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Abstract

Image segmentation is a common intermediate operation in many
image processing applications. On automated systems it is impor-
tant to evaluate how well it, or its subsystems are performing without
access to the Ground Truth. In Deep Learning based image segmenta-
tion there are very few methods to evaluate the output quality with-
out using a ground truth. Most of them are based on the uncertainty
(variance or standard deviation) of the prediction and can be applied
to Bayesian Neural Networks, but not to Convolutional Neural Net-
works. In this research we propose to use the Entropy as a measure of
uncertainty applied to the segmented image predicted by the Neural
Network and some indicators based on it. The method is tested in a
segmentation task of labeled skin images. The entropy based indicators
are evaluated without knowing the ground truth and compared with
indicators based on the real labels (Jaccard, Dice and Average Sym-
metrical Surface Distance). This experimentation showed that they
are correlated and some Entropy based indicators can predict quite
well the ground truth based indicators.

∗The original publication is available at https://www.ias-iss.org
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1 Introduction

Segmentation is, probably, the most important operation in image processing
as it is part of most image applications. During research and development, al-
gorithms are validated against an expected results: the Ground Truth (GT).
In real production applications, when the GT is not available, it is desired,
and sometimes a strong requirement, to estimate how good the segmentation
result is.

Segmentation is an image operation which partitions it into a number
of regions after some criteria. Pixels1 inside each region share a common
property. Haralick [14] proposed, in the 80s, that a good image segmentation
should obey four criteria:

1. Regions should be uniform and homogeneous with respect to some char-
acteristic(s) such as grayscale intensity or texture;

2. Adjacent regions should have significant differences with respect to the
characteristic on which they are uniform;

3. Region interiors should be simple and without many small holes;
4. Boundaries should be simple, not ragged, and be spatially accurate.
From the Machine Learning point of view, segmentation can be viewed,

at pixel level, as a classification problem at which a class is assigned to each
pixel depending on its own value and those from its neighbors.

Since then, many kinds of solutions for segmentation evaluation have been
proposed [33] [32]. Most of them are based on the morphology of regions or
evaluating how different are adjacent ones using, most of the time, their
intensity. All these solutions are not of particular interest to this research
because few of them are related to Deep Learning (DL) and the few of them
based on entropy employ this concept with a particularly unusual meaning
[24] [23] [31] [13] [25]. They use entropy as a criterion to evaluate the intensity
homogeneity inside each region (narrow histograms) before checking if the
histograms of adjacent regions are disjoint. In this paper we use entropy
with its usual Information Theory (IT) meaning: the uncertainty or amount
of information still needed to make the right decision. We mention their
research here just to avoid confusion.

The arrival of DL to process images provided more efficient segmenta-
tion methods, mainly on textured regions where histograms may overlap. In
classification problems, the last layer of a neural network (NN) is usually

1The word "pixel" is used here but all results are valid also for images with three or
more dimensions.
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a Softmax layer2, where each component corresponds to the probability of
assigning the corresponding class to the pixel. These probabilities gave birth
to the concept of "uncertainty" attached to the classification results. The
interest of "uncertainty" results from the hypothesis that most errors hap-
pen on regions of data where we are less certain on what decision to take.
Some research work confirmed this hypothesis [17] [18]. A summary will be
presented in the next section.

The concept of Entropy from IT is, in our opinion, very interesting with
many possible applications. In the theory part of this paper we will show the
meaning of entropy as a measure of uncertainty per pixel in image segmenta-
tion and its lower and upper bounds. In the experimental part of this paper
we show how to use it to identify regions in the image where most errors
may be occurring and propose an indicator of the segmentation quality, like
the Jaccard, Dice, Average Symmetric Surface Distance (ASSD) and other
indexes, but without access to GT.

2 Related work

DL brought much more reliable solutions to many problems, including seg-
mentation of images with textured regions. We are mainly interested in two
DL NN paradigms: Convolutional Neural Networks (CNN) and Bayesian
Neural Networks (BNN). Most research with the theme "Uncertainty" comes
from BNNs domain. In BNNs the weights usually found in CNNs are replaced
by distributions. Furthermore, the epistemic uncertainty3 can be deduced
from these distributions.

Uncertainty in DL was deeply developed in Gal PhD Thesis [9] and by
Kendall et al [19] for BNNs and extended to CNNs. "Uncertainty", in this
research shall be understood as the complement of "confidence" and is usually
expressed by the "variance" (or standard deviation) of some result.

Gal [9] and Gal et al [10] have shown that inserting a random dropout
just before every weight layer in CNNs, during both training and predic-
tion, is equivalent to the probabilistic Gaussian process in BNNs. Monte
Carlo Sampling (or Monte Carlo Dropout) is done by repeating predictions

2The Softmax [2], also known as normalized exponential, converts a vector of real num-
bers (logits) into a probability distribution. This function can be seen as a generalization
of the logistic sigmoid function [1, p. 198]. The elements of the output vector are in the
range (0, 1) and sum to 1.

3The epistemic uncertainty is the uncertainty of the model while the aleatoric uncer-
tainty is the one from the input data: noise, out of focus, ...
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a number of times for each data object to evaluate the variance on output
probabilities and produce an uncertainty map. This method is simple but
requires that prediction be repeated a number of times. When superposing
the distribution of each class, the less the class softmax distributions overlap,
the more certain are the predictions.

Kampffmeyer et al [17] applied Monte Carlo sampling (10 samples) on
CNNs to evaluate the standard deviation over the softmax outputs of samples
during prediction. Their research confirms the link between uncertainty and
segmentation accuracy.

Hendrycks et al [15]4 have found that "simple statistics derived from soft-
max distributions provide a surprisingly effective way to determine whether
an example is misclassified or from a different distribution from the train-
ing data". They explored the idea that smaller values of the maximum of
Softmax vector indicate higher error probability. They experimented with
classification tasks in various domains, all of them having Softmax as the
final layer of the NN. None of them were image segmentation. Roughly
speaking, to validate the idea they partitioned samples into two sets, cor-
rectly and wrongly classified, based on a threshold set on maximum value
of Softmax for each sample. Although they extensively tested the idea they
did not explore the theory behind it nor its limitations. Also, we have not
found any research indicating how their heuristics are related to uncertainty.
Their paper deserves particular attention as, according to SemanticScholar5,
it was cited more than 2000 times. In the next section we will show that this
idea can be understood under the light of IT: how it is related to Shannon
Entropy [28] and its limitations.

Using BNNs, Devries et al [5] proposed "Learned Confidence Estimates",
a method where the network produces two separate outputs: prediction prob-
abilities and the confidence estimates. In another research paper, Devries et
al [6] evaluated their method against four other methods, including the max
of Softmax from Hendrycks et al [15] and Entropy of Softmax applied to
Monte Carlo Dropout. In their setup they had two separated NNs: one
to produce prediction probabilities and uncertainty estimation (as a score
related to it) from input images and the other to estimate the segmenta-
tion quality indicator (Jaccard index6) from the first network results. The

4This article, retrieved from arxiv.org, was accepted as a poster at ICLR 2017.
5See: https://api.semanticscholar.org/CorpusID:13046179
6The Jaccard index [16], also called Intersection over Union or IoU, has been general-

ized to be used as a multiclass indicator (Ruzicka or MeanIOU indexes) or even as a loss
function with real values in the interval [0, 1]. Most generalizations, even different from
the original indicator, are frequently still called just Jaccard.
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predicted Jaccard index was then compared against the true Jaccard index
obtained from GT. Finally they showed that from the five methods used to
predict Jaccard index, the max of Softmax [15] and Monte Carlo Dropout
presented very similar results, slightly better than their method. Particularly
all confidence (based on variance) methods perform worse than those using
direct statistics of the Softmax.

In a recent preprint paper Galil et al [11] have found that the entropy
of the Softmax is slightly better than using just its maximum as a score of
uncertainty.

Nair et al [22] compared, in a two class problem with Monte Carlo
Dropout setup, the variance of the Softmax vector, the Predictive Entropy
and the Mutual Information. The Predictive entropy is defined as the entropy
of the mean of Softmax vectors and the Mutual Information is defined as the
difference between the Predictive Entropy and the mean entropy of Softmax
vectors. The interesting point of this research is establishing the difference
in how these values are interpreted: while the variances and mutual informa-
tion evaluate the confidence in the predicted value (the model’s uncertainty),
the Predicted Entropy evaluates the uncertainty of the prediction, supposing
that the predicted value is correct.

Sometimes, the words "confidence" (or "lack of") or "confidence interval"
and "uncertainty" are employed interchangeably. Rigorously, although both
are related to the quality of results, they do not represent the same point of
view.

Finally, we have found few results encouraging the use of entropy as a
measure of uncertainty or quality of results in DL applications. But, ef-
fectively, from the IT point of view, Entropy can be seen as a measure of
uncertainty or information still needed to make a decision.

3 Entropy and Uncertainty

IT is about quantifying information: the amount of information contained
in, e.g., a file or the information still needed to make some decision without
ambiguity. The latter is how entropy is understood, under IT, as a measure
of uncertainty.

The entropy of a discrete random variable X is defined as [28] [4]:

H(X) = −
∑
x∈X

px log2(px) (1)
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where X is the finite set of possible outcomes and px is the probability of
having x as the outcome. H(X) takes values in the interval [0, log2(|X |)],
where |X | is the cardinality of X . The minimum value happens when one
of the possible outcomes has probability 1 and all other 0 and the maximum
when all outcomes are equally probable (1/|X |).

The final layer in a NN for image segmentation is usually a Softmax layer,
with one component per class. For each pixel, Softmax values sum to one. A
class is the label assigned to each region in the segmented image. The same
label may be assigned to different unconnected regions having some common
characteristics.

In the prediction image, we assign to each pixel the class ŷ corresponding
to the maximum value (σmax) of the Softmax vector (σ), where c is a class
in the set of classes C.

σmax = max
c ∈ C

σ(c) (2)

ŷ = argmax
c∈C

σ(c) (3)

We can notice that the minimum value of σmax is 1/|C|. This happens when
all classes are equal in probability. So, σmax ∈ [1/|C|, 1)

The prediction entropy can be written as:

h = −
∑
c∈C

σ(c) log2(σ(c)) (4)

and broken down into:

h = −σmax log2(σmax)−
∑

c∈C\{ŷ}

σ(c) log2(σ(c)) (5)

The first term in the right hand side corresponds to the contribution of
the predicted class to the prediction entropy and is referred to as residual
entropy. It is the value taken into account by [15] in their heuristics, which
neglects the second term. Now, we can evaluate what could be the result
without neglecting the residual entropy and the difference.

The value of the residual entropy (hresidual) depends on how the residual
probability (1−σmax) is distributed over the remaining classes. We can easily
find its upper and lower bounds.

The upper bound is attained when the residual probability is evenly dis-
tributed over the remaining classes:

max(hresidual) = −(1− σmax) log2

(
1− σmax

|C| − 1

)
(6)
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Classes
0 1 2 3 Entropy Comments

1 1.000 0.000 0.000 0.000 0.000 Minimum

2 0.400 0.400 0.200 0.000 1.519 Low bound
3 0.400 0.300 0.200 0.100 1.846
4 0.400 0.200 0.200 0.200 1.922 Up bound

5 0.250 0.250 0.250 0.250 2.000 Maximum

Table 1: A numeric toy example showing how the distribution of Softmax
values impacts prediction entropy in a four class problem. Class 0 is the
winning class, as an example. Rows 2 to 4 correspond to the situation where
σmax is fixed to 0.4. Notice that the predicted class is not unique in rows 2
and 5.
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Figure 1: Upper and lower bounds of entropy against the probability of the
predicted class and the partial contribution of σmax to entropy for segmen-
tation with 2 (a), 3 (b) and 8 (c) classes

On the other hand, the lower bound is attained when the residual prob-
ability is concentrated on a minimum number of classes, knowing that the
maximum value is σmax. If Nf is the number of classes which can be fulfilled
and σr is the remainder, we can write:

Nf =
⌊1− σmax

σmax

⌋
(7)

σr = (1− σmax)−Nf σmax (8)
min(hResidual) = −Nf .σmax log2 (σmax)− σr log2(σr) (9)

Table 1 shows how the distribution of Softmax values affects the predic-
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tion entropy in a four class toy problem.
Based on the above, Fig. 1 presents the upper and lower bounds of the

prediction entropy and the contribution of σmax to it against σmax for a
problem with 2, 3 and 8 classes. Some conclusions can be drawn:

• the contribution of σmax to the entropy has a maximum at 1/e. So, for
problems where the minimum value allowed for the probability of the
winning class is smaller than 1/e the contribution of σmax is no longer a
monotone function. This happens when the number of classes is greater
than two.

• when σmax < 1/e its use as a score of uncertainty is qualitatively cor-
rect but quantitatively wrong because the contribution of σmax to the
entropy is no longer a bijective function;

• in the particular case of two classes, σmax ≥ 0.5 always, so its use as a
score of uncertainty is valid.

It is worthwhile to notice that if one sums up the entropy of all pixels
one will get the global uncertainty of the segmentation distributed over the
whole image. The key point is what is the best way to aggregate uncertainty
evaluated on each pixel into an index associated to the whole image. This is
the subject of the next section.

4 Experiments

The experiments here are intended to investigate two points: is there a cor-
relation between entropy based indexes and GT ones and how the relation
between indexes varies with the segmentation quality level. Answering these
questions is a step to solving the problem of evaluating the segmentation
quality without having access to the GT.

There are many ways to use entropy as a measure of uncertainty in image
segmentation. The Softmax output of a NN can be used to generate an
uncertainty map, where the value associated to each pixel is its entropy. In
this section we will present and compare four entropy based indexes and
rank them in order of correlation. At the same time, we compare results
from these indexes against those from the heuristics proposed by [15].

8



(a)

(b)

(c)

(d)

Figure 2: Example of image of reconstructed epidermis: Original (a), Entropy
map (b), Segmentation after post-processing (c) and Segmentation GT (d).
Colors legend: Red: SC, Blue: LED, Green: background and dermis. Size
5477x874 pixels. Lighting and contrast may change between acquisitions.
Processing depends more on texture than on pixel levels.

4.1 Dataset

We will be using a private dataset of images coming from microscopy. Im-
ages represent reconstructed skin sections stained with the Fontana-Masson
method. These images are to be segmented and categorized into three classes:
Stratum Corneum (SC), Living Epidermis (LED) and a third one which is
the union of the tissue corresponding to dermis and the background. The
test data set contains 175 images and was segmented in a UNet CNN Net-
work trained on a set of 215 images. The mean dimensions of the images
are 3400x1200 pixels (variable size). An example of these images is shown
in Fig. 2. Although we are not concerned with details of the NN, its results
were chosen from a preliminary version of the project in order to have more
less well segmented images.
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Figure 3: Block diagram of an application detecting regions with high un-
certainty in a segmented image.

4.2 Implementation Details

A block diagram of our application is shown in Fig. 3. "Green" blocks are
those handling uncertainty. During initial development we have found that
most errors happen in regions with high uncertainty touching or intersecting
a neighborhood of interfaces of segmented regions. Regions with high uncer-
tainty, far from interfaces are not relevant as, either way, they will be removed
at post-processing. This hypothesis may not be true for every problem. This
hypothesis allows us to select only relevant regions with high uncertainty.
Notice that we do not care about what the NN does and how: we just need
the Softmax output and, whenever possible the predicted segmented image
with its post-processing already done.

In the upper part of the block diagram, we create the entropy map from
the Softmax results. To get values in the interval [0, 1], entropy is divided by
log2(|C|), where C is the set of classes. An hysteresis threshold [3] is applied
to the entropy map to find regions with high uncertainty. Threshold levels
are easlily defined. A typical histogram of an entropy map contains a mode
at around 1/log2(|C|) as shown in Fig. 4. This value corresponds (but not only)
to points where the uncertainty is maximal at interfaces: commonly any
permutations of the Softmax configuration [0.5, 0.5, 0, . . . , 0]. In our case, we
found that 0.55 and 0.45 as the high and low thresholds are good choices.
This corresponds to approximately 0.9 and 0.7 times the critical histogram
value in a three class problem. The final block, a morphological opening [26],
is needed to remove very thin regions, mainly around interfaces, which are
of no interest.

In the lower part of the diagram, the first block creates the segmented
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Figure 4: Typical histogram of the entropy map. The small mode just beyond
0.6 (1/log2(3)) corresponds to maximum uncertainty interfaces neighborhood:
Softmax taking values around [0.5, 0.5, 0].

image from σmax (as defined in a previous section) of each pixel and does
some post-processing (regularization of interfaces, filling holes, etc). A mor-
phological gradient is applied to the segmented image to find the interfaces,
which are dilated by some number of pixels to define the neighborhood. The
size of the dilation structuring element does not impact significantly results
if chosen in the interval [5, 15] pixels. Results presented hereafter are for a
neighborhood of ten pixels.

Finally, the intersection and reconstruction allow to select only regions
intersecting or touching the neighborhood of interfaces. The two parameters
- size of opening and size of neighborhood - depend on the spatial character-
istics of the images and the two threshold values depend on the number of
classes and, roughly, the global quality of segmentation.

4.3 Evaluation

For each image in the test set we collected: the sum of the areas of regions
with high uncertainty (SAR), the sum of the entropy inside these regions
(SER), the area of the biggest region (ABR), the mean entropy in the whole
segmented image (MEI) and the mean of the maximum Softmax values7 in
the whole segmented image (MSI). Reference indexes are evaluated thanks
to the availability of GTs. We use two overlap based methods - (Jaccard [16]
and Dice-Sorensen [7]) - and a boundary distance based one (ASSD [30]).

7In fact, from [15] heuristics, pixel uncertainty is estimated by (1− σmax)
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Coucou.
Firstly we verify the statistical correlation between indexes derived from

GT (Jaccard, Dice and ASSD) against entropy derived indexes. Pearson and
Spearman [29] methods were used in correlation. Pearson verifies how well
one variable can linearly fit the other one. Spearman method uses the rank
of the values instead of the values: the goal is to verify the monotonicity
of the relation. Moreover, the Spearman method is less sensitive to outliers
and accepts non-linear relations. When trying to substitute one variable by
another one, it is may be more interesting to verify the Spearman correlation.
We choose the Spearman method instead of Kendall’s [20], another widely
used rank correlation method, because Spearman and Pearson evaluation is
exactly the same, allowing to easily compare both results.

In the second part of the experiments the set of samples are partitioned
into Good and Bad subsets based on some threshold set in GT based indexes
(Jaccard, Dice and ASSD). The Area Under Curve (AUC) of the Receiver
Operating Characteristic (ROC) [8] is used to verify how well each entropy
derived index predict the correct subset of images based on a GT derived
index. An AUC with value ”1” means that the entropy derived index can
predict perfectly the GT derived one. This is done for various levels of
threshold on GT based index and entropy based index. While the correla-
tion coefficient allows to verify the compatibility of indexes over the entire
range of values partitioning the samples set over allows to verify the indexes
compatibility at different levels of segmentation quality.

4.4 Results

Fig. 5 plots the Jaccard index against the SAR with the experimental condi-
tions described above8. As it will be shown in the following, SAR is, globally,
the index with the highest correlation with GT derived indexes. We can vi-
sually identify a group of points suggesting a linear relation between the two
variables. Even if the concept of "good segmentation" is quite subjective, we
can arbitrarily set a threshold of 0.9 on the Jaccard index and a threshold of
0.4 million pixels on the SAR, as a support to qualitatively interpret these re-
sults. This is plotted on Fig. 5 and defines four regions on the graphics, from
left to right and from top to bottom: true bad (TB), false bad (FB) (Jaccard
says segmentation is correct but not SAR), false good (FG) (Jaccard says
segmentation is wrong but not SAR) and true good (TG), indicating how
well the SAR predicts Jaccard index. FGs and FBs are samples for which

8Dice and ASSD results are qualitatively the same.
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SAR fails to predict the right value range of Jaccard index.
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Figure 5: Graph of Jaccard threshold against indexes: SAR - Sum of areas of
all regions (a), SER - sum of entropy in all regions (b), ABR - area of biggest
region (c), MEI - mean entropy in image (d) and MSI - mean softmax in
image (e). SAR (a) is the best in most cases.

The two topmost FBs (Fig. 6 (a) and (b)) correspond to outliers with
lighting problems resulting in a really bad segmentation. The other two
FBs (Fig. 6 (c) and (d)) were correctly segmented, after Jaccard, but with
large regions with high uncertainty around the interfaces. In a real world
application, even if the segmentation of these FB images was done quite well
according to the Jaccard index, the operator must be warned about them
and the SAR index allows it. About FGs (Fig. 6 (e) and (f)), both images
are wrongly segmented according to the Jaccard index, with regions with
high uncertainty but too far from the predicted interfaces which are far from
the GT ones. Increasing the neighborhood parameter will not solve the issue
and will increase FBs count.

Table 2 shows the correlation between entropy based indexes against Jac-
card, Dice and ASSD indexes evaluated when the GT is available. Pearson
correlation is shown with and without the two outliers. SAR and SER are,
in both correlation methods, the winners. It is true that when comparing
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Outliers (a) and (b), False bad (c) and (d) and False good (e) and
(f), after SAR and Jaccard indexes. Predicted interfaces are indicated by red
lines and uncertainty regions by blue lines.

With outliers
Index SAR SER ABG MEI MSI

Jaccard -0.3850 -0.3805 -0.2565 -0.3287 0.3011
Dice -0.3808 -0.3770 -0.2535 -0.3157 0.2903

ASSD 0.3865 0.3793 0.2751 0.3131 -0.2888
Without outliers

Index SAR SER ABG MEI MSI
Jaccard -0.7338 -0.7361 -0.5689 -0.4252 0.4656

Dice -0.7379 -0.7409 -0.5781 -0.4137 0.4559
ASSD 0.7552 0.7544 0.6403 0.4137 -0.4618

(a) Pearson

Index SAR SER ABR MEI MSI
Jaccard -0.6854 -0.6834 -0.6528 -0.4230 0.4388

Dice -0.6850 -0.6830 -0.6522 -0.4229 0.4387
ASSD 0.8229 0.8221 0.7829 0.5392 -0.5530

(b) Spearman

Table 2: Pearson (a) and Spearman (b) correlation coefficients between en-
tropy based indexes and GT based ones. Because the Pearson correlation is
too sensitive to outliers, results are presented with and without them.
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just MEI against MSI, the latter is the winner by a small margin, but both
have correlation coefficients much smaller than SAR and SER. Finally, we
notice that Pearson correlation is greater than Spearman. This indicates that
the relationship between GT based indexes and entropy based ones is better
represented by a linear function than by a monotonic one.

The next step is to evaluate how well entropy based indexes can predict
GT based ones. As explained in Section 4.2, the test set is partitioned in
Good and Bad based on a threshold set in the GT index, for each couple of
indexes from GT and entropy based ones. AUC is used to verify how well
each entropy based index can predict GT one. Results are presented in Fig. 7
and clearly show that the prediction quality is not the same over the entire
range of the GT based indexes, mainly when the segmentation quality is high.
The particular meaning of AUC must be recalled to interpret this result: the
AUC is the probability that if we take a couple of samples, one of each class,
their ranking is the right one. This is equivalent to the Wilcoxon test of ranks
[12]. When we change the threshold, up or down, some samples change their
class with respect to GT index but not about the entropy based index, so
this can decrease the AUC. In other words, the order of ranks between the
indexes is not perfectly verified in small neighborhoods, while it is in large
ranges. This is expected as while the Spearman correlation is quite good it
is smaller than the Pearson as shown in Table 2.

4.5 Discussion

We observed that for all indexes, AUC decreases when the segmentation
quality approaches "perfection", after GT based index. This is not surprising
because there are too many samples at this region and indexes based on
different concepts do not reproduce rank order even if placed in equivalent
range of values. This effect was predicted by Spearman correlation from Table
2, lower than Pearson correlation, meaning that rank is better preserved
on long range of values than in short ones. Also, even among GT based
indexes the correlation is not perfect: 0.931 for ASSD against Jaccard or Dice.
This conclusion may surely be applied on the opposite extreme of indexes
range when segmentation becomes too bad, but more samples having bad
segmentation quality are needed. We can also remark than even among GT
based indexes the correlation is not perfect: 0.931 for ASSD against Jaccard
or Dice.

An important point is that entropy derived indexes evaluated on regions of
high uncertainty are more effective than the entropy alone evaluated over the
entire image. This is because regions with errors may be too small compared

15



0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Jaccard threshold

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

SAR
SER
ABR
MEI
MSI

(a)

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Dice-Sorensen threshold

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

SAR
SER
ABR
MEI
MSI

(b)

0 10 20 30 40 50
ASSD threshold

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

SAR
SER
ABR
MEI
MSI

(c)

Figure 7: Prediction of GT based indexes by entropy based ones can be
estimated by the AUC for different values of thresholds set on GT indexes:
Jaccard (a), Dice (b) and ASSD (c). To be remarked the quasi superposition
of some results: SAR with SER and MEI with MSI on almost the entire
range of values.

to the whole image and high local entropy values will be diluted over the
entire surface of the image. This is important mainly when small regions are
to be detected. Other than the theoretical reason we also have shown that
entropy based indexes applied to image segmentation are more efficient than
the heuristics proposed by [15].

5 Future directions

In the experimental part of this research we have shown that it can be possible
to use some entropy derived indexes as a replacement of the GT based indexes
when the GT is not available. More research using other image databases
and similar problems with more classes could be interesting.
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Fig. 8 shows image crops from the problem we worked on: an entropy
map, the regions with high uncertainty, the resulting segmented image and
the original image with superposition of regions interfaces and the boundaries
of regions with high uncertainty. To improve segmentation results, these
regions can be used as feedback in a previous stage to suggest where to make
an additional effort. In a real world application, a visual indicator of possible
problems on the process workflow is very interesting.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Entropy map (a) and (e), regions with high uncertainty (b) and
(f), segmented image (c) and (g) and the original image with segmentation
interfaces and boundary of regions superimposed on it (d) and (h).

The idea behind Active Learning ([27]) is that a good predictive model
can be built with a minimum number of samples if the selection of samples
to be learned is done by the model and not imposed on it. Some entropy
derived index could be used as a criteria to select which samples can be used
to incrementally build the model, as done by, e.g., [21].

The entropy is a natural indicator of uncertainty, not specific to image
segmentation. Whenever you have a NN with a Softmax as the last layer, so
a probability distribution, you can evaluate the associated entropy and asso-
ciate it to some uncertainty. So, it would be interesting to experiment with
entropy based indicators on NN applications other than image segmentation
that have Softmax as one of its layers.
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6 Conclusions

To be able to evaluate the quality of the results of an application in the real
world without access to the expected result is becoming an important require-
ment in operational automated applications. Entropy is a natural measure of
uncertainty (or amount of information) associated to a probability distribu-
tion. We demonstrated, in this research, that some entropy derived indexes
may be good candidates. This is a flourishing domain and we hope that this
research will motivate other works to make use of the entropy concept.

We also presented an application framework which can surely be used as
a starting point to be integrated into real world applications.
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