/tigerchen52/locality_symmetry

1 Introduction

Transformer-based language models with Posi-
tional Encodings (PEs) can improve performance
considerably across a wide range of natural lan-
guage understanding tasks. Existing work resort to
either fixed (Vaswani et al., 2017; Su et al., 2021;
Press et al., 2022) or learned (Shaw et al., 2018;
Devlin et al., 2019; Wang et al., 2020) PEs to infuse
order information into attention-based models.

To understand how PEs capture word order, prior
studies apply visualized (Wang and Chen, 2020)
and quantitative analyses (Wang et al., 2021) to var-
ious PEs, and their findings conclude that all encod-
ings, both human-designed and learned, exhibit a
consistent behavior: First, the position-wise weight
matrices show that non-zero values gather on lo-
cal adjacent positions. Second, the matrices are
highly symmetrical, as shown in Figure 1. These

Figure 1: Visualizations of positional weight matrices
by using Identical Word Probing (Wang et al., 2021).
All matrices highly attend to local positions (Locality)
and are nearly symmetrical (Symmetry).

are intriguing phenomena, with reasons not well
understood.

In this work, we focus on uncovering the core
properties of PEs in Bidirectional Masked Lan-
guage Models (BERT-style (Devlin et al., 2019)).
We do not include analyses of GPT (Brown et al.,
2020) and LLaMA (Touvron et al., 2023) since
there is an obvious distinction between them and
BERT-style models. Decoder-only models pre-
dict the next word based on previous words in the
sentence (Left-to-Right mode), and therefore im-
plicitly introduce directional information, which
is different from bidirectional models. Further-
more, recent studies have shown that decoder-
only transformers without positional encodings are
able to achieve competitive or even better perfor-
mance than other explicit positional encoding meth-
ods (Haviv et al., 2022; Kazemnejad et al., 2023).
Hence, we focus on the BERT-style models in this
work leaving the Decode-only models as a future
study.

We study various positional encodings by in-
troducing two quantitative metrics, Locality and
Symmetry. Our empirical studies demonstrate that
the two properties are correlated with sentence rep-
resentation capability. This explains why fixed
encodings are designed to satisfy them and learned
encodings are favorable to be local and symmet-
rical. Moreover, we show that if attention-based
models are initialized with PEs that already share
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good locality and symmetry, they can obtain better
inductive bias and significant improvements across
10 downstream tasks. Our findings of the local
preference may explain why Sliding Window Atten-
tions (MistralAI, 2023) and Attention Sinks (Xiao
et al., 2023) can work effectively.

Although PEs with locality and symmetry can
achieve promising results on natural language un-
derstanding tasks (such as GLUE (Wang et al.,
2019)), the symmetry property itself has an ob-
vious weakness, which is not revealed by previous
work. Existing studies use shuffled text to probe
the sensitivity of PEs to word orders (Yang et al.,
2019a; Pham et al., 2021; Sinha et al., 2021; Gupta
et al., 2021; Abdou et al., 2022), and they all as-
sume that the meaning of sentences with random
swaps remains unchanged.

However, the random shuffling of words may
change the semantics of the original sentence and
thus cause the change of labels. For example, the
sentence pair below from SNLI (Bowman et al.,
2015) satisfies the entailment relation:

a. A man playing an electric guitar on stage

b. A man playing guitar on stage

If we change the word order of the premise sen-
tence so that it becomes “an electric guitar playing
a man on stage”, a fine-tuned BERT still finds (in-
correctly!) that the premise entails the hypothesis.

Starting from this point, we design two new prob-
ing tasks of word swap: Constituency Shuffling and
Semantic Role Shuffling. The former preserves the
original semantics of the sentence by swapping
words inside constituents (local structure) while
the latter intentionally changes the semantics by
swapping the semantic roles in a sentence (global
structure), i.e., the agent and patient. Our results
show that existing language models with various
PEs are robust against local swaps, but extremely
fragile against global swaps. The key contributions
of our work are:

• We reveal the core function of PEs by identi-
fying two common properties, Locality and
Symmetry, and introduce two quantitative
metrics to study them.

• We discover that suitable symmetry and lo-
cality lead to better inductive bias, which
explains why all positional encodings (both
learned or human-designed) exhibit these two
properties.

• We design two new probing tasks of word
swaps, which show a weakness of existing
positional encodings, namely the insensitivity
against the swap of semantic roles.

2 Preliminaries

The central building block of transformer archi-
tectures is the self-attention mechanism (Vaswani
et al., 2017). Given an input sentence: X =
{x1,x2, ...,xn} ∈ Rn×d, where n is the number of
words and d is the dimension of word embeddings,
the attention computes the output of the i-th token
as:

x̄i =
n∑

j=1

exp(αij)

Z
xjW

V (1)

where αij =
(xiW

Q)(xjW
K)T√

d
,

Z =

n∑
j=1

exp(αij)

Self-attention heads do not intrinsically capture the
word order in a sequence because there is no posi-
tional constraint in Equation 1. Therefore, specific
methods are used to infuse positional information
into self-attention (Dufter et al., 2022).

Absolute Positional Encoding (APE) computes
a positional encoding for each token and adds it
to the input content embedding to inject position
information into the original sequence. The αi,j in
Equation 1 are then written:

αij =
(xi + pi)W

Q
(
(xj + pj

)
WK)T

√
d

(2)

Here, pi ∈ Rd is a position embedding for the
ith token, obtained by fixed (Vaswani et al., 2017;
Dehghani et al., 2019; Takase and Okazaki, 2019;
Shiv and Quirk, 2019; Su et al., 2021) or learned
encodings (Gehring et al., 2017; Devlin et al., 2019;
Wang et al., 2020; Press et al., 2021; Ke et al.,
2021).

Relative Positional Encoding (RPE) produces a
vector ri,j or a scalar value βi,j that depends on
the relative distance of tokens. Specifically, these
methods apply such a vector or bias to the attention
head so that the corresponding attentional weight
can be updated based on the relative distance of
two tokens (Shaw et al., 2018; Raffel et al., 2020):
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xjW
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(xiW
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K)T + βi,j√
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Here, the first mode uses a vector ri,j while the
second uses a scalar value βi,j , for infusing relative
distance into attentional weight. Recent research
on RPEs has been remarkably vibrant, with the
emergence of diverse novel and promising vari-
ants (Dai et al., 2019; He et al., 2021; Press et al.,
2022).

Unified Positional Encoding. Inspired by TUPE
(Transformer with Untied Positional Encoding) (Ke
et al., 2021) we rewrite all of the above absolute
and relative positional encodings in a unified way
as follows:

αi,j =

contextual︷︸︸︷
γi,j +

positional︷︸︸︷
δi,j√

d
(4)

Here, the left half of the numerator, γi,j , captures
contextual correlations (or weights), i.e., the se-
mantic relations between token xi and xj . Hence,
the contextual correlation can be denoted as γi,j =
(xiW

Q)(xjW
K)T. The right half δ captures po-

sitional correlations, i.e., the positional relations
between tokens xi and xj . For example, the relative
encoding in (Shaw et al., 2018) can be represented
as δi,j = xiW

Q
(
rKi,j)

T. Thus, existing positional
encodings all add contextual and positional corre-
lations together in every attention head.

3 Positional Encodings Enforce Locality
and Symmetry

3.1 The Properties of Locality and Symmetry

Existing work analyzes positional encodings with
the help of matrix visualizations (Wang and Chen,
2020; Wang et al., 2021; Abdou et al., 2022). Such
a matrix is a positional weight map, where each
row is a vector for the i-th position of the sentence
and the element at (i, j) indicates the attention
weight between the i-th position and the j-th po-
sition. The matrices are computed by using the
Identical Word Probing proposed by Wang et al.
(2021): many repeated identical words are fed to
the pre-trained language model, so that the atten-
tion values (αi,j in Equation 4) are unaffected by

contextual weights (We elaborate more on visual-
izations in Section A.1) The obtained matrices are
usually diagonal-heavy, which means that the po-
sitional encodings highly attend to local positions.
Second, the matrices are usually nearly symmetri-
cal.

We call these two phenomena the Locality and
Symmetry of positional encodings. A prior study
shows that the local structure is crucial for under-
standing the semantics of sentences (Clouatre et al.,
2022). The symmetry property has been discov-
ered and quantified already by Wang et al. (2021).
Here, we provide a more in-depth analysis of the
locality and symmetry. We analyze the linguistic
role of locality and point out the potential flaw of
symmetry, which is not considered by prior work.
To better understand how encodings capture word
order, let us consider an attentional weight vector
ϵi, and the element ϵi,j can be denoted as:

ϵi,j =
exp(αi,j)∑n
j=1 exp(αi,j)

where ϵi,j ≥ 0 and
n∑

j=1

ϵi,j = 1 (5)

We then define the two metrics: Locality and
Symmetry. Locality is a metric that measures how
much the weights of an attentional weight vector
are gathered in local positions. Given a weight
vector for the i-th position ϵi = {ϵi,1, ϵi,2, ..., ϵi,n},
we define locality as:

Loc(ϵi) ∈ [0, 1] =

n∑
j=1

ϵi,j

2|i−j| (6)

Here, a value of 1 means the vector perfectly sat-
isfies the locality property. For example, given a
sequence whose length is 5 and a weight vector
for the first position [1, 0, 0, 0, 0], the locality is
1, which means it perfectly matches the locality.
In contrast, the locality is 1/16 if the weight at-
tends only the last position, as in [0, 0, 0, 0, 1]. For
measuring the locality of a matrix, we average the
locality values of all vectors in the matrix.

Symmetry is a metric that describes how
symmetrical the weights scatter around the current
position for an attentional weight vector. To
measure the symmetry, we first truncate a weight
vector to obtain a new one with the same length
to the left and right of the current position i: ϵti =
{ϵi,left, ϵi,left+1, ..., ϵi,i, ..., ϵi,right−1, ϵi,right},
where left and right are the left start and the
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Figure 2: Locality and symmetry values of positional en-
codings. The green points are fixed and human-designed
positional encodings while the orange points are posi-
tional encodings after pre-training.

right end position, respectively. The length
of the left segment is lenleft = i − left
and the length of the right segment is
lenright = right − i. The two lengths are
the same: lenleft = lenright = min(i− 1, n− i).
Then, we detect whether the left and right
sequences are symmetric with respect to the center
position i:

Sym(ϵti) ∈ [0, 1] =

1−
lenleft∑
j=1

Norm(
∣∣∣ϵti,j − ϵt

i,|ϵti|−j+1

∣∣∣)
lenleft

(7)

First, we apply a min-max normalization to the dis-
crepancy of corresponding position pairs to obtain
more uniform distributions. Otherwise, the symme-
try values will extremely cluster around 0. Second,
we reverse the value so that 1 means a perfect sym-
metry instead of 0. For example, given a sequence
whose length is 5 and a weight vector for the third
position [0.1, 0.2, 0.4, 0.2, 0.1], the symmetry is 1,
which means that the vector is completely symmet-
rical.

3.2 Are Locality and Symmetry Learned?
To answer this question, we use our two proposed
metrics to quantify the locality and symmetry of
both manually designed (fixed) and learned en-
codings. Specifically, three fixed encodings (Sinu-
soidal (Vaswani et al., 2017), Roformer (or RoPE)
(Su et al., 2021), and ALiBi (Press et al., 2022))
and three language models with learned encodings
(BERT (Devlin et al., 2019), XLNet (Yang et al.,
2019b) and DeBERTa (He et al., 2021)) are ana-

lyzed in this experiment. We measure the two prop-
erties of the positional weight matrix (the averaged
weight across layers) before and after pre-training.

Figure 2 shows the visualization results. We
find that the the three language models all be-
come much more local and symmetrical after pre-
training, which proves that the two properties are
indeed learned. The manually designed positional
encodings, too, are already well localized and sym-
metrical, which demonstrates that the two prop-
erties are important for positional encodings, al-
though the reason is not clear.

3.3 Can Locality and Symmetry Yield Better
Inductive Bias?

Since locality and symmetry are common features
of existing positional encodings, we investigate
what happens if a language model is initialized
with positional encodings that exhibit good. We
conduct empirical studies in both non-pre-trained
and pre-trained settings.

Hand-crafted Positional Encodings There are
various human-designed positional encodings, but
the locality and symmetry cannot be modified eas-
ily for these encodings. To study the effect of vary-
ing locality and symmetry, we design an Attenuated
Encoding that can be parameterized along these di-
mensions. Our encoding is defined as follows:

δi,j = Φ(li,j) =
exp(αi,j)∑n
j=1 exp(αi,j)

where αi,j =

{
−sw l2i,j i ≤ j

−w l2i,j i > j
(8)

Here, li,j is the relative distance, w > 0 is a scalar
parameter that controls the locality value, and s is a
scalar parameter that controls the symmetry value.

Note that the key difference of our method is
that the two properties can be adjusted while other
manually designed ones such as the T5 bias (Raffel
et al., 2020) and ALiBi (Press et al., 2022) do not
allow this.

3.3.1 Non-pre-training Setting
It is impractical to train large language models
with different values of locality and symmetry from
scratch. Therefore, we use static word embeddings
from GloVe (Pennington et al., 2014) and an en-
coder that is fully based on our handcrafted posi-
tional encodings for our experiment. The position-
based encoding is adapted from the self-attention



Model Size Sentiment Analysis Textual Entailment Paraphrase Identification Textual Similarity
MR SUBJ SST-2 QNLI RTE MNLI MRPC QQP STS-B SICK-R Avg

(22K) (20K) (68.8K) (110K) (5.5K) (413K) (5.4K) (755k) (8.4K) (9.4K)

BERT 110M 72.5±5.3 91.0±2.7 86.4±2.7 85.8±1.0 59.2±1.2 78.2±0.8 73.5±1.8 88.7±0.6 77.8±4.1 64.9±6.0 77.8

BERT-A∗-s 113M 79.4±2.9 93.7±0.6 88.0±0.7 86.3±1.1 59.4±2.7 78.8±0.4 81.5±2.2 88.7±0.4 83.6±2.0 76.3±1.1 81.6
BERT-A∗ 138M 78.2±3.5 93.0±0.8 88.1±1.0 87.0±0.5 61.0±1.4 78.9±0.9 80.9±3.9 89.2±0.3 84.3±2.5 76.0±4.7 81.7

Table 1: Evaluations of handcrafted encodings across 10 downstream tasks. We report the average score
(Spearman correlation for textual similarity and accuracy for others) of five runs using different learning
rates. ∗ means the encodings are learnable and s means that positional encodings are shared within the
attention headers of layers.

encoder, which means we only keep the δi,j in
Equation 4. We use our handcrafted attenuated en-
codings to compute the δi,j . Therefore, the locality
and symmetry can be adjusted easily and we can
observe the correlations caused by the changes of
the two properties. An implementation example of
this positional encoder is shown in Listing 2 of the
Appendix A.

We use two sentence-level text classifica-
tion datasets, MR (Pang and Lee, 2005) and
SUBJ (Pang and Lee, 2004), for evaluation. As
for the encoder, a single-layer and single-head posi-
tional attention is used and the handcrafted encod-
ings are fixed during training. We use the 840B-
300d GloVe (Pennington et al., 2014) vectors as
word embeddings. For training, we use an Adam
optimizer with an initial learning rate 0.002, and
introduce a decaying strategy to decrease the learn-
ing rate. We adopt a dropout method after the
encoder layer, and train models to minimize the
cross-entropy with a dropout rate of 0.5. Each
model is trained 5 epochs and we select the best
model on validation sets to evaluate on the test
set. We repeat this procedure 5 times and use the
average score to report.

Figure 3 (a) shows the impact of the locality
on the performance of the MR dataset. In this
experiment, the symmetry value is 1.0 for all en-
coders. We observe that the accuracy constantly
increases as the locality of encodings strengthens,
which means a higher locality induces better sen-
tence representation. Experimental results on the
SUBJ dataset (Figure A1) show that the accuracy
growth slows down at a particular locality value
(0.3), which means that a completely perfect local-
ity is unnecessary. The locality value for BERT is
around 0.2, and BERT actually does not have an
extreme locality. Figure 3 (b) shows the results for
different symmetry values. In this experiment, we
vary the symmetry while keeping the locality in the
interval [0.15, 0.3], which is close to the symme-
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Figure 3: Empirical studies of the properties of lo-
cality and symmetry on the MR sentiment analysis
dataset (Pang and Lee, 2005).

try value of BERT. Since the change of symmetry
will impact the value of locality, we can only ob-
serve this type of partial correlation. We find that
symmetry affects performance only after a certain
value (0.65), and a larger symmetry leads to better
accuracy. However, this does not mean that symme-
try is a good property of sentence representations
because in many natural language understanding
tasks such as sentiment analysis do not require
strict word order information. In section 3.5, we
will discuss a potential flaw caused by symmetry.
Experiments on the SUBJ dataset (Pang and Lee,
2004) lead to similar conclusions, and are shown
in Figure A1 in the Appendix A.

3.3.2 Pre-training Setting

In this experiment, we adjust the parameters w and
s in Equation 8 to obtain a weight vector δ that
shares the locality and symmetry of the pre-trained
BERT (Locality=0.17 and Symmetry=1.0). We
pre-train BERTbase initialized with δ and compare
them to learned encodings on downstream natu-
ral language understanding tasks. Two variants
are compared with the original BERT: 1) BERT-
A∗-s uses learnable and shared δ, but the weights
are shared inside a particular layer; 2) BERT-A∗

uses learnable but not shared δ, which means δ
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sentence in SNLI “a man playing an electric guitar on
stage”, generated by Berkeley Neural Parser (Kitaev
et al., 2019).

is different in each attentional head. More details
of the datasets and pre-training are shown in Ap-
pendix A.4 and Section A.2, respectively. The
empirical results are shown in Table 1. We ob-
serve that both BERT-A∗-s and BERT-A∗ can sig-
nificantly outperform the original BERT, which
demonstrates positional encodings with initializa-
tion of suitable locality and symmetry can have
a better inductive bias in sentence representation.
The visualizations of attentional heads in BERT
are shown in Figure A3 and the visualizations of
δ in BERT-A∗ are shown in Figure A4, both in the
AppendixA. In fact, there is a great diversity of be-
haviors within different attentional heads, mainly
for the diagonal bandwidths of attentional maps
(locality), which signifies proximity units can be
combined at different distances.

We conclude that positional encodings with
more suitable locality and symmetry can yield bet-
ter performance on downstream tasks, which may
explain why fixed encodings are designed to meet
the two properties and why learned encodings all
exhibit this behavior. However, learned encodings
are not perfectly local, but they still have the ability
to represent sentences very well, which might be
due to the network architectures and the specific
target tasks. Moreover, increasing the diversity
of positional correlations in different attentional
heads, e.g., the diversity of locality, is also benefi-
cial for representation capabilities.

3.4 Why the Locality Matters?

Locality means that the positional weights favor
the combination of units in a sentence to their ad-
jacent units when creating higher-level representa-
tions. For example, sub-tokens can be composed
into lexical meanings (e.g., {“context”,“##ual”}
→ “contextual”) or words can be composed into

0 2 4 6 8
Distance (in words)

0

25

50

75

100

Pe
rfo

rm
an

ce
 (%

) Encoding
contextual
positional
both

Figure 5: Accuracy of top-20 dependency relations.
Detailed results in Table A3, Appendix.

phrase-level meaning (e.g., {"take","off"}→ “take
off ”), and clause-level and sentence-level mean-
ing can be obtained through an iterative combi-
nation of low-level meanings, which is consistent
with the multi-layer structure in pre-trained lan-
guage models. From a linguistic perspective, words
linked in a syntactic dependency should be close
in linear order, which forms what can be called
a dependency locality (Futrell et al., 2020). De-
pendency locality provides a potential explanation
for the formal features of natural language word
order. Consider the two sentences “John throws
out the trash” and “John throws the trash out”.
Both are grammatically correct. There is a de-
pendency relationship between “throws” and “out”
and the verb is modified by the adverb. However,
language users prefer the expression with the first
sentence because it has a shorter total dependency
length (Dyer, 2017; Liu et al., 2017; Temperley
and Gildea, 2018). Based on the visualizations
and dependency locality, we, therefore, speculate
that one main function that positional encodings
have learned during pre-training is local composi-
tion, which exists naturally in our understanding of
sentences. Empirical studies also demonstrate that
performances of shuffled language models are cor-
related with the violation of local structure (Khan-
delwal et al., 2018; Clouatre et al., 2022).

To verify that the main function of locality is
to compose adjacent units with short-distance de-
pendency relations, we examine the dependency
knowledge stored in positional weights. Specifi-
cally, we follow the syntactic probing test by Clark
et al. (2019), and then each head in PLMs is re-
garded as a simple predictor of dependency rela-
tions. Given the attention weight vector of an input
word, we output the word with the highest values
and think the pair of words holds some type of



Original Shuffled

Shuffled-3 An old man with a package poses in front of an advertisement . An man old with package a poses in front of advertisement an .

Shuffled-4 A land rover is being driven across a river . A land rover is being a driven river across .

Shuffled-5 A man reads the paper in a bar with green lighting . A man reads the paper in with green a lighting bar .

Shuffled-6 A little boy in a gray and white striped sweater and tan pants is play-

ing on a piece of playground equipment .

A little boy in striped a sweater and white gray and tan pants is play-

ing piece playground of equipment on a .

Shuffled-SR several women are playing volleyball . volleyball are playing several women .

Shuffled-SR a man and woman are sharing a hotdog . a hotdog are sharing a man and woman .

Table 2: Some cases of the shuffled SNLI datasets in our word swap probing. Shared color indicates
corresponding phrases.

Model Symmetry Locality Original Shuffle-3 (∆) Shuffle-4 (∆) Shuffle-5 (∆) Random (∆) Original Shuffle-SR (∆)

BERT 87.9 16.2 89.8 -0.4 -0.6 -0.3 -2.7 89.8 -63.9
ALBERT 82.0 20.3 91.8 -0.5 -1.1 -1.3 -6.0 92.0 -66.8
DeBERTa 85.0 17.8 91.6 -0.5 -0.7 -1.3 -5.1 91.6 -58.9

XLNet 72.7 17.5 91.5 -0.2 -0.3 -0.7 -5.4 91.3 -57.8
StrucBERT 96.3 7.5 90.9 -0.5 -0.9 -1.3 -4.4 90.8 -44.6

Table 3: Results of Constituency Shuffling and Semantic Role Shuffling, measured by accuracy.
Shuffle-x means phrases with length x are shuffled. Shuffle-SR means the semantic roles of the agent
and patient are swapped.

dependency relation. While no single head can per-
form well on all relations, the best-performed head
is selected as the final ability of a model for each
particular relation. In this experiment, we adopt the
original TUPE (Ke et al., 2021) that uses absolute
positional encodings as our base model. The ability
of contextual and positional weights is evaluated by
setting the unrelated correlations to zero (in Eq 4),
e.g., the first term is set to dumb when checking the
ability of positional weights. The two variants are
referred as to contextual and positional attention,
respectively.

We extract attention maps from BERT on the
MRPC (Dolan and Brockett, 2005) annotated by
the dependency parser of spaCy 1. We report the
results on top-20 dependency relations.

Figure 5 shows performance on relations with
different distances. (Table A3 gives relation-
specific results). First, we observe that positional
attention is significantly more important than con-
textual attention in short-distance dependency re-
lations (distance from 1 to 4). Second, contextual
attention takes the lead on long-distance relations
(after 6). Again, the combination of the two fea-
tures can yield the best performance. The “outlier”
in the lower left corner is the Root dependency.
Because this relation is a self-reflexive edge, con-
textual (or self) attentions can performs well on

1https://spacy.io/api/dependencyparser

it while learned PEs do not attend to the current
word itself, e.g., visualizations of BERT and De-
BERTa in Figure 1. Moreover, our empirical results
show that there is a clear distinct role between the
positional and contextual encodings in sentence
comprehension: positional encodings play more
of a role at the syntactic level while contextual
encodings serve more at the semantic level (see
Section A.6.1 in the Appendix A).

We summarize that the locality property guides
positional encodings to capture more short-distance
dependencies while contextual weights capture
more long-distance ones.

3.5 What Is the Drawback of Symmetry?

Although positional encodings with good symme-
try perform well on a series of downstream tasks,
the symmetry property has an obvious flaw in sen-
tence representations, which is ignored by prior
studies.

The symmetry (also observed by Wang and Chen
(2020); Wang et al. (2021)) of the positional matri-
ces implies that the contributions of forward and
backward sequences are equal when combining ad-
jacent units under the locality constraint. This is
contrary to our intuition, as the forward and back-
ward tokens play different roles in the grammar, as
we have seen in the examples of “a man playing
an electric guitar on stage” and “an electric guitar
playing a man on stage”. However, this symmetry

https://spacy.io/api/dependencyparser


is less disruptive at the local level inside sentences.
Recent work in psycholinguistics has shown that
sentence processing mechanisms are well designed
for coping with word swaps (Ferreira et al., 2002;
Levy, 2008; Gibson et al., 2013; Traxler, 2014).
Further, Mollica et al. (2020) hypothesizes that the
composition process is robust to local word viola-
tions. Consider the following example:

a. on their last day they were overwhelmed by
farewell messages and gifts

b. on their last day they were overwhelmed by
farewell and messages gifts

c. on their last they day were overwhelmed
farewell messages by and gifts

The local word swaps (colored underlined words)
are introduced in the latter two sentences, lead-
ing to a less syntactically well-formed structure.
However, experimental results show that the neural
response (fMRI blood oxygen level-dependent) in
the language region does not decrease when dealing
with word order degradation (Mollica et al., 2020),
suggesting that human sentence understanding is
robust to local word swaps. Likewise, symmetry
can be understood in this way: when a reader pro-
cesses a word in a sentence, the forward and back-
ward nearby words are the most combinable, and
the comprehension of this composition is robust to
its inside order. On the other hand, symmetry is
not an ideal property for sentence representations
(consider the case of “an electric guitar”). Next,
we use two new probing tasks of word swap to
illustrate the flaws of symmetry.

Existing probes study the sensitivity of lan-
guage models to word order by shuffling the words
in a sentence, and they can be roughly divided
into three categories: random swap (Pham et al.,
2021; Gupta et al., 2021; Abdou et al., 2022), n-
gram swap (Sinha et al., 2021), and subword-level
swap (Clouatre et al., 2022). All these studies as-
sume that the labels of the randomly shuffled sen-
tences are unchanged. However, this is obviously
not the case. In particular, the shuffled sentence
may have another label (think of the textual entail-
ment example from the introduction).

To address the issue, we propose two new prob-
ing tasks of word swaps: Constituency Shuffling
and Semantic Role Shuffling. Constituency Shuf-
fling aims to disrupt the inside order of constituents,
which is able to change the word order while pre-
serving the maximum degree of original semantics.

As an example, consider the constituent parsing
in Figure 4. We can easily shuffle the word order
inside “an electric guitar” (say, to, “guitar an elec-
tric”), which will lead to a grammatically incorrect,
but still comprehensible sentence because humans
are able to understand sentences with local word
swaps (Ferreira et al., 2002; Levy, 2008). To con-
struct such shuffled datasets, the premise sentences
in the SNLI (Bowman et al., 2015) test set are shuf-
fled and we keep the hypothesis sentences intact.
Here, we let x ∈ [3, 5] and select a subset from
SNLI to make sure that every premise sentence
has at least one phrase with a length from 2 to 5.
We select five types of target phrases for shuffling:
Noun Phrase, Verb Phrase, Prepositional Phrase,
Adverb Phrase, and Adjective Phrase. Finally, a
Shuffle-x SNLI is obtained by disrupting the order
inside a phrase with length x and the size for each
shuffle-x is around 5000.

Our other task, Semantic Role Shuffling, inten-
tionally changes the semantics of the sentences by
swapping the order of the agent and patient of sen-
tences. For example, in Figure 4, “a man” is the
entity that performs the action, technically known
as the agent, and “an electric guitar” as the entity
that is involved in or affected by the action, which
is called the patient. Our dataset Shuffle-SR swaps
these semantic roles. Some examples are shown in
Table 2.

To probe the sensitivity of language models
to the two types of shuffling, we fine-tune 5
pre-trained language models with good symme-
try on the SNLI training set and evaluate them on
the newly constructed Shuffle-x and Shuffle-SR
datasets (see details in Appendix A.3). The overall
results of the word swap probing are shown in Ta-
ble 3. We first observe that the performances of all
language models across Shuffle-x datasets (local
swaps) basically do not degenerate, which confirms
the benefits of the locality and symmetry proper-
ties. Second, most models fail on the Shuffle-SR
dataset (global swaps), which demonstrates local
symmetry does not capture global swaps well. This
explains the reason that BERT-style models fail on
the example: “an electric guitar playing a man
on stage”. Although the local symmetry learned
by positional encodings can perform well on a se-
ries of language understanding tasks, the symmetry
itself has obvious flaws. The better performance
of StrucBERT on the Shuffle-SR suggests that in-
troducing additional order-sensitive training tasks



may improve this problem. More details of the
probing tasks are described in Appendix A.3.

4 Conclusion

We have proposed a series of probing analyses for
understanding the role of positional encodings in
sentence representations. We find two main proper-
ties of existing encodings, Locality and Symmetry,
which are correlated with the performance of down-
stream tasks. We first investigate the linguistic role
of positional encodings in sentence representation.
Meanwhile, we point out an obvious flaw of the
symmetry property. We hope that these findings
will inspire future work to better design positional
encodings.

Limitations

The limitations of this work are three-fold. First,
our study focuses on positional encoding in Masked
Language Models (bidirectional), but this work
does not involve decoding-only language mod-
els (GPT-style). Furthermore, recent studies have
shown that decoder-only transformers without posi-
tional encodings is able to outperform other explicit
positional encoding methods (Haviv et al., 2022;
Kazemnejad et al., 2023), which deserves further
research. Second, our analysis is limited to the
natural language understanding of the English lan-
guage. Different languages display different word
order properties. For instance, English is subject-
verb-object order (SVO) while Japanese is subject-
object-verb order (SOV), and natural language gen-
eration tasks are not included in this work. Third,
although our handcrafted positional encodings sat-
isfy the symmetry property, they merely replicate
the limitations of current positional encoding, al-
beit in a simplified form. Further architecture de-
velopment should address the problem of the “an
electric guitar playing a man on stage.” mentioned
in the introduction.
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A Appendix

A.1 Visualizations of Positional Encodings

To understand what positional encodings learn after
pre-training, we visualize the positional weights
in attentional heads. The Identical Word Prob-
ing is adopted in this experiment (Wang et al.,
2021). The used pre-trained language models are
shown in Table A1, and the repeated words are
randomly selected from the corresponding vocab-
ulary. Note that sub-tokens like single characters
and non-physical words are removed. For visualiza-
tion, we adopt the Identical Word Probing proposed
by Wang et al. (2021), which feeds many repeated
identical words to pre-trained language models and
thus the attention values are disentangled with con-
textual weights. More specifically, we randomly
select 100 words from the corresponding vocabu-
lary (filtering out single characters and sub-words
such as “##nd”). We repeat each word to compose
a sentence of length 128. These 100 sentences
are fed into a language model and the attention
weights across different layers are averaged as the
positional weight matrix of a particular language
model.

A.2 Details of Pre-training

We use the configuration of the original BERTbase

(Devlin et al., 2019) with 110M parameters for
pre-training. Our model is implemented with Py-
Torch using the pytorchic-bert tool2. The number
of layers, attention heads, and the projection di-
mension are 12, 12, and 768 respectively. We use
the original vocabulary with a size of 30522. The
training corpus is the English Wikipedia (20200101
dumps), which totals 13G after preprocessing by
WikiExtractor. We pre-train with sequences of at
most T = 512 tokens and set the batch size as 64
to pre-training 600K steps. The optimizer is Adam
with a learning rate of 5e-4, β1 = 0.9, β2 = 0.999,
L2 weight decay of 0.01, and a warmup rate of 0.1.
The dropout probability is always set as 0.1.

2https://github.com/dhlee347/pytorchic-bert

We use the original BERTbase as our backbone
and vary the positional encodings to pre-training
different variants for comparison. Listing 1 shows
a code example about how to inject handcrafted po-
sitional encodings into the BERT backbone. Each
variant is fine-tuned on the training dataset with
different learning rates (among 9e-5, 7e-5, 5e-5, 3e-
5, 1e-5). After, we evaluate the fine-tuned model
on the Dev set and report the average score of five
learning rates. Apart from BERT, we introduce the
TUPE model as another baseline. Specifically, we
pre-train the following variants:

class MultiHeadedSelfAttention(nn.Module):
""" Multi-Headed Scaled Dot Product Attention """

def __init__(self, config):
super().__init__()
self.n_heads = config.n_heads
self.drop = nn.Dropout(config.p_drop_attn)
self.proj_q = nn.Linear(config.dim, config.dim)
self.proj_k = nn.Linear(config.dim, config.dim)
self.proj_v = nn.Linear(config.dim, config.dim)

def forward(self, x, mask, pe):
"""

x, q(query), k(key), v(value) : (B(batch_size),
S(seq_len), D(dim))

mask : (B(batch_size) x S(seq_len))
pe: positional weights (B(batch_size), H(Head_number)),

S(seq_len), S(seq_len))
* split D(dim) into (H(n_heads), W(width of head)) ; D

= H * W
"""
# (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W)

-trans-> (B, H, S, W)
q, k, v = self.proj_q(x), self.proj_k(x), self.proj_v(x)
q, k, v = (split_last(x, (self.n_heads,

-1)).transpose(1, 2)
for x in [q, k, v])
# (B, H, S, W) @ (B, H, W, S) -> (B, H, S, S)

-softmax-> (B, H, S, S)
scores = q @ k.transpose(-2, -1) / np.sqrt(k.size(-1))

# inject positional weights into contextual weights
# (B, H, S, S) + (B, H, S, S) -> (B, H, S, S)
scores = scores + pe

if mask is not None:
mask = mask[:, None, None, :].float()
scores -= 10000.0 * (1.0 - mask)

scores = self.drop(F.softmax(scores, dim=-1))
# (B, H, S, S) @ (B, H, S, W) -> (B, H, S, W) -trans->

(B, S, H, W)
h = (scores @ v).transpose(1, 2).contiguous()
# -merge-> (B, S, D)
h = merge_last(h, 2)
return h

Listing 1: A code example of
how to inject handcrafted positional encodings into
self-attentions.

• BERT is the original one and we use it as a
baseline.

• BERT-A∗ is a variant of the former, but the
encodings are learnable during pre-training.

• BERT-A∗-s shares learnable positional encod-
ings within a layer.

Suppose that the hidden dimension is 768, the layer
number is 12, the head number is 12, and the max-
imum length is 512 for BERTbase model, we can

https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://github.com/dhlee347/pytorchic-bert


Model Size Version Language

BERT 110M bert-base-uncased English

DeBERTa 100M microsoft/deberta-base English

XLNet 110M xlnet-base-cased English

Table A1: Details of pre-trained language models used in visualizations.

Model Size Version Fine-tuned by us

BERT 110M bert-base-uncased ✓

ALBERT 223M ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3nli ×

DeBERTa 100M microsoft/deberta-base ✓

XLNet 340M ynie/xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli ×

StrucBERT 340M bayartsogt/structbert-large ✓

Table A2: Details of pre-trained language models used in word swap probing.

calculate the size for each variant. The number
of parameters of handcrafted positional encoding
for each head is 262K (512 × 512). If positional
heads are different across all layers, the total cost
is 37.7M (512× 512× 12× 12). If the positional
encodings are shared across all attentional heads,
the total cost is 3.1M (512× 512× 12).

A.3 Word Swap Probing

To validate if language models with positional
encodings are sensitive to the local and global
word swaps, we construct Shuffle-x and Shuffle-SR
SNLI datasets. Shuffle-x means the word orders
of phrases with length x are disrupted, e.g. “an
electric guitar” is a 3-gram phrase, and it might
be “guitar an electric” in Shuffle-3 SNLI. In this
way, a new sentence with the same meaning can be
obtained and therefore the initial label of the sam-
ple will not be changed. To construct such shuffled
datasets, the premise sentences in the SNLI test set
are shuffled and we keep the hypothesis sentences
intact. Here, we let x ∈ [3, 5] and select a subset
from SNLI to make sure that every premise sen-
tence has at least one phrase with length from 2 to 5.
We select five types of target phrases for shuffling:
Noun Phrase, Verb Phrase, Prepositional Phrase,
Adverb Phrase, and Adjective Phrase. Finally, a
Shuffle-x SNLI is obtained by disrupting the order
inside a phrase with length x and the size for each
shuffle-x is around 5000. The first fourth rows in
Table 2 shows some samples.

As for the Shuffle-SR SNLI dataset, the seman-
tic roles of the agent and patient are swapped in
a sentence. We use the Algorithm 1 to collect a

subset from the SNLI test set. This algorithm is
applied successively to the premise and hypothesis
sentence for a sample whose label is entailment,
and if the result of either of them is not null, we
consider it a valid shuffled sample, which means
we only shuffle the premise or hypothesis. After,
we can obtain a new sample and the pair of sen-
tences are contradicted with each other. In total,
there are 1329 samples. To ensure that all sentences
are semantically correct, we manually selected 300
pairs from them. The last two rows in Table 2 show
two examples in the Shuffle-SR dataset.

To probe the capabilities of language models on
our newly constructed datasets, we adopt five dif-
ferent pre-trained language models (as shown in
Table A2) and we use Hugging Face for implemen-
tation (Wolf et al., 2020). These models are fine-
tuned on the training set of SNLI, and the model
with the best score on the validation set is stored for
the following experiments. Note that there are off-
the-shell ALBERT and XLNet for natural language
inference, we therefore use them directly without
fine-tuning. During the fine-tuning stage, the max-
imum length of the tokenized input sentence pair
is 128, and the optimizer is Adam (Kingma and
Ba, 2015) with a learning rate of 2e-5. The batch
size is 32 and the epoch is 3. After fine-tuning, the
best model is evaluated on our shuffle SNLI test
set, and we record their performances when faced
with local and global word swaps.

A.4 Details of Downstream Datasets

SentEval is based on a set of existing text clas-



(a) Correlations between Locality and Accuracy (b) Correlations between Symmetry and Accuracy

Figure A1: Correlations between the two properties (Locality and Symmetry) and accuracy on SUBJ dataset (Pang
and Lee, 2004). The yellow line shows the locality or symmetry of the pre-trained BERT.

Algorithm 1: Construction of Shuffle-SR
Sentences
Input:
s: a premise or hypothesis sentence in
SNLI,
A: Auxiliary verb list
M: Semantic Role Labeling Model,
D: Subject and Object Case Mapping

// e.g., I ↔ me
Output: A sentence s∗ with shuffled agent

and patient or None

1 R← Predict the semantic roles of words in
sentence s by using the modelM

2 V ← Take the verb list fromR
3 foreach verb v in V do
4 if v appears in A then
5 continue

6 ifR does not contain an agent or
patient then

7 continue

8 a, p← Take the agent and patient from
R

9 s∗← Swap the a, p in sentence s
10 s∗← Transform the subject and object

case in s∗ if a or p in D
11 return s∗

12 return None

sification tasks involving one or two sentences as
input. However, most tasks in SentEval are closely
related to sentiment analysis and thus not diverse
enough. GLUE benchmark introduces a series of
difficult natural language understanding tasks while

some particular tasks only contain one dataset, e.g.,
sentiment analysis and textual similarity. Moreover,
the size of WNLI in GLUE is rather small and the
GLUE webpage notes that there are issues with the
construction of this dataset 3. To better evaluate the
capability of models for sentence representation,
we, therefore, select 10 datasets from SentEval and
GLUE, covering four types of sentence-level tasks:

• Sentiment Analysis is also known as opinion
mining, which aims to classify the polarity
of a given text, whether the expressed opin-
ion is positive, negative, or neutral. We use
MR (Pang and Lee, 2005), SUBJ (Pang and
Lee, 2004), and SST (Socher et al., 2013) for
this task.

• Textual Entailment describes the inference
relation between a pair of sentences, whether
the premise sentence entails the hypothesis
sentence. Actually, this is a classification task
with three labels: entailment, contradiction,
and neutral. Here, we use QNLI (Rajpurkar
et al., 2016), RTE (Dagan et al., 2005; Haim
et al., 2006; Giampiccolo et al., 2007; Ben-
tivogli et al., 2009) and MNLI (Williams et al.,
2018) for evaluation. Note that we report the
average score for the two test sets of MNLI.

• Paraphrase Identification is to determine
whether a pair of sentences have the same
meaning. We use MRPC (Dolan and
Brockett, 2005) and QQP ( data.quora.com/

First-Quora-Dataset-Release-Question-Pairs)
for evaluation.

3https://gluebenchmark.com/faq

 data.quora.com/First-Quora-Dataset-Release-Question-Pairs
 data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://gluebenchmark.com/faq


• Textual Similarity deals with determining
how similar two pieces of text are. We use
STS-B (Cer et al., 2017) and SICK-R (Marelli
et al., 2014) for evaluation.

A.5 Details of TUPE Model

In absolute positional encoding, the positional en-
coding is added together with the contextual encod-
ing:

αij =
(xi + pi)W

Q
(
(xj + pj

)
WK)T

√
d

(A.1)

where pi ∈ Rd is a position embedding of the i-th
token. Further, the above equation can be expanded
as:

αij =
(xiW

Q)(xjW
K)T√

d
+

(xiW
Q)(pjW

K)T√
d

+
(piW

Q)(xjW
K)T√

d
+

(piW
Q)(pjW

K)T√
d

(A.2)

There are four terms in this expression: context-
to-context, context-to-position, position-to-context,
and position-to-position. While the first and the
fourth term are intuitive, the token encodings and
positional encodings do not have strong correla-
tions with each other, and the context-position
correlations may even induce unnecessary noise.
Based on this analysis, Ke et al. (2021) propose
TUPE (Transformer with Untied Positional Encod-
ing) that removes the second and third redundant
terms and introduces different parameters for the
position encoding:

αij =
(xiW

Q)(xjW
K)T + (piU

Q)(pjU
K)T√

d
,

(A.3)
Here, UQ and UK are weights that need to be
learned, capturing positional queries and keys, re-
spectively. Their empirical results confirm that
the removal of the two context-to-position terms
consistently improves the model performance on a
series of tasks.

class MultiHeadPositionalAttention(nn.Module):
""" Multi-Headed Scaled Dot Product Attention """

def __init__(self, config):
super().__init__()
self.n_heads = config.n_heads
self.drop = nn.Dropout(config.p_drop_attn)

def forward(self, x, mask, pe):
"""
x, q(query), k(key), v(value) : (B(batch_size),

S(seq_len), D(dim))
mask : (B(batch_size) x S(seq_len))
pe: positional weights (B(batch_size),

H(Head_number)), S(seq_len), S(seq_len))
* split D(dim) into (H(n_heads), W(width of head)) ;

D = H * W
"""
# (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W)

-trans-> (B, H, S, W)
q, k, v = (split_last(x, (self.n_heads,

-1)).transpose(1, 2)
for x in [q, k, v])
# (B, H, S, W) @ (B, H, W, S) -> (B, H, S, S)

-softmax-> (B, H, S, S)

scores = pe
if mask is not None:
scores.masked_fill_(~mask, 0.)

# (B, H, S, S) @ (B, H, S, W) -> (B, H, S, W)
-trans-> (B, S, H, W)

h = (scores @ v).transpose(1, 2).contiguous()
# -merge-> (B, S, D)
h = merge_last(h, 2)
return h

Listing 2: A code example of the Positional
Attention.

A.6 Linguistic Roles of Positional Ecnodings

Positional and contextual weights are usually en-
tangled in every attentional head, and therefore
the behavior of positional encodings cannot be ob-
served independently (as shown in Equation 4).

To address this, we set the contextual correlation
γi,j (in Equation 4) to zero (instead of removing
the contextual encodings completely) and thus the
attentional weight αi,j only depends on positional
correlation. Note that this operation does not alter
the structure of the original network because a soft-
max layer is applied to the vector αi, and the output
is still an attentional weight vector that can be re-
garded as a kind of discrete probability distribution.
Therefore, the output sentence representation is
decoupled from contextual encoding. We refer to
this adapted model as BERT-p. For comparison,
we remove the positional correlations δi,j to ob-
tain BERT-c. We do the same for a pre-trained
TUPE model, to obtain TUPE-p and TUPE-c, and
we already described TUPE in Section A.5.

A.6.1 Linguistic Probing Tasks

In this linguistic probing, we adopt widely used 10
probing tasks (Conneau et al., 2018) with a stan-
dard evaluation toolkit (Conneau and Kiela, 2018).
The following are the details of each probing task,
including three categories:



• SentLen (Surface) aims to predict the length
of sentences in terms of the number of words,
and the dataset is constructed following Adi
et al. (2017).

• WC (Surface) means word content, which
checks whether it is possible to recover in-
formation about the original word from the
embedding of the sentence.

• BShift (Syntactic) means bigram shift. In this
task, two random adjacent words in a sen-
tence are swapped and the goal is to detect if
a model is sensitive to legal word orders.

• TreeDepth (Syntactic) tests whether a model
can infer the depth of the syntactic tree of
sentences.

• TopConst (Syntactic) tests whether a model
can recognize the top constituents of the sen-
tence, e.g., “[Then] [very dark gray letters
on a black screen] [appeared] [.]” has top
constituent sequence: “ADVP NP VP ”. This
dataset is first introduced by Shi et al. (2016).

• Tense (Semantic) asks for the tense of the
main clause verb.

• SubjNum (Semantic) focuses on the number
of the subject of the main clause.

• ObjNum (Semantic) tests for the number of
the direct object of the main clause.

• SOMO (Semantic) checks the sensitivity of
a model to random replacement of a noun or
verb.

• CoordInv (Semantic) tests whether a model
can recognize the order of clauses is inverted.

Figure A2 gives the results. We first observe
that the combination of contextual and positional
encodings can have better performances across all
probing tasks (yellow lines). Secondly, compared
to contextual encodings, positional encodings per-
form better on syntactic tasks (TreeDepth, Top-
Const, BShift), which require more information
of word orders. On semantic tasks, contextual en-
codings outperform positional encodings on Tense
and ObjNum while performing poorly when the
semantic probing tasks require order information
(CoordInv). Thirdly, a hierarchical structure exists
here when we check the peak of probing tasks for

Relation Distance contextual positional both

Root 0.0 99.3 3.8 86.5
auxpass 1.1 44.6 91.1 92.9
compound 1.2 21.7 75.0 70.6

aux 1.3 25.2 77.9 79.1
nummod 1.3 26.8 78.9 75.5
amod 1.4 19.7 69.3 66.9
det 1.8 47.9 52.9 51.6

advmod 2.1 16.5 62.4 58.7
pobj 2.3 9.0 33.9 46.3
nsubj 2.3 13.4 58.2 52.6
poss 2.3 15.9 31.7 43.5
dobj 2.5 20.0 34.8 41.6
prep 2.6 23.1 62.8 63.4

npadvmod 3.1 14.4 30.0 43.8
cc 3.1 28.4 52.0 51.6

mark 4.1 25.1 21.3 64.4
conj 4.9 25.1 31.2 33.6
punct 7.3 25.9 30.3 32.7
advcl 7.6 18.4 9.8 20.1
ccomp 8.1 29.0 12.4 33.2

short ≤ 4 28.4 54.3 61.6
long > 4 24.7 21.0 36.8

Macro Avg - 27.5 46.0 55.4

Table A3: Evaluations of predictions of de-
pendency relations on MRPC dataset. The
top 20 common relations are shown. The
distinction of "short" and "long" is whether
the average length of the relation is greater
than 4.

each model, as observed by Jawahar et al. (2019).
For surface tasks, the surface knowledge is stored
more in the bottom layer, syntactic knowledge is
in the middle layer and semantic knowledge is in
the middle and top layer. Therefore, we conclude
that positional encodings play more of a role at the
syntactic level tasks. On semantic tasks, especially
position-independent ones, contextual encodings
are more important.

A.6.2 Dependency Analysis of Positional
Encodings

The detailed scores of each relation are shown in
Table A3. We find that positional attentional heads
outperform contextual heads on short-distance re-
lations, e.g., auxpass and compound. Contextual
attention can capture better long-distance relations
than positional attention while contextual attention
itself has a certain degree of ability to detect some
long-distance relations such as conj and punct.
Note that there exists a head in contextual attention
maps attending the token itself, therefore, the score
on the Root relation is the best.

A.7 Visualizations of Positional Weights
In Figure 1, we visualize the averaged positional
weights of various pre-trained language models
and identify they have similar visualized results.
However, We find that the behavior of positional
encodings is very diverse across attention heads.
Note that there are 144 attentional heads (12 layers
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Figure A2: Results of linguistic probing tasks across different layers. BERT-based models are shown in a triangle
while TUPE-based models are shown in a circle. The red, blue and yellow lines represent the use of positional
weights, contextual weights and a combination of both, respectively.

× 12 heads) for the BERTbase model. For example,
the visualizations of BERT (Figure A3) validate
this phenomenon. Besides, we observe that BERT
exhibits a hierarchical structure: positional weights
of lower layers are nearly uniform (Layer-4), mid-
dle layers attend more to local units (Layer-7) and
higher layers demonstrate the asymmetric property
(Layer-12). We also visualize all the positional
heads in BERT-A∗ (Figure A4).

Visualization Analysis of BERT-A∗. BERT-A∗

outperforms BERT by 3.1 percentage points on av-
erage across 10 downstream tasks. The main differ-
ence between BERT-A∗ and BERT is the learnable
handcrafted positional encodings. For visualiza-
tions, we take the positional weight δi,j in Equa-
tion 4 instead of Identical Word Probing. Figure A4
shows that most positional heads perfectly satisfy
the properties of locality and symmetry, which can
bring better inductive bias for sentence represen-
tations. Another observation is that the diagonal
bandwidths are diverse across positional heads af-
ter learning, which means proximity units can be
combined at different distances. We conclude that,
compared to randomly initialized positional encod-
ings, the encodings initialized with locality and
symmetry properties lead to better sentence repre-
sentation models.



Figure A3: Visualizations of positional weights of BERT across all layers. The weights are computed by Identical
Word Probing. Red color means lower values and blue color means higher values.



Figure A4: Visualizations of positional weights of BERT-A∗ across all layers. Red color means lower values and
blue color means higher values.


