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Model Predictive Impedance Control
Maciej Bednarczyk1, Hassan Omran1 and Bernard Bayle1

Abstract— Robots are more and more often designed in order
to perform tasks in synergy with human operators. In this con-
text, a current research focus for collaborative robotics lies in
the design of high-performance control solutions, which ensure
security in spite of unmodeled external forces. The present
work provides a method based on Model Predictive Control
(MPC) to allow compliant behavior when interacting with an
environment, while respecting practical robotic constraints. The
study shows in particular how to define the impedance control
problem as a MPC problem. The approach is validated with
an experimental setup including a collaborative robot. The
obtained results emphasize the ability of this control strategy to
solve constraints like speed, energy or jerk limits, which have
a direct impact on the operator’s security during human-robot
compliant interactions.

Index Terms— Impedance control, collaborative robotics,
physical human-robot interaction

I. INTRODUCTION

The robotics community has been developing for many
years now the idea that novel robotic systems should be
designed and controlled to perform tasks in contact with their
environment, and in particular with human operators. This
trend has been increased by the development of collaborative
robots. This new type of robot is designed to increase the
physical capabilities of human operators, or limit their fa-
tigue. A subsequent research effort has already been devoted
to introduce collaborative robots in factories [1], [2]. One
of the main challenges is to provide control laws allowing
convenient and safe interactions between the human, the
robot and the environment [3].

In robotics, when no interaction with the environment is
needed, motion control strategies are used. At the contrary, in
the presence of interactions, direct force control strategies are
preferred for fine force tracking. However, they require good
models of the interaction and of the environment, and are not
compatible with unpredictable interactions [4]. For this rea-
son, interaction control offers a compromise in order to deal
with both force and motion during interactions. Impedance
control (IC) [5] is a widely used interaction control method,
particularly efficient for human-robot interactions. It consists
in imposing an impedance model for the relationship between
the manipulator and the environment. Since its introduction
by Hogan, IC has attracted researchers’ attention, leading to
improvements in handling robots flexibility [6] or variable
parameters [7], to mention just a few.

In addition to the interaction management, the robot con-
troller should handle several constraints, such as speed and
energy limits [8], limited jerk [9] or actuators saturation.
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These limits allow ensuring safety [10] as well as good
ergonomics of the human-robot interaction [11]. However,
it is not straightforward to respect these constraints using
classical IC. Model Predictive Control (MPC) is an advanced
control method to deal with multi-variable systems with
multiple constraints. First proposed for process control in the
petrochemical industry [12], MPC has successfully replaced
classical methods in many applications [13]. By measuring
the current state of the system, MPC predicts the evolution
of the system variables over some horizon and computes the
optimal input with respect to some performance index, while
respecting imposed constraints.

MPC has been only recently used for interaction control.
In [14], MPC is used as a high-level controller for path
set-point generation, taking into account contact forces due
to interactions with the environment. The authors of [15]
investigate a direct force control strategy based on predictive
path following using MPC. In [16], MPC is combined with
admittance control for dealing with stability issues while
interacting with a stiff environment. Even more recently, non-
linear MPC is formulated by adding admittance dynamics
into a path following problem [17]. However, in all these
applications, the choice of the cost functions is not directly
related to the desired compliant behavior.

To the best of our knowledge, no research has yet been
done to combine IC and MPC advantages. Our contribution
in this work is to propose an appropriate MPC formulation
to obtain a prescribed compliant behavior, while respecting
a set of practical robotic constraints. The paper is organized
as follows. In section II, we introduce the concepts of
system dynamics and IC, later used in the paper. Section
III describes the design method for the proposed MPC
controller. Section IV provides experimental results featuring
a collaborative robot. Finally, conclusions and perspectives
are given in Section V.

II. CONTROL BACKGROUND

A. Rigid Body Dynamics and Linearized Model

Consider the model of an n-joint serial robotic manipulator
operating in an m-dimensional task space

M(q)q̈ + C(q̇, q) +G(q) = τc − J(q)T fext (1)

where q̈, q̇, q ∈ Rn are joint accelerations, velocities
and positions, respectively, τc ∈ Rn are the commanded
joint torques, fext ∈ Rm is the end-effector wrench,
J(q) ∈ Rm×n is the robot Jacobian matrix and
M(q) ∈ Rn×n, C(q̇, q) ∈ Rn and G(q) ∈ Rn are the inertia
matrix and the Coriolis and gravity terms, respectively. A
classical solution [4] to linearize equation (1) is to apply



the control law τc = M(q)ν + C(q̇, q) +G(q) + J(q)T fext
with ν the new control input, resulting in the double inte-
grator model in joint space

q̈ = ν (2)

The robot dynamics can then be expressed in task space by
derivating the forward differential kinematic model, which
leads to

p̈ = J(q)q̈ + J̇(q, q̇)q̇ (3)

where p ∈ Rm, J̇(q, q̇) ∈ Rm×n denote the robot end-
effector pose and the time derivative of the Jacobian matrix.
Using (2) and (3) one can express a new input u such that
ν = J+u− J+J̇ q̇, with J+ ∈ Rn×m the pseudo-inverse of
J , resulting in a double integrator model in task space

p̈ = u (4)

B. Impedance Control

In order to dynamically link the system positions, veloc-
ities and accelerations with the external forces, the input u
of system (4) is computed in order to obtain

Mv(p̈r − p̈) +Dv(ṗr − ṗ) +Kv(pr − p) = fext (5)

So, the system subject to the external forces fext is char-
acterized by its impedance with an apparent virtual mass
Mv ∈ Rm×m, a desired damping Dv ∈ Rm×m and a desired
stiffness Kv ∈ Rm×m, tracking a reference motion pr. Note
that Mv , Dv and Kv are symmetric positive definite matrices.
The desired behavior (5) can be obtained by imposing

u = p̈r +M−1
v (Dv(ṗr − ṗ) +Kv(pr − p)− fext) (6)

to the linearized system (4).
IC can also be represented using a state space model. In

the following, we will consider external forces with slow
variations so that ḟext ≈ 0. This simplification corresponds
to many practical cases but could seem restrictive in the case
of unmodeled contact. However, if a better model of the
external force is available, it can be included at this stage
into the state-space model. This aspect of the problem goes
far beyond the scope of this paper, justifying the previous
assumption. With this assumption, the dynamic model of
equation (4) can be written as

ẋ = Acx+Bcu (7)

with

x =

 ṗ
p
fext

 , Ac =

 0 0 0
Im 0 0
0 0 0

 , Bc =

Im0
0


The external force has been integrated into the state variable
in order to better deal with this disturbance, inspired by
the Internal Model Principle [18]. Note however that the
objective is not to cancel the disturbance, but rather to have
an appropriate response with respect to it.

Let us now write the IC using a state space formalism. To
do so, note that (6) can be written as

u = ur +K(xr − x) (8)

with

ur = p̈r ∈ Rm (9)

xr =
[
ṗTr pTr 0

]T ∈ R3m (10)

K = M−1
v

[
Dv Kv Im

]
∈ Rm×3m (11)

where r is some reference vector that can be chosen ac-
cording to the desired task. By substituting (8) into (7), the
state space model of the impedance controlled system can
be written as

ẋ = (Ac −BcK)x+Bc(u
r +Kxr) (12)

IC can therefore be seen as a state-feedback tracking prob-
lem.

Since the controller is implemented numerically, it is
necessary to find a discrete model of the system. The
discretization of equation (7) with zero order hold yields

xk+1 = Axk +Buk (13)

where k represents the current step, xk is the discrete state at
step k and A, B and C are the discrete state space matrices.
The sampling period Ts is selected short enough to emulate
the continuous controller (8), which gives

uk = urk −K(xk − xrk) (14)

with xrk and urk the discrete forms of xr and ur.

III. MODEL PREDICTIVE IMPEDANCE CONTROL

MPC consists in solving at every step a finite-horizon
optimal control problem with constraints. In order to deal
at the same time with unpredictable interactions as does the
IC, and different types of limits as does the MPC, a novel
controller, called Model Predictive Impedance Controller
(MPIC) is proposed.

When no constraints are active, the MPIC should be
equivalent to IC, i.e. to the static state feedback control
(14). Several methods have been proposed in the literature
to make a MPC behave as a state feedback such as the LMI-
based inverse optimality method [19], [20] or the controller
matching based on QP matrices as in [21]. However, these
methods either do not guarantee the exact matching between
the MPC and the desired state feedback controller, or do
not allow online computation. To obtain the controller of
equation (14), the cost function J of the MPC problem has
to be designed such that its optimum is zero when the desired
behavior is obtained. To do so, a zero-value cost function
over a control horizon H can be written, as in [19].

J =
∑H−1

k=0 (uk +K(xk − xrk)− urk)TR(uk +K(xk − xrk)− urk)

(15)



which is optimal for the desired control law, for any
R = RT > 0 ∈ Rm×m. Furthermore, J can be written as

J =

H−1∑
k=0

[
uk − urk
xk − xrk

]T [
R ST

S Q

] [
uk − urk
xk − xrk

]
(16)

where Q = KTRK ∈ R3m×3m and S = KTR ∈ R3m×m

are the weights of the particular terms satisfying the con-
ditions Q = QT ≥ 0 and Q − SR−1ST ≥ 0, and H is the
control horizon. In [22] it is pointed out that the cross-terms
between input and state in the quadratic cost function allow
reproducing any state-feedback control strategy by making
this equivalence as the primary control objective.

With the discrete state-space plant dynamics (13), a MPC
problem can be written as the tracking of some references,
with feedback xrk and urk terms

min
uk

J = min
uk

H−1∑
k=0

[
uk − urk
xk − xrk

]T [
R ST

S Q

] [
uk − urk
xk − xrk

]
(17)

s.t.

{
xk+1 = Axk +Buk
x0 = measured current state

where x0 is the initial state measured at each control cycle.
In the following, the input rate of change ∆uk = uk−uk−1

is used instead of the input uk, a choice often made for
tracking problems. First, let us define

∆u =[∆uT0 ... ∆uTH−1]T ∈ RmH

u =[uT−1 u
T
0 ... uTH−1]T ∈ Rm(H+1) (18)

x =[xT0 ... xTH−1]T ∈ R3mH

ρ =[ur0
T ... urH−1

T xr0
T ... xrH−1

T ]T ∈ R4mH

the vectors containing all the input rates of change,
inputs, states and references over the control horizon
H . Notation u−1 represents the last applied input.
The minimization problem (17) can be transformed
into a Quadratic Program (QP) form. To do so, it
has first to be expressed in matrix form such that

min
∆u
J = min

∆u


∆u
x
u
ρ


T

ΦT

[
R ST

S Q

]
Φ


∆u
x
u
ρ

 (19)

s.t.

{
x = Ax0 + Cu
u = T ∆u+ Iu−1

(20)

with u, ∆u, x and ρ defined by (18) and

Q =diag(Q, ... , Q) ∈ R3mH×3mH

R =diag(R, ... , R) ∈ RmH×mH

S =diag(S, ... , S) ∈ R3mH×mH

I =[Im ... Im]T ∈ Rm(H+1)×m

and block matrices

T =


0 0 . . . 0
Im 0 . . . 0
...

. . . . . .
...

Im . . .
. . . 0

Im . . . . . . Im

 ∈ Rm(H+1)×mH

Φ =

[
ImH 0 ImH 0 −ImH 0

0 I3mH 0 0 0 −I3mH

]
∈ R4mH×m(5H+1)

C ∈ R3mH×m(H+1) is the H-steps state reachability
matrix and A ∈ R3mH×3m the H-steps free evolution matrix
[21], such that

C =


0 0 0 . . . 0
0 B 0 . . . 0
0 AB B . . . 0
...

...
...

. . .
...

0 AH−2B AH−3B . . . B

 A =


I3m
A
A2

...
AH−1


Problem (19) is a constrained QP that could be solved
numerically. However, previously, a simplification of the
problem can be performed by including the constraints (20)
into the cost function, so that

J =


∆u
x0
u−1

ρ


T

ΨTΦT

[
R ST

S Q

]
ΦΨ


∆u
x0
u−1

ρ

 (21)

with

Ψ =


ImH 0 0 0
CT A CI 0
T 0 I 0
0 0 0 I4mH

 ∈ Rm(5H+1)×m(5H+4)

By defining matrices H ∈ RmH×mH , F ∈ RmH×m(5H+4)

and L ∈ Rm(5H+4)×m(5H+4) such that[
H F
FT L

]
= ΨTΦT

[
R ST

S Q

]
ΦΨ (22)

the optimization problem (19) becomes

min
∆u
J = min

∆u
∆uTH∆u+ 2[xT0 uT−1 ρT ]FT∆u (23)

where the term corresponding to L has been removed as it is
constant. Because of the hypotheses on the weight matrices,
H > 0 and the equation (23) is a convex QP. Note here, that
as the problem is convex the solution corresponding to the
zero cost function is the unique global solution. This means,
that when unconstrained, the optimal input given by the
MPIC controller will behave as the desired state-feedback.
Without constraints, (23) has the following analytic solution

∆u =−H−1F
[
xT0 uT−1 ρT

]T
(24)

In MPC, only the first input is applied at each iteration, i.e.
u0 = u−1−

[
Im 0 ... 0

]
∆u. Note that this applies only

when there are no other constraints than the system model.
However, in most practical cases, additional constraints have
to be considered. In this case, no analytical solution exists
and a numerical solver has to be used. In order to do so, the
constraints need to be written in the standard form

Γ∆u ≤ Π + Ω
[
xT0 uT−1

]T
(25)

where Γ ∈ Rc×mH , Ω ∈ Rc×4m and Π ∈ Rc are formulated
based on c problem constraints.



IV. EVALUATION

A. Experimental setup

The performance of the proposed controller was evaluated
on an experimental setup featuring a collaborative robot
following a reference trajectory. We chose to perform the
experiments on a simple exemplary environment in order
to ensure good repeatability of the task, and so to provide
comparable results. For this reason, no interaction with the
user occurs during the experiments presented in the paper.
However, human-robot interactions are shown in the ac-
companying video. The reference was a smooth polynomial
trajectory on a planar surface, placed slightly under the table
in order to ensure contact of the end-effector with the (x,y)-
plane. In addition, a rigid obstacle was placed on the path
generating unmodeled disturbances. The experimental setup
is shown in Fig. 1.

Fig. 1. Experimental setup with reference trajectory and obstacle.

Both IC and MPIC were compared, throughout four dif-
ferent experiments. At first, we show the equivalence of IC
and MPIC when no constrains are applied. Then, position,
velocity and input constraints are successively imposed to
the MPIC controller for validation of its performances, and
to illustrate the advantages it offers.

B. Implementation and hardware specifications

The experiments were carried out with a KUKA iiwa 14
collaborative robot. An ATI-Mini40 force-torque sensor was
mounted on the robot to measure the end-effector wrench.
The proposed controller addresses the robot at joint torque
level, which is not a classical approach for controlling this
type of manipulators. As the internal structure of the low
level controllers of the KUKA iiwa are not well known, with
some identification attempts such as in [23], [24], we based
our understanding of the low level control architecture on
[25]. The robot software allows the tuning of joint impedance
parameters, which were set to zero and the torque com-
mands generated by the MPIC were fed to the system using
KUKA’s FRI (Fast Robot Interface) protocol. This protocol
was also used to measure the joint positions, whereas the
joint velocities were computed using a filtered derivative
with a cut-off frequency at 50Hz. End-effector positions
and velocities were computed using the forward kinematic

and forward differential kinematic models, respectively. The
control and the FRI communication were sampled at 500Hz.
For solving the QP problem (23) with constraints, the C++
solver qpOASES [26] was used. The impedance parameters
were chosen such that Mv = diag(5, 5, 5, 2, 2, 2),
Kv = diag(300, 300, 50, 500, 500, 500), and
Dv = diag(77.5, 77.5, 31.6, 63.2, 63.2, 63.2). Kv was
chosen in order to ensure: 1) a good contact in the direction
normal to the (x,y)-plane, 2) a relatively low stiffness in
the x and y directions, which represents a trade-off in
compliance and tracking performance, and 3) a high stiffness
in orientation in order to have a nearly constant wrist pose.
Dv was selected in order to have a damping ratio of 1 for
the impedance model. The prediction horizon for the MPIC
was set to H = 5, as currently the solver struggles to solve
the constrained QP problem for a longer horizon in the given
time. As the input given by the MPIC when operating close
to a constraint can be noisy, a fixed limit on the input rate
of change −0.1 ≤ ∆u ≤ 0.1 was set.

C. Experimental results

1) Comparing IC and MPIC without constraints: The IC
law (6) was implemented on the system and tested in the
same conditions as the MPIC. Fig. 2 allows comparing the
two controllers. At position level (Fig. 2a) one can observe
the almost perfect matching of the two trajectories. The
position error between IC and MPIC has been evaluated to
ēx = 0.24mm and ēy = 0.12mm with a standard deviation
σx = 1.3mm and σy = 0.7mm. This match can also be
noticed at velocity (Fig. 2b) and acceleration (Fig. 2c) levels
where only a small difference on the x-axis can be spotted.

We believe that this difference is caused by some friction
on the surface. One can also notice that both controllers
do not perfectly match the reference trajectory. The main
reason lies in the fact that the impedance model has a rather
low stiffness, which impacts reference tracking performance.
However, at some points, as it is the case in the left upper
corner of the trajectory in Fig. 2a, the performance of both
controllers seems to be particularly reduced, even though
they behave identically. We believe that this can be caused
by the internal controller of the KUKA robot that has some
issues tracking torque commands as pointed out in [23], [24].

We were interested in verifying the impact of these small
defects due to the (not open) low level controllers of KUKA
iiwa. To do so, we identified the real impedance parameters
estimated from experimental data, and compared them to the
ones chosen in the impedance model. A linear least square
minimization was performed on the experimental data of IC
to retrieve these parameters. The resulting estimations are
given in Table I.

TABLE I
IMPEDANCE PARAMETERS RETRIEVED FROM DATA.

Mv Kv Dv

x 5.40 290.04 76.72
y 5.39 280.27 72.80



(a) End-effector trajectories under IC and MPIC.

(b) End-effector velocities under IC and MPIC.

(c) End-effector accelerations under IC and MPIC.

Fig. 2. Experimental comparison of the trajectories, velocities and
accelerations of the robotic manipulator end-effector, following a reference
trajectory. Case 1: IC and MPIC without active constraints and with an
obstacle on the path.

It turns out that the system impedance during the experi-
ments fits rather well the imposed impedance model, with a
8% max error on Mv , a 6.6% max error on Kv , and a 6.1%
max error on Dv , for the x and y components. This result
shows that the uncertainties on the internal controller do not
heavily impact the performance and do not interfere with the
robot-environment interaction. Typically, a human operator
will not be able to discriminate such small differences in the
inertia, damping and stiffness properties [27].

2) Position constrained MPIC: In this experiment, posi-
tion constraints were specified to the MPIC. Fig. 3 shows
the resulting end-effector trajectories as well as the position
constraint, which was set such that px ≥ −0.006m. One
can observe that the two controllers have the same behavior
when working in the allowed task space. When approaching
the limit, MPIC stops behaving as IC to meet the constraint.

Fig. 3. End-effector trajectories. Case 2: IC and MPIC with position
constraints (x ≥ −0.006m) and with an obstacle on the path.

3) Velocity constrained MPIC: We show next, that it is
also possible to apply velocity constraints with the MPIC
controller. Fig. 4 compares the behavior of MPIC and IC
at position and velocity level. In Fig. 4b, one can see that
given velocity constraints vx ≤ 0.02m/s, vy ≤ 0.02m/s, the
MPIC is able to limit the system velocity below the desired
threshold. As in the previous paragraph, this also results in
the modification of the desired trajectory, as shown Fig. 4a.

(a) End-effector trajectories under IC and MPIC.

(b) End-effector velocities under IC and MPIC.

Fig. 4. Experimental comparison of the trajectories and velocities of the
robotic manipulator end-effector following a reference trajectory. Case 3: IC
and MPIC with active velocity constraints (vx ≤ 0.02m/s, vy ≤ 0.02m/s)
and with an obstacle on the path.

4) Input constrained MPIC: Finally, the MPIC was tested
in the case of input constraints resulting in the limitation of
the commanded acceleration of the system. Fig. 5a allows
comparing the accelerations obtained via IC and MPIC for a



constraint ay ≥ −0.4m/s2. As observed previously, both
controllers have an equivalent behavior when inside the
allowed acceleration range and MPIC limits acceleration
when exceeding the limit. It is worth noticing here that
limiting the acceleration will affect the contact force between
the robot and the obstacle, as shown in Fig. 5b. This feature
is of particular interest as it acts as a saturation that can limit
the input to some maximally allowed threshold. In addition,
it also acts directly on the system maximum acceleration and
the resulting force applied by the robot, which is an important
feature for interaction tasks.

(a) End-effector accelerations under IC and MPIC.

(b) Force measured at the end-effector under IC and MPIC.

Fig. 5. Experimental comparison of acceleration and measured force
applied by the robotic manipulator end-effector. Case 4: IC and MPIC
control with acceleration constraints (ay ≥ −0.4m/s2) and with an
obstacle on the path.

V. CONCLUSION

In this paper, we have proposed a method to synthesize
an impedance controller (IC) as a model predictive controller
(MPC), based on the state-space representation of IC. This
new controller is called Model Predictive Impedance Con-
troller (MPIC). We have shown that MPIC combines the fea-
tures of IC with the advantages of MPC, allowing to impose
constraints on different system parameters, such as state or
input. The controller has been tested with an experimental
setup featuring a collaborative robot, and compared to IC.
MPIC behaves exactly as IC when no constraints are active
and it respects position, velocity and acceleration constraints
when such constraints are imposed.

These results open the way to many possible applications,
in particular to ensure safety in critical applications of col-

laborative robotics. Future work will tend towards including
a human operator into the interaction dynamics to take full
advantage of the prediction capability of MPIC to anticipate
interactions. Another enhancement will be to improve the
current setup, so that MPIC might be capable of adapting
the impedance parameters online during the execution of the
task. In addition, a theoretical stability analysis will be inves-
tigated in order to specify possible instability issues of MPIC,
as currently only local stability can be guaranteed. One way
to do so would be to impose some additional constraints that
limit the system global energy, or to mathematically prove
that when operating close to boundaries the system remains
stable.
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